JPH02108818A - Air intake device for engine - Google Patents
Air intake device for engineInfo
- Publication number
- JPH02108818A JPH02108818A JP63263320A JP26332088A JPH02108818A JP H02108818 A JPH02108818 A JP H02108818A JP 63263320 A JP63263320 A JP 63263320A JP 26332088 A JP26332088 A JP 26332088A JP H02108818 A JPH02108818 A JP H02108818A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- resonance
- engine
- inertia
- changing means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008859 change Effects 0.000 claims abstract description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 5
- 238000005192 partition Methods 0.000 abstract description 11
- 230000000694 effects Effects 0.000 description 20
- 238000004891 communication Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0205—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
- F02B27/0215—Oscillating pipe charging, i.e. variable intake pipe length charging
- F02B27/0221—Resonance charging combined with oscillating pipe charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0247—Plenum chambers; Resonance chambers or resonance pipes
- F02B27/0252—Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B2075/1804—Number of cylinders
- F02B2075/1824—Number of cylinders six
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0268—Valves
- F02B27/0273—Flap valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0294—Actuators or controllers therefor; Diagnosis; Calibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B75/22—Multi-cylinder engines with cylinders in V, fan, or star arrangement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Characterised By The Charging Evacuation (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、吸気の動的効果を利用して過給を行うように
したエンジンの吸気装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine that performs supercharging by utilizing the dynamic effect of intake air.
(従来の技術)
従来より、多気筒エンジンの吸気系において、共鳴過給
、慣性過給等の吸気の動的効果すなわち圧力波を利用し
て充填効率を高めるようにした吸気装置が種々提案され
ている。(Prior Art) Various intake devices have been proposed in the past for multi-cylinder engine intake systems that utilize dynamic effects of intake air, such as pressure waves, such as resonance supercharging and inertia supercharging, to increase charging efficiency. ing.
まず、上記共鳴過給は、吸気順序が隣接しない気筒を集
合し、この集合部を含む吸気系の固有振動数とエンジン
回転数すなわちピストンの加振周波数とが一致して共鳴
した時点の共鳴作用を利用するものであり、その共鳴す
る固有振動数を可変機構によって変更することによって
広い範囲で共鳴過給を得るようにした技術が、例えば、
特開昭81−226514号公報に見られるように公知
である。First, the above-mentioned resonant supercharging is a resonance effect that occurs when cylinders whose intake order is not adjacent are assembled, and the natural frequency of the intake system including this cluster matches the engine rotational speed, that is, the excitation frequency of the piston, and resonates. For example, a technology that obtains resonant supercharging over a wide range by changing the resonant natural frequency using a variable mechanism is, for example,
This is known as seen in Japanese Patent Application Laid-Open No. 81-226514.
また、上記慣性過給は、吸気開始にともなって生じる負
圧波が吸気通路上流側の圧力反転部で反射され正圧波と
なって吸気ポートに戻される吸気の慣性効果を利用して
いるものであり、その圧力反転部までの長さを変更する
可変機構によって広い範囲で慣性過給を得るようにした
技術が、例えば、特開昭61−157718号公報に見
られるように公知である。In addition, the above-mentioned inertial supercharging utilizes the inertial effect of intake air, in which a negative pressure wave that occurs with the start of intake is reflected at a pressure reversal section on the upstream side of the intake passage and returns to the intake port as a positive pressure wave. A technique for obtaining inertial supercharging over a wide range using a variable mechanism that changes the length up to the pressure reversal section is known, for example, as seen in Japanese Patent Laid-Open No. 157718/1983.
(発明が解決しようとする課題)
しかして、上記のような共鳴過給または慣性過給のみを
利用するようにした吸気装置では、前記先行例のような
可変機構によって同調点を変更するようにしても、特定
状態での共振点を過ぎると共鳴過給もしくは慣性過給に
よる出力向上作用が低下することになる。したがって、
これらの共鳴過給または慣性過給のみによる動的効果を
利用するものでは、その出力向上機能は特定の限られた
範囲でしか得られず、運転領域の全般において良好な出
力性能を確保することは困難である。(Problem to be Solved by the Invention) However, in an intake system that uses only resonance supercharging or inertia supercharging as described above, the tuning point is changed by a variable mechanism like the previous example. However, when the resonance point in a specific state is exceeded, the output improvement effect of resonance supercharging or inertial supercharging will decrease. therefore,
With these systems that utilize only the dynamic effects of resonance supercharging or inertial supercharging, the output improvement function can only be obtained within a specific and limited range, and it is important to ensure good output performance over the entire operating range. It is difficult.
そこで、本発明は上記事情に鑑み、共鳴過給と慣性過給
とを組合わせ、両者の特性の違いを利用して幅広い回転
数領域で動的過給を行うようにしたエンジンの吸気装置
を提供することを目的とするものである。Therefore, in view of the above circumstances, the present invention provides an engine intake system that combines resonance supercharging and inertial supercharging and utilizes the differences in the characteristics of the two to perform dynamic supercharging over a wide rotation speed range. The purpose is to provide
(課題を解決するための手段)
上記目的を達成するために本発明の吸気装置は、吸気タ
イミングの異なる各気筒に独立して吸気を導入する独立
吸気通路を設け、所定の気筒の独立吸気通路を集合部に
集合させ、吸気間隔が等しくなるよう該集合部と独立吸
気通路による吸気系の固有振動数を変更する共鳴変更手
段を設けると共に、上記独立吸気通路の固有振動数を変
更する慣性変更手段を設け、また、エンジン回転数を検
出するエンジン回転数検出手段からの信号を受け、慣性
変更手段を共鳴変更手段の作動より高回転側で作動させ
る制御手段を設けるように構成したものである。 また
、前記制御手段は、慣性変更手段の切換え回転数より高
回転側で、さらに共鳴変更手段を作動させるようにして
もよい。(Means for Solving the Problems) In order to achieve the above object, an intake system of the present invention is provided with an independent intake passage that independently introduces intake air into each cylinder having a different intake timing, and an independent intake passage of a predetermined cylinder. and a resonance changing means for changing the natural frequency of the intake system formed by the collecting part and the independent intake passage so that the intake air intervals are equal, and an inertia change means for changing the natural frequency of the independent intake passage. The apparatus is configured to further include a control means for receiving a signal from the engine rotation speed detection means for detecting the engine rotation speed and operating the inertia change means at a higher rotation speed than the operation of the resonance change means. . Further, the control means may further operate the resonance change means at a rotation speed higher than the switching rotation speed of the inertia change means.
さらに、集合部は吸気行程が連続しない気筒のみを集合
させるのが好適である。Further, it is preferable that the collecting section collects only cylinders whose intake strokes are not consecutive.
一方、慣性変更手段は、独立吸気通路の上流側の所定容
積室に開口する位置を変更するものが好適である。On the other hand, it is preferable that the inertia changing means changes the position at which it opens into the predetermined volume chamber on the upstream side of the independent intake passage.
(作用)
上記のようなエンジンの吸気装置では、共鳴過給の同調
点を変更する共鳴変更手段と、慣性過給の同調点を変更
する慣性変更手段との作動時期をずらせ、それぞれの特
性に対応して低回転側で共鳴変更手段を切換え作動し、
それより高回転側で慣性変更手段を切換え、低回転域で
は共鳴過給による過給効果を十分に得て、その効果が低
下する頃に共鳴変更手段を切換えて共鳴過給の低下を抑
制しつつ慣性過給を十分に得て、さらに高速側で慣性変
更手段を切換えて慣性過給の低下を抑制しつつ両者の過
給作用を十分′に得て、低速から高速域にかけて広い範
囲で高い動的効果による過給作用を得て、エンジン出力
の向上を図るようにしている。(Function) In the engine intake system as described above, the operating timings of the resonance changing means that changes the tuning point of resonance supercharging and the inertia changing means that changes the tuning point of inertial supercharging are shifted, and the timing of operation is adjusted to suit their respective characteristics. Correspondingly, the resonance change means is switched and operated on the low rotation side,
The inertia changing means is switched at higher rotation speeds to obtain sufficient supercharging effect due to resonance supercharging in the lower rotation range, and when the effect decreases, the resonance changing means is switched to suppress the reduction in resonance supercharging. In addition, by switching the inertia change means on the high speed side to suppress the decline in inertia supercharging and obtaining sufficient supercharging action from both, it is possible to achieve high performance over a wide range from low speeds to high speeds. It aims to improve engine output by obtaining a supercharging effect due to dynamic effects.
(実施例) 以下、図面に沿って本発明の各実施態様を説明する。(Example) Hereinafter, each embodiment of the present invention will be described along with the drawings.
実施例1
この実施例は第1図および第2図に示し、V型6気筒エ
ンジンの例である。Embodiment 1 This embodiment is shown in FIGS. 1 and 2, and is an example of a V-type six-cylinder engine.
エンジン本体1は、中央下部のシリンダブロック2上の
両側に所定の角度をもって左右シリンダヘッド3a、3
bが配設されてなる左バンクIAと右バンクIBとを有
し、左バンクIAには第1゜3.5気筒が配設され、右
バンクIBには第2゜46気筒が配設されている。各気
筒の吸気ポート4は、両バンクIA、1Bの内面側に互
いに対向して開口されている。The engine body 1 has left and right cylinder heads 3a, 3 arranged at a predetermined angle on both sides of the cylinder block 2 at the lower center.
It has a left bank IA and a right bank IB, in which the left bank IA is provided with a 1st 3.5 cylinder, and the right bank IB is provided with a 2nd 46 cylinder. ing. The intake ports 4 of each cylinder are opened on the inner surfaces of both banks IA and 1B, facing each other.
上記両側のバンクIA、IBの各気筒に吸気を供給する
吸気装置は、各吸気ポート4にそれぞれ接続される左右
の各独立吸気通路68〜6dを構成する吸気マニホール
ド7と、右側のバンクIBの上方に位置して配置され前
記独立吸気通路6a〜6fの上流端が接続される集合部
としてのサージタンク8とを備えている。The intake device that supplies intake air to each cylinder in banks IA and IB on both sides includes an intake manifold 7 that constitutes each left and right independent intake passage 68 to 6d connected to each intake port 4, and a cylinder in bank IB on the right side. A surge tank 8 is provided as a gathering section located above and to which the upstream ends of the independent intake passages 6a to 6f are connected.
上記サージタンク8は、左右のバンクIA、IBに対し
てそれぞれ設けられた第1室8aおよび第2室8bによ
って構成されている。すなわちサージタンク8は、出力
軸方向に長い箱状体として構成され、内部が中央の仕切
壁8Cによって第1室8aと第2室8bとに分割されて
いる。そして、後方の第1室8aに対して該サージタン
ク8に遠い方の左バンクIAからの第1. 3. 5気
筒からの独立吸気通路6a、6c、6eが接続集合され
、前方の第2室8bには近い方の右バンクIBからの第
2.4.6気筒からの独立吸気通路6b、6d、6fが
それぞれ接続集合され、各バンクIA。The surge tank 8 includes a first chamber 8a and a second chamber 8b provided for the left and right banks IA and IB, respectively. That is, the surge tank 8 is configured as a box-shaped body that is long in the output shaft direction, and the interior thereof is divided into a first chamber 8a and a second chamber 8b by a central partition wall 8C. The first chamber 8a from the left bank IA, which is farther from the surge tank 8, is connected to the rear first chamber 8a. 3. The independent intake passages 6a, 6c, and 6e from the 5th cylinder are connected and collected, and the independent intake passages 6b, 6d, 6f from the 2nd, 4th, and 6th cylinders from the closer right bank IB are connected to the front second chamber 8b. are connected and aggregated, and each bank IA.
IB毎に吸気行程が隣接しない気筒ごとに独立吸気通路
6a〜6fが集合されている。For each IB, independent intake passages 6a to 6f are grouped for each cylinder whose intake stroke is not adjacent to each other.
上記サージタンク8には独立吸気通路68〜6fの反対
側にスロットルボディ11が接続され、このスロットル
ボディ11には各室に対してそれぞれスロットル弁12
a、12bが介装され、サージタンク8の両室8a、8
bに接続され、吸気が導入される。また、さらに上流側
には吸気通路13が接続され、この上流側の吸気通路1
3が合流する部分において両側の第1室8aと第2室8
bが連通され、吸気通路13の上流端はエアフローメー
タAFM、エアクリーナACに接続される。A throttle body 11 is connected to the surge tank 8 on the opposite side of the independent intake passages 68 to 6f, and this throttle body 11 has two throttle valves 12 for each chamber.
a, 12b are interposed, and both chambers 8a, 8 of the surge tank 8
b, and intake air is introduced. Furthermore, an intake passage 13 is connected further upstream, and this intake passage 1
The first chamber 8a and the second chamber 8 on both sides at the part where 3 joins.
b are communicated with each other, and the upstream end of the intake passage 13 is connected to an air flow meter AFM and an air cleaner AC.
また、前記独立吸気通路6a〜6fを構成する吸気マニ
ホールド7は、両側のバンクIA、IBの中間上部の略
水平な接続面Fを分割部分として、サージタンク8と一
体な上流側のサージタンク側部分7aと、吸気ポート4
に接続される下流側の吸気ポート側部分7bとに2分割
されている。In addition, the intake manifold 7 constituting the independent intake passages 6a to 6f is divided into a substantially horizontal connecting surface F at the middle upper part of the banks IA and IB on both sides, and is connected to the upstream surge tank side which is integrated with the surge tank 8. portion 7a and intake port 4
The intake port side portion 7b on the downstream side is connected to the intake port side portion 7b.
すなわち、左バンクIAに接続された独立吸気通路6a
、6c、6eは、吸気ポート側部分7bによって両バン
クIA、IBの中間位置に向けて斜め上方に伸び、略水
平の接続面Fを介してサージタンク側部分7aによって
緩やかな曲率をもって上方から後方に向かって延び、右
バンクIBの上方に位置するサージタンク8の第1室8
aに各気筒で略同−通路長さでもって接続される。一方
、右バンクIBに接続された独立吸気通路6b、6d、
6fは、吸気ポート側部分7bによって両バンクIA
IBの中間位置に向けて斜め上方に伸び、略水平の接
続面Fで前記左バンクIAからの独立吸気通路6a、6
c、6eと交互に接続され、サージタンク側部分7aに
よって緩やかな曲率をもって上方から前方に向かって延
び、右バンクIBの上方に位置するサージタンク8の第
2室8bに各気筒で略同−通路長さでもって接続されて
いる。That is, the independent intake passage 6a connected to the left bank IA
, 6c, and 6e extend obliquely upward toward an intermediate position between both banks IA and IB by the intake port side portion 7b, and are extended from above to the rear with a gentle curvature by the surge tank side portion 7a via the approximately horizontal connecting surface F. The first chamber 8 of the surge tank 8 extends toward the right bank IB and is located above the right bank IB.
Each cylinder is connected to A with approximately the same passage length. On the other hand, independent intake passages 6b, 6d connected to the right bank IB,
6f is connected to both banks IA by the intake port side portion 7b.
The independent intake passages 6a, 6 from the left bank IA extend obliquely upward toward the intermediate position of IB, and are connected to the left bank IA at a substantially horizontal connecting surface F.
c and 6e, extending from above to the front with a gentle curvature by the surge tank side portion 7a, and connected to the second chamber 8b of the surge tank 8 located above the right bank IB in approximately the same manner for each cylinder. connected by a path length.
前記サージタンク8の中央の仕切壁8Cには、第1室8
aと第2室8bを連通ずる開口が形成され、この開口部
分に共鳴切換用の第1開閉弁15が介装されている。こ
の第1開閉弁15は、第1アクチユエータ17が接続さ
れて開閉操作される。A first chamber 8 is provided in the central partition wall 8C of the surge tank 8.
An opening is formed that communicates the chamber 8b with the second chamber 8b, and a first on-off valve 15 for resonance switching is interposed in this opening. The first on-off valve 15 is connected to a first actuator 17 to be opened and closed.
また、前記各独立吸気通路6a〜6fにおけるサージタ
ンク側部分7aから分岐してサージタンク8と反対側の
左バンクIAの方向に延びる分岐通路98〜9fが設け
られ、この分岐通路9a〜9fの先端はバンク間の空間
上の前後に配設された圧力反転部としての第1および第
2容積室19a、、ICjbに接続されている。前方の
第1容積室19aには第1〜3気筒の分岐通路9a〜9
Cが接続され、一方、後方の第2容積室19bには第4
〜6気筒の分岐通路9d〜9fが接続され、各容積室1
9a、19bに集合する気筒の独立吸気通路68〜6f
は容積室19a、19bを介して相互に連通ずるように
構成されている。そして、上記各分岐通路9a〜9fの
容積室19a、19bに対する連通部分に慣性切換用の
第2開閉弁16がそれぞれ配設され、各容積室19a、
19bごとに共通の軸に支持され、各気筒の第2開閉弁
16は中央に配設された共通の第2アクチユエータ18
によって開閉作動される。Further, branch passages 98 to 9f are provided which branch from the surge tank side portion 7a of each of the independent intake passages 6a to 6f and extend in the direction of the left bank IA on the opposite side from the surge tank 8. The tips are connected to first and second volume chambers 19a, , ICjb, which serve as pressure inversion parts, which are arranged in front and behind in the space between the banks. The first volume chamber 19a at the front has branch passages 9a to 9 for the first to third cylinders.
C is connected, while the rear second volume chamber 19b has a fourth
~6 cylinder branch passages 9d~9f are connected, and each volume chamber 1
Independent intake passages 68 to 6f of cylinders that gather at 9a and 19b
are configured to communicate with each other via volume chambers 19a and 19b. A second on-off valve 16 for inertia switching is disposed in a communicating portion of each of the branch passages 9a to 9f with the volume chambers 19a, 19b, and each of the volume chambers 19a,
19b is supported on a common shaft, and the second on-off valve 16 of each cylinder is connected to a common second actuator 18 disposed in the center.
It is opened and closed by
上記吸気系統において、共鳴過給機能は吸気行程の連続
しない気筒ごとに集合した集合部(サージタンク8の第
1室8aもしくは第2室8b)と集合させた独立吸気通
路6a〜6fによる吸気系の固有振動数とエンジン回転
数とが共振状態となった時に発生する定常波が、吸気行
程路わりの時期に吸気ボート4に作用することによって
得られるものである。そして、上記吸気系の固有振動数
を切換える共鳴変更手段20によって、第1開閉弁15
が第1アクチユエータ17の作動によって開くと、閉じ
ている状態より集合部8a、8bの連通経路が短くなっ
て固有振動数が高くなり、高回転域において高い共鳴効
果が得られる。なお、本例におけるエンジンでは、吸気
行程順序(点火順序)が第1−2−3−4−5−6気筒
の順に設定され、各バンクIA、1Bからの独立吸気通
路6a〜6fを集合したサージタンク8の各室8a。In the above-mentioned intake system, the resonance supercharging function is achieved by an intake system using a collection part (the first chamber 8a or second chamber 8b of the surge tank 8) that is collected for each cylinder whose intake strokes are not consecutive, and independent intake passages 6a to 6f that are collected. This is obtained by a standing wave generated when the natural frequency of the engine resonates with the engine rotational speed acting on the intake boat 4 at the beginning of the intake stroke. Then, the first on-off valve 15 is controlled by the resonance changing means 20 that switches the natural frequency of the intake system.
When opened by the operation of the first actuator 17, the communication path between the gathering parts 8a and 8b becomes shorter than in the closed state, the natural frequency becomes higher, and a high resonance effect is obtained in the high rotation range. In the engine in this example, the intake stroke order (ignition order) is set in the order of 1-2-3-4-5-6 cylinders, and the independent intake passages 6a to 6f from each bank IA and 1B are grouped together. Each chamber 8a of the surge tank 8.
8bでは吸気順序は隣接せず、吸気干渉が生じないこと
によって上記共鳴過給が確保できる。In 8b, the intake order is not adjacent, and the resonance supercharging described above can be ensured because intake interference does not occur.
また、慣性過給機能は、吸気ボート4で発生した加振力
が独立吸気通路6a〜6fを上流側に伝わり、第2開閉
弁16が閉じている場合には、サージタンク8の第1お
よび第2室8a、8bまでの吸気管内全体を加振しζま
た、第2開閉弁16が開いている際には第1および第2
容積室19a。In addition, the inertial supercharging function is such that when the excitation force generated in the intake boat 4 is transmitted upstream through the independent intake passages 6a to 6f and the second on-off valve 16 is closed, the first and second on-off valves of the surge tank 8 and The entire interior of the intake pipe up to the second chambers 8a and 8b is vibrated.ζAlso, when the second on-off valve 16 is open, the
Volume chamber 19a.
19bまでの吸気管内を加振し、吸気ボートが閉じる時
期に対応して同調した際に慣性過給作用を得る。そして
、上記経路すなわち圧力振動部の位置を変更する慣性変
更手段21によって、第2開閉弁16が閉じている時が
振動管長が長く低回転域で同調するものであり、開いて
いる時には振動管長が短くなって高回転域で同調すると
共に、他の気筒の独立吸気通路6a〜6fから分岐通路
98〜9fおよび容積室19a、19bを介して吸気が
導入され、吸気抵抗の低減による充填効率の向上が得ら
れるものである。The inside of the intake pipe up to 19b is vibrated, and an inertial supercharging effect is obtained when the intake boat is synchronized with the closing timing. Then, by the inertia changing means 21 that changes the position of the above-mentioned path, that is, the pressure vibrating part, when the second on-off valve 16 is closed, the vibration pipe length is long and synchronized in the low rotation range, and when it is open, the vibration pipe length is adjusted. is shortened and synchronized in the high rotation range, and intake air is introduced from the independent intake passages 6a to 6f of other cylinders through the branch passages 98 to 9f and the volume chambers 19a and 19b, and the filling efficiency is improved by reducing the intake resistance. This is something that can be improved.
次に前記共鳴変更手段20および慣性変更手段21の第
1および第2アクチュエータ17.18の作動は、第3
図に示すような制御手段22によって制御される。両ア
クチュエータ17.18は負圧導入通路23.24によ
る作動圧の導入によって駆動され、共鳴過給用の第1ア
クチユエータ17に対する負圧導入通路23には第1三
方ソレノイド弁25が、慣性過給用の第2アクチユエー
タ18に対する負圧導入通路24には第2三方ソレノイ
ド弁26がそれぞれ介装され、この両三方ソレノイド弁
25.26には制御手段22の駆動回路27.28から
駆動信号が出力され所定時期に第1アクチユエータ17
もしくは第2アクチユエータ18に負圧を導入して第1
開閉弁15もしくは第2開閉弁16の切換え作動を行う
ものである。The actuation of the first and second actuators 17.18 of the resonance modification means 20 and the inertia modification means 21 then
It is controlled by a control means 22 as shown in the figure. Both actuators 17.18 are driven by the introduction of operating pressure through negative pressure introduction passages 23.24, and a first three-way solenoid valve 25 is provided in the negative pressure introduction passage 23 for the first actuator 17 for resonance supercharging. A second three-way solenoid valve 26 is interposed in the negative pressure introduction passage 24 for the second actuator 18, and a drive signal is output from the drive circuit 27.28 of the control means 22 to both three-way solenoid valves 25.26. and the first actuator 17 at a predetermined time.
Alternatively, by introducing negative pressure into the second actuator 18, the first
It performs a switching operation of the on-off valve 15 or the second on-off valve 16.
上記制御手段22にはエンジンの回転数を検出するエン
ジン回転数検出手段29の回転センサ30からの回転数
信号およびエンジンのスロットル弁12a、12bの開
度を検出するスロットルセンサ31からのスロットル開
度信号が入力される。The control means 22 receives a rotation speed signal from a rotation sensor 30 of an engine rotation speed detection means 29 that detects the engine rotation speed, and a throttle opening signal from a throttle sensor 31 that detects the opening degrees of the throttle valves 12a and 12b of the engine. A signal is input.
回転数信号およびスロットル開度信号は、第1〜第4比
較回路32〜35に入力され、それぞれの比較回路で設
定値と比較される。すなわち、例えば回転数信号は、第
1比較回路32で350Orpm相当の比較値Nlと、
第2比較回路33で500Orpm相当の比較値N2と
、第3比較回路34で7000rp讃相当の比較値N3
とそれぞれ比較され、また、スロットル開度信号は、第
4比較回路35で73@相当の比較値T0と比較される
。そして、上記第1比較回路32および第3比較回路3
4の出力信号が、ゲート回路36を介してOR回路37
に入力され、このOR回路37には前記第4比較回路3
5からの信号も入力され、該OR回路37の出力が共鳴
用の駆動回路27に出力される。一方、前記第2比較回
路33の信号が慣性用の駆動回路28に出力される。The rotational speed signal and the throttle opening signal are input to first to fourth comparison circuits 32 to 35, and are compared with set values in each comparison circuit. That is, for example, the rotation speed signal is determined by the first comparison circuit 32 as a comparison value Nl corresponding to 350 Orpm,
The second comparison circuit 33 generates a comparison value N2 equivalent to 500 rpm, and the third comparison circuit 34 generates a comparison value N3 equivalent to 7000 rpm.
Further, the throttle opening signal is compared with a comparison value T0 corresponding to 73@ in the fourth comparison circuit 35. Then, the first comparison circuit 32 and the third comparison circuit 3
The output signal of 4 is sent to the OR circuit 37 via the gate circuit 36.
The fourth comparison circuit 3 is input to this OR circuit 37.
5 is also input, and the output of the OR circuit 37 is output to the resonance drive circuit 27. On the other hand, the signal from the second comparison circuit 33 is output to the inertia drive circuit 28.
上記のような制御手段22による共鳴変更手段20およ
び慣性変更手段21の制御により、第4図に示すような
特性で共鳴用の第1開閉弁15および慣性用の第2開閉
弁16が開閉される。すなわち、第1開閉弁15は、ス
ロットル開度TVOが73°以上の高負荷状態でかつエ
ンジン回転数が3500rpIi以下の低回転領域、お
よびスロットル開度が73°以上の高負荷状態でかつエ
ンジン回転数が700Orpm以上の高回転領域で閉じ
られ、固有振動数を低くする一方、その他の負荷および
回転領域では開かれて固有振動数を高くするものである
。By controlling the resonance changing means 20 and the inertia changing means 21 by the control means 22 as described above, the first on-off valve 15 for resonance and the second on-off valve 16 for inertia are opened and closed with the characteristics shown in FIG. Ru. That is, the first on-off valve 15 operates in a high load state where the throttle opening TVO is 73 degrees or more and the engine rotation speed is 3500 rpm or less, and in a high load state where the throttle opening is 73 degrees or more and the engine rotation speed is 3500 rpm or less. The number is closed in a high rotation range of 700 Orpm or more, lowering the natural frequency, while it is open in other load and rotation ranges, increasing the natural frequency.
また、第2開閉弁16は、スロットル開度に関係なく、
エンジン回転数が5000rpI11以下で閉じて、振
動管長を長くする一方、それ以上のエンジン回転数で開
いて振動管長を短くするものである。Moreover, the second on-off valve 16 is
It closes when the engine rotation speed is 5000 rpm or less to lengthen the vibrating tube length, while it opens at engine rotation speeds higher than that to shorten the vibrating tube length.
上記のような制御特性に基づいて、例えば、第5図に示
すようなエンジン出力特性を得ることができるものであ
る。図には第1および第2開閉弁15.16の開閉状態
に対応して4つのトルク曲線I〜■が生じ、これを切換
え使用するものである。まず、曲線Iは第1開閉弁15
が閉で第2開閉弁16が閉状態の特性を示し、曲線■は
第1開閉弁15が閉で第2開閉弁16が開状態の特性を
示し、曲線■は第1開閉弁15が開で第2開閉弁16が
閉状態の特性を示し、曲線■は第1開閉弁15が開で第
2開閉弁16が開状態の特性を示している。そして、エ
ンジン回転数が3500rpn+以下の低回転領域では
、両開閉弁15.16を閉じた曲線Iの状態が最も出力
が大きく、3500〜5000rp謡の中回転域では第
1開閉弁15のみを開いた曲線■の状態が最も出力が大
きく、5000〜7000rpmの高回転域では両開閉
弁15.16を開いた曲線■の状態が最も出力が大きく
、さらに7000rpH1を越えた超高回転域では第1
開閉弁15のみを閉じた曲線Hの状態が最も出力が大き
くなるものであり、これに対応して3500rpω以下
の低回転領域では両開閉弁15.16を閉じ、3500
rpmに達すると第1開閉弁15を開き、さらに、50
00rpI11に達すると第2開閉弁16も開き、70
00rpmを越える高回転状態となると第1開閉弁15
を閉じるように制御するものである。Based on the control characteristics as described above, engine output characteristics as shown in FIG. 5, for example, can be obtained. In the figure, four torque curves I to ■ are generated corresponding to the open and close states of the first and second on-off valves 15 and 16, and these are used by switching. First, curve I is the first on-off valve 15
is closed and the second on-off valve 16 is closed, the curve ■ shows the characteristics when the first on-off valve 15 is closed and the second on-off valve 16 is open, and the curve ■ is when the first on-off valve 15 is open. The curve (2) shows the characteristics when the second on-off valve 16 is in the closed state, and the curve (2) shows the characteristics when the first on-off valve 15 is open and the second on-off valve 16 is in the open state. In the low engine speed range of 3500 rpm+ or less, the state of curve I with both on-off valves 15 and 16 closed produces the highest output, and in the middle speed range of 3500 to 5000 rpm, only the first on-off valve 15 is open. In the high speed range of 5000 to 7000 rpm, the state of curve ■ with both on-off valves 15.16 open has the highest output, and in the ultra-high speed range exceeding 7000 rpm, the output is the highest.
The state of curve H where only the on-off valve 15 is closed is the state where the output is the highest, and correspondingly, in the low rotation range of 3500 rpm or less, both on-off valves 15 and 16 are closed, and the output is 3500 rpm or less.
When the rpm reaches 50 rpm, the first on-off valve 15 is opened, and
When reaching 00rpI11, the second on-off valve 16 also opens, and 70rpI11 is reached.
When the rotation speed exceeds 00 rpm, the first on-off valve 15
This is a control to close the .
なお、上記のような切換えは、スロットル開度が73″
以上開かれた高負荷状態において行うものであり、スロ
ットル開度が73°未満の負荷状態では、それ程の出力
が要求されないことから、第1開閉弁15を開いて曲線
■の状態とし、5000rp111以下の領域では両開
閉弁15.16の切換えをなくして、切換えに伴うトル
クショックによる運転性能の変化を阻止するようにして
いる。また、エンジンの常用回転領域が7000rpa
+以下となるように設定されているものでは、7000
rpmでの第1開閉弁15の切換え作動は不要となるも
のである。Note that the above switching is performed when the throttle opening is 73''.
This is done in a high load state where the throttle opening is opened above 73 degrees, and since that much output is not required in a load state where the throttle opening is less than 73 degrees, the first on-off valve 15 is opened to set the state of curve ■, and the engine speed is 5000 rpm or less. In this region, switching of both on-off valves 15 and 16 is eliminated to prevent changes in driving performance due to torque shock caused by switching. Also, the normal rotation range of the engine is 7000rpa.
+7000 for those set to be less than or equal to
The switching operation of the first on-off valve 15 at rpm is no longer necessary.
上記のような実施例によれば、低回転領域から高回転領
域に至るまで、それぞれの領域で同調状態を切換えた共
鳴過給もしくは慣性過給の作用によって充填効率を向上
して別途の過給機によらずに高い出力性能を得ることが
できるものである。According to the embodiment described above, charging efficiency is improved by the action of resonance supercharging or inertia supercharging in which the tuning state is switched in each region from low rotation range to high rotation range, and separate supercharging is performed. It is possible to obtain high output performance regardless of the machine.
実施例2
本例も前例同様のV型6気筒エンジンにおける吸気装置
であって、第6図および第7図に概略構成を示す。Embodiment 2 This embodiment is also an intake system for a V type 6-cylinder engine similar to the previous example, and the schematic configuration is shown in FIGS. 6 and 7.
前例同様に配設された両側のバンクIA、IBの各気筒
からの独立吸気通路6a〜6fは、それぞれのバンクI
A、IBごとにサージタンク8の第1室8aおよび第2
室8bに集合され、両室8a、8bの連通が第1開閉弁
15によって調整されて共鳴過給の固有振動数の切換え
を行う共鳴変更手段40が構成される。Independent intake passages 6a to 6f from each cylinder of banks IA and IB on both sides arranged in the same manner as in the previous example are connected to the respective banks IA and IB.
The first chamber 8a and the second chamber of the surge tank 8 for each A and IB.
A resonance changing means 40 is assembled in the chamber 8b, and the communication between the chambers 8a and 8b is adjusted by the first on-off valve 15 to switch the natural frequency of resonance supercharging.
また、両バンクIA、IB間の空間で前後方向に略−列
に並んで形成されている独立吸気通路6a〜6fの途中
にそれぞれ分岐通路9a〜9fを連通し、さらに、この
分岐通路9a〜9fを両側のバンクIA、IB毎に上下
に設置された第1および第2容積室42a、42bにそ
れぞれ集合し、両容積室42a、42bへの連通部分に
第2開閉弁16がそれぞれ配設されている。そして、左
バンクLA、IBの気筒に対応する奇数気筒の分岐通路
9a、9c、9eに介装された第2開閉弁16が第1の
軸43で連係して開閉するように設けられ、また、同様
に右バンクIBの気筒に対応する偶数気筒の分岐通路9
b、9d、9fに介装された第2開閉弁16が第2の軸
44で連係して開閉するように設けられ、それぞれの軸
43,44に対して第2アクチユエータ(図示せず)が
連係されて開閉作動されるように慣性変更手段41が構
成されている。In addition, branch passages 9a to 9f are communicated in the middle of the independent intake passages 6a to 6f, which are formed approximately in rows in the front-rear direction in the space between the banks IA and IB, and further, the branch passages 9a to 9f are collected in first and second volume chambers 42a and 42b installed above and below for banks IA and IB on both sides, respectively, and a second on-off valve 16 is provided in a communicating portion to both volume chambers 42a and 42b, respectively. has been done. Second on-off valves 16 are interposed in the branch passages 9a, 9c, and 9e of the odd-numbered cylinders corresponding to the cylinders of the left bank LA and IB, and are provided so as to be opened and closed in conjunction with the first shaft 43. , Similarly, branch passages 9 for even-numbered cylinders corresponding to the cylinders in the right bank IB.
The second on-off valves 16 interposed in b, 9d, and 9f are provided to open and close in conjunction with a second shaft 44, and a second actuator (not shown) is connected to each shaft 43, 44. The inertia changing means 41 is configured to be opened and closed in conjunction with each other.
そして、第1開閉弁15および第2開閉弁16の開閉制
御は、前例同様に行われる。The opening and closing control of the first on-off valve 15 and the second on-off valve 16 is performed in the same manner as in the previous example.
その他は前例同様に構成され、同一構造には同一符号を
付している。The rest of the structure is the same as in the previous example, and the same structures are given the same reference numerals.
本例においては、慣性変更手段41によって高速域(5
000rpm)で振動管長の長さを短くして同調点が高
速側になるように第2開閉弁16を開いた際に、第1お
よび第2容積室42a、42bに集合した気筒間では吸
気行程は連続せず、1つの気筒が吸気行程にある時に他
の連通気筒では吸気は導入されていないことから、他の
気筒の独立吸気通路6a〜6fから吸気行程にある気筒
に対して吸気が流入し、前例の集合方式よりも吸気の充
填効率がさらに向上するものである。In this example, the inertia changing means 41 controls the high speed range (5
000 rpm), the length of the vibration pipe is shortened and the second on-off valve 16 is opened so that the tuning point is on the high speed side, the intake stroke between the cylinders gathered in the first and second volume chambers 42a and 42b are not continuous, and when one cylinder is in the intake stroke, intake air is not introduced into the other communicating cylinders, so intake air flows into the cylinder in the intake stroke from the independent intake passages 6a to 6f of other cylinders. However, the intake air filling efficiency is further improved compared to the previous collection method.
実施例3
この実施例は直列6気筒エンジンの例で、第8図および
第9図に概略構成を示す。Embodiment 3 This embodiment is an example of an in-line six-cylinder engine, and the schematic configuration thereof is shown in FIGS. 8 and 9.
この6気筒エンジンの吸気順序は第1−2−4−6−5
−3気筒の順であり、エンジン本体45の各気筒に接続
された独立吸気通路46a〜46fは、吸気行程が隣接
しない第1.4.5気筒と第2.3.6気筒とに分割さ
れてサージタンク48の第1室48aと第2室48bと
にそれぞれ集合されている。サージタンク48は気筒列
方向に縦に形成された仕切壁48cによって内部空間が
分割され、それぞれに下方から独立吸気通路46a〜4
6fの上流端が接続されている。このサージタンク48
の後端部には各室48a、48bに対応するスロットル
弁12a、12bを備えたスロットルボディ11が配設
されて吸気が導入され、前端部には仕切壁48cに両室
48a、48bを連通ずる開口が形成され、この開口を
開閉する共鳴切換用の第1開閉弁50が介装されている
。The intake order of this 6-cylinder engine is 1-2-4-6-5.
- The independent intake passages 46a to 46f connected to each cylinder of the engine body 45 are divided into 1st, 4th and 5th cylinders and 2nd and 3.6th cylinders whose intake strokes are not adjacent to each other. are collected in a first chamber 48a and a second chamber 48b of the surge tank 48, respectively. The internal space of the surge tank 48 is divided by a partition wall 48c formed vertically in the direction of the cylinder row, and each is connected to independent intake passages 46a to 4 from below.
The upstream end of 6f is connected. This surge tank 48
A throttle body 11 equipped with throttle valves 12a, 12b corresponding to each chamber 48a, 48b is arranged at the rear end to introduce intake air, and at the front end, a partition wall 48c connects both chambers 48a, 48b. A communicating opening is formed, and a first on-off valve 50 for resonance switching is interposed to open and close this opening.
また、上記サージタンク48に隣接して各気筒の独立吸
気通路46a〜46fにそれぞれ連通ずる容積室52が
形成され、各独立吸気通路46a〜46fと容積室52
との連通部分に慣性切換用の第2開閉弁51が単一軸に
それぞれ配設されている。Further, a volume chamber 52 is formed adjacent to the surge tank 48 and communicates with the independent intake passages 46a to 46f of each cylinder.
A second on-off valve 51 for inertia switching is disposed on a single shaft in the communication portion with the inertial switching valve.
そして、上記第1開閉弁50および第2開閉弁51の切
換制御は実施例1と同様に行われる。Switching control of the first on-off valve 50 and the second on-off valve 51 is performed in the same manner as in the first embodiment.
本例においては、吸気行程が連続しない気筒の独立吸気
通路46a〜46fをそれぞれ集合し、この集合部分(
サージタンク48の第1室48aと第2室48b)と独
立吸気通路46a〜46fとの吸気系における固有振動
数に対応する共鳴作用によって過給効果を得る際に、集
合部の連通を開閉する第1開閉弁50の作動によって固
有振動を切換え、低速時に閉じ高速時に開くように切換
作動する共鳴変更手段53が構成されている。In this example, the independent intake passages 46a to 46f of the cylinders whose intake strokes are not continuous are collected, and this collected portion (
When obtaining a supercharging effect by the resonance action corresponding to the natural frequency in the intake system between the first chamber 48a and second chamber 48b of the surge tank 48 and the independent intake passages 46a to 46f, the communication between the gathering parts is opened and closed. Resonance changing means 53 is configured to switch the natural vibration by operating the first on-off valve 50 so that it closes at low speeds and opens at high speeds.
また、吸気ポートで発生し7た自気筒の負圧波は、サー
ジタンク48への連通開口部分を圧力反転部として反射
し、慣性過給作用を得るものであるが、慣性変更手段5
4の第2開閉弁51か開作動している場合には、その容
積室52への開口部分を圧力反転部として反射するもの
であり、第2開閉弁51の作動によって振動管長を切換
え、低速時に閉じ、第1開閉弁50の切換時期より高速
側で開くものである。また、必要に応じてさらに高速側
で第1開閉弁50を閉じるようにしてもよい。In addition, the negative pressure wave of the own cylinder generated at the intake port is reflected at the communication opening to the surge tank 48 as a pressure reversal section, and an inertia supercharging effect is obtained.
When the second on-off valve 51 of No. 4 is open, the opening to the volume chamber 52 is reflected as a pressure reversal section, and the vibration pipe length is switched by the operation of the second on-off valve 51, and the low-speed It closes at the same time, and opens at a higher speed than the switching timing of the first on-off valve 50. Further, the first on-off valve 50 may be closed further on the high speed side as necessary.
本例においても、直列6気筒エンジンで低回転域から高
回転域においてまで、共鳴過給と慣性過給との切換利用
によって充填効率を高め良好なエンジン出力性能を得る
ことができるものである。In this example as well, it is possible to increase charging efficiency and obtain good engine output performance by switching between resonance supercharging and inertia supercharging in an in-line six-cylinder engine from a low rotation range to a high rotation range.
実施例4
この実施例も直列6気筒エンジンの例で、第10図およ
び第11図に概略構成を示す。Embodiment 4 This embodiment is also an example of an in-line six-cylinder engine, and the schematic configuration is shown in FIGS. 10 and 11.
この6気筒エンジンの吸気順序は第1−5−3−6−2
−4気筒の順であり、エンジン本体45の各気筒に接続
された独立吸気通路46a〜46fは、吸気行程が隣接
しない第1. 2. 3気筒と第4.5.6気筒とに分
割されてサージタンク56の第1室56aと第2室56
bとにそれぞれ集合されている。サージタンク56は気
筒列中央に形成された仕切壁56cによって実施例1と
同様に内部空間が前後に分割され、それぞれに下方から
独立吸気通路46a〜46fの上流端が接続されている
。このサージタンク56の中央側方にはそれぞれの容積
室56a、56bに対応するスロットル弁12a、12
bを備えたスロットルボディ11が配設されて吸気が導
入され、前記仕切壁56cには両室56a、56bを連
通する開口が形成され、この開口を開閉する共鳴切換用
の第1開閉弁57が介装されて、共鳴変更手段59が構
成されている。The intake order of this 6-cylinder engine is 1-5-3-6-2.
- The independent intake passages 46a to 46f connected to each cylinder of the engine main body 45 are arranged in the order of 4 cylinders, and the first . 2. The first chamber 56a and the second chamber 56 of the surge tank 56 are divided into 3 cylinders and 4th, 5th, and 6th cylinders.
b and are collected respectively. The internal space of the surge tank 56 is divided into front and rear sections by a partition wall 56c formed at the center of the cylinder row, as in the first embodiment, and the upstream ends of the independent intake passages 46a to 46f are connected to each section from below. Throttle valves 12a and 12 corresponding to the respective volume chambers 56a and 56b are provided on the central side of the surge tank 56.
A throttle body 11 is provided to introduce intake air, and an opening is formed in the partition wall 56c to communicate the chambers 56a and 56b, and a first opening/closing valve 57 for resonance switching opens and closes this opening. is interposed to constitute the resonance changing means 59.
また、上記サージタンク56に隣接して各気筒の独立吸
気通路46a〜46fにそれぞれ連通ずる容積室52が
形成され、各独立吸気通路46a〜46fと容積室52
との連通部分に慣性切換用の第2開閉弁58が同軸状に
それぞれ配設されて、慣性変更手段60が構成されてい
る。Further, a volume chamber 52 is formed adjacent to the surge tank 56 and communicates with the independent intake passages 46a to 46f of each cylinder.
A second on-off valve 58 for inertia switching is coaxially disposed in a communicating portion with the inertia changing means 60.
そして、上記共鳴変更手段59および慣性変更手段60
の第1開閉弁57および第2開閉弁58の切換制御は前
例同様に行われ、同様の過給効果を得ることができる。The resonance changing means 59 and the inertia changing means 60
The switching control of the first on-off valve 57 and the second on-off valve 58 is performed in the same manner as in the previous example, and the same supercharging effect can be obtained.
本例においては、気筒分割方式の簡素化によりサージタ
ンク構造が簡易となるものである。In this example, the surge tank structure is simplified by simplifying the cylinder division system.
実施例5
この実施例は直列4気筒エンジンの例で、第12図およ
び第13図に概略構成を示す。Embodiment 5 This embodiment is an example of an in-line four-cylinder engine, and the schematic configuration thereof is shown in FIGS. 12 and 13.
この4気筒エンジンの吸気順序は第l−3−4−2(ま
たはl−2−4−3)気筒の順であり、エンジン本体6
2の各気筒に接続された独立吸気通路63a〜63dは
、吸気行程が隣接しない第1.4気筒と第2.3気筒と
に分割されてサージタンク64の第1室64aと第2室
64bとにそれぞれ集合されている。サージタンク64
は気筒列方向に縦に形成された仕切壁64cによって内
部空間が分割され、それぞれの下方から独立吸気通路6
3a〜63dの上流端が接続されている。The intake order of this four-cylinder engine is the order of the l-3-4-2 (or l-2-4-3) cylinder, and the engine main body 6
The independent intake passages 63a to 63d connected to each cylinder of the surge tank 64 are divided into the 1.4th cylinder and the 2.3rd cylinder whose intake strokes are not adjacent to each other. They are each collected in surge tank 64
The internal space is divided by a partition wall 64c formed vertically in the direction of the cylinder row, and an independent intake passage 6 is opened from below each of the partition walls 64c.
The upstream ends of 3a to 63d are connected.
このサージタンク64の後端部には各室64a64bに
対応するスロットル弁12a、12bを備えたスロット
ルボディ11が配設されて吸気が導入され、前端部には
仕切壁64cに両室64a。A throttle body 11 equipped with throttle valves 12a, 12b corresponding to each chamber 64a64b is disposed at the rear end of the surge tank 64, through which intake air is introduced, and at the front end, both chambers 64a are connected to a partition wall 64c.
64bを連通する開口が形成され、この開口を開閉する
共鳴切換用の第1開閉弁65が介装されて、共鳴変更手
段67が構成されている。64b is formed, and a first on-off valve 65 for resonance switching that opens and closes this opening is interposed to constitute resonance changing means 67.
また、上記サージタンク64に隣接して各気筒の独立吸
気通路63a〜63dにそれぞれ連通ずる容積室69が
形成され、各独立吸気通路63a〜63dと容積室6つ
との連通部分に慣性切換用の第2開閉弁66が同軸状に
それぞれ配設されて、慣性変更手段68が構成されてい
る。Further, a volume chamber 69 is formed adjacent to the surge tank 64 and communicates with the independent intake passages 63a to 63d of each cylinder, and an inertia switching section is formed in the communication portion between each independent intake passage 63a to 63d and the six volume chambers. The second on-off valves 66 are arranged coaxially to form an inertia changing means 68.
そして、上記共鳴変更手段67および慣性変更手段68
の第1開閉弁65および第2開閉弁16の切換制御は実
施例1と同様に行われる。The resonance changing means 67 and the inertia changing means 68
The switching control of the first on-off valve 65 and the second on-off valve 16 is performed in the same manner as in the first embodiment.
本例においても、直列4気筒エンジンで低回転域から高
回転域においてまで、共鳴過給と慣性過給との切換利用
によって充填効率を高め良好なエンジン出力性能を得る
ことができるものである。In this example as well, it is possible to increase charging efficiency and obtain good engine output performance by switching between resonance supercharging and inertia supercharging in an in-line four-cylinder engine from a low rotation range to a high rotation range.
なお、前記各実施例においては、慣性過給を高回転側に
同調させるように第2開閉弁を開作動した際に、所定の
気筒の独立吸気通路を相互に連通して高回転時の吸気の
充填効率の向上を図るようにしているが、この連通は実
施例2のように吸気行程が隣接しない気筒同志を連通ず
るのが好ましいが、実施例1のように隣接する気筒を含
んだり、実施例3〜5のように全気筒連通するようにし
てもよく、また、圧力反転を行うのに必要な容積室が形
成されれば相互に連通していなくてもよい。In each of the above embodiments, when the second on-off valve is opened to synchronize the inertial supercharging to the high speed side, the independent intake passages of the predetermined cylinders are communicated with each other to reduce the intake air at high speeds. Although it is preferable for this communication to communicate between cylinders whose intake strokes are not adjacent as in the second embodiment, it may also include adjacent cylinders as in the first embodiment. All the cylinders may be in communication as in Examples 3 to 5, or they may not be in communication with each other as long as a volume chamber necessary for pressure reversal is formed.
また、上記実施例では、■型6気筒エンジン、直列6気
筒エンジンおよび直列4気筒エンジンの例について示し
たが、その他の型式のエンジンについても本発明は適用
可能である。Further, in the above embodiments, examples of a type 6-cylinder engine, an in-line 6-cylinder engine, and an in-line 4-cylinder engine are shown, but the present invention is also applicable to other types of engines.
さらに、共鳴過給と慣性過給の各切換状態で、最もトル
クが高くなる同調点の設定は、各エンジンの要求に対応
して設定するものであるが、その設定回転数および切換
時期は共鳴過給より慣性過給で高く設定し、低回転領域
では共鳴過給の低速設定によって得る共鳴過給効果でト
ルク上昇を図り、その低速側共鳴過給効果が低下して共
鳴過給を高速側に設定した状態で慣性過給の低速設定に
よって得る慣性過給効果でトルク上昇を図り、この低速
側慣性過給効果が低下して慣性過給を高速側に設定して
高速時のトルク上昇を図り、さらに高速状態では必要に
応じてトルクの高い状態に駆動するように制御するもの
である。Furthermore, in each switching state between resonance supercharging and inertia supercharging, the tuning point at which the highest torque is achieved is set in accordance with the requirements of each engine, but the set rotation speed and switching timing are determined by resonance. Inertial supercharging is set higher than supercharging, and in the low rotation range, the resonance supercharging effect obtained by setting the low speed of resonance supercharging increases torque, and the resonance supercharging effect on the low speed side decreases and the resonance supercharging is set on the high speed side. When the inertia supercharging is set to a low speed, the inertia supercharging effect obtained by setting the inertia supercharging to a low speed is used to increase torque, and when the low speed inertia supercharging effect decreases, the inertia supercharging is set to a high speed to increase torque at high speeds. Furthermore, in a high-speed state, the control is performed to drive to a high-torque state as necessary.
(発明の効果)
上記のような本発明によれば、集合吸気系の固有振動数
を変更して共鳴過給の同調点を共鳴変更手段によって切
換える一方、振動管長を変更して慣性過給の同調点を慣
性変更手段によって切換え、制御手段によって上記慣性
変更手段を共鳴変更手段の作動より高回転側で作動させ
るようにしたことにより、共鳴過給と慣性過給と特性の
違いを利用して幅広い回転領域で動的過給を得ることが
でき、エンジン出力の向上を図ることができるものであ
る。(Effects of the Invention) According to the present invention as described above, the natural frequency of the collective intake system is changed and the tuning point of resonance supercharging is switched by the resonance changing means, while the length of the vibration pipe is changed to change the tuning point of inertial supercharging. By switching the tuning point by the inertia changing means and causing the control means to operate the inertia changing means at a higher rotational speed than the operation of the resonance changing means, the difference in characteristics between resonance supercharging and inertia supercharging is utilized. It is possible to obtain dynamic supercharging over a wide rotation range and improve engine output.
第1図は本発明の第1の実施例におけるV型6気筒エン
ジンの吸気装置の概略平面図、第2図は同要部正面図、
第3図は制御手段のブロック図、
第4図は開閉弁作動状態を示す特性図、第5図はエンジ
ン回転数に対する開閉弁の切換制御によるトルク特性を
示すグラフ、
第6図は第2の実施例におけるV型6気筒エンジンの吸
気装置の概略構成を示す平面図、第7図は同要部正面図
、
第8図は第3の実施例における直列6気筒エンジンの吸
気装置の概略構成を示す平面図、第9図は同要部断面正
面図、
第10図は第4の実施例における直列6気筒エンジンの
吸気装置の概略構成を示す平面図、第11図は同要部正
面図、
第12図は第5の実施例における直列4気筒エンジンの
吸気装置の概略構成を示す平面図、第13図は同要部正
面図である。
1.45.62・・・・・・エンジン本体、6a〜6f
。
46a〜46f、63a〜63d・・・・・・独立吸気
通路、8.48,56.64・・・・・・サージタンク
、8a、48a、56a、64a−−−−=第1室、8
b。
48b、56b、64b−−−・−第2室、9a〜9f
・・・・・・分岐通路、15,50,57.65・・・
・・・第1開閉弁、16,51,58.66・・・・・
・第2開閉弁、17・・・・・・第1アクチユエータ、
18・・・・・・第2アクチユエータ、19 a、
19 b、 42 a、 42 b。
52.69・・・・・容積室、20.40. 53.
59゜67・・・・・・共鳴変更手段、21,41,5
4.60゜68・・・・・・慣性変更手段、22・・・
・・・制御手段、29・・・・・・回転数検出手段。
第4図
第
図
第
図
第
図
第
図FIG. 1 is a schematic plan view of the intake system of a V-type 6-cylinder engine according to the first embodiment of the present invention, FIG. 2 is a front view of the main parts, FIG. 3 is a block diagram of the control means, and FIG. A characteristic diagram showing the operating state of the on-off valve, Fig. 5 is a graph showing the torque characteristic due to the switching control of the on-off valve with respect to the engine speed, and Fig. 6 is a schematic configuration of the intake system of a V type 6-cylinder engine in the second embodiment. FIG. 7 is a front view of the same essential parts, FIG. 8 is a plan view showing a schematic configuration of the intake system of an in-line six-cylinder engine in the third embodiment, and FIG. 9 is a cross-sectional front view of the same essential parts. , Fig. 10 is a plan view showing a schematic configuration of the intake system of an in-line 6-cylinder engine in the fourth embodiment, Fig. 11 is a front view of the same essential parts, and Fig. 12 is an in-line 4-cylinder engine in the fifth embodiment. FIG. 13 is a plan view showing a schematic configuration of the intake device, and FIG. 13 is a front view of the main parts. 1.45.62...Engine body, 6a to 6f
. 46a to 46f, 63a to 63d...Independent intake passage, 8.48, 56.64...Surge tank, 8a, 48a, 56a, 64a---=first chamber, 8
b. 48b, 56b, 64b --- Second room, 9a to 9f
...Branch passage, 15, 50, 57.65...
...First on-off valve, 16,51,58.66...
・Second on-off valve, 17...first actuator,
18... second actuator, 19 a,
19 b, 42 a, 42 b. 52.69...Volume chamber, 20.40. 53.
59°67... Resonance changing means, 21, 41, 5
4.60°68... Inertia changing means, 22...
. . . control means, 29 . . . rotation speed detection means. Figure 4 Figure 4 Figure 4 Figure 4
Claims (4)
ジンにおいて、各気筒に独立して吸気を導入する独立吸
気通路と、吸気間隔が等しくなるよう所定の気筒の上記
独立吸気通路を集合させた集合部と、該集合部と集合さ
せた独立吸気通路による吸気系の固有振動数を変更する
共鳴変更手段と、上記独立吸気通路の固有振動数を変更
する慣性変更手段と、エンジン回転数を検出するエンジ
ン回転数検出手段と、該エンジン回転数検出手段からの
信号を受け、前記慣性変更手段を上記共鳴変更手段の作
動より高回転側で作動させる制御手段とを設けたことを
特徴とするエンジンの吸気装置。(1) In an engine equipped with a plurality of cylinders with different intake timings, an independent intake passage that introduces intake air into each cylinder independently, and a collection of the above-mentioned independent intake passages of predetermined cylinders so that the intake intervals are equal a resonance changing means for changing the natural frequency of the intake system formed by the independent intake passages assembled with the gathering part; an inertia changing means for changing the natural frequency of the independent intake passages; and a resonance changing means for changing the natural frequency of the independent intake passages; An engine comprising: engine rotation speed detection means; and control means for receiving a signal from the engine rotation speed detection means and operating the inertia change means at a higher rotation speed than the operation of the resonance change means. Intake device.
り高回転側でさらに共鳴変更手段を作動させることを特
徴とする請求項1記載のエンジンの吸気装置。(2) The engine intake system according to claim 1, wherein the control means further operates the resonance changing means at a rotation speed higher than the switching rotation speed of the inertia changing means.
集合させたことを特徴とする請求項1記載のエンジンの
吸気装置。(3) The engine intake system according to claim 1, wherein the gathering section gathers only cylinders whose intake strokes are not consecutive.
定容積室に開口する位置を変更することを特徴とする請
求項1記載のエンジンの吸気装置。(4) The engine intake system according to claim 1, wherein the inertia changing means changes the position at which the inertia changing means opens into the predetermined volume chamber on the upstream side of the independent intake passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63263320A JPH02108818A (en) | 1988-10-19 | 1988-10-19 | Air intake device for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63263320A JPH02108818A (en) | 1988-10-19 | 1988-10-19 | Air intake device for engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02108818A true JPH02108818A (en) | 1990-04-20 |
Family
ID=17387841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63263320A Pending JPH02108818A (en) | 1988-10-19 | 1988-10-19 | Air intake device for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02108818A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02301622A (en) * | 1989-05-17 | 1990-12-13 | Honda Motor Co Ltd | Intake device of multi-cylinder internal combustion engine |
JPH0388913A (en) * | 1989-08-31 | 1991-04-15 | Honda Motor Co Ltd | Suction control method for six-cylinder internal combustion engine |
WO1999039088A1 (en) * | 1998-01-31 | 1999-08-05 | Volkswagen Aktiengesellschaft | Suction system for supplying an internal combustion engine with combustion air |
US7131416B2 (en) * | 2004-07-22 | 2006-11-07 | Nissan Motor Co., Ltd. | Engine air intake device |
-
1988
- 1988-10-19 JP JP63263320A patent/JPH02108818A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02301622A (en) * | 1989-05-17 | 1990-12-13 | Honda Motor Co Ltd | Intake device of multi-cylinder internal combustion engine |
JPH0388913A (en) * | 1989-08-31 | 1991-04-15 | Honda Motor Co Ltd | Suction control method for six-cylinder internal combustion engine |
WO1999039088A1 (en) * | 1998-01-31 | 1999-08-05 | Volkswagen Aktiengesellschaft | Suction system for supplying an internal combustion engine with combustion air |
EP1094210A1 (en) * | 1998-01-31 | 2001-04-25 | Volkswagen Aktiengesellschaft | Intake system for combustion air supply for an internal combustion engine |
US7131416B2 (en) * | 2004-07-22 | 2006-11-07 | Nissan Motor Co., Ltd. | Engine air intake device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0230919A (en) | Air intake device for engine | |
JPH06108858A (en) | Intake device of engine | |
JPS61149519A (en) | Intake-air passage device in multi-cylinder internal combustion engine | |
JPH03286129A (en) | Air intake device for multiple cylinder engine | |
JPH02108818A (en) | Air intake device for engine | |
JPH03281924A (en) | Air intake piping structure of multiple-cylinder engine | |
JPH02123227A (en) | Intake device of engine | |
JP2721983B2 (en) | V-type engine intake system | |
JPH02108816A (en) | Air intake device for v type engine | |
JP3240492B2 (en) | Engine intake system | |
JP2835088B2 (en) | Engine intake system | |
JPH0392534A (en) | Intake device for multi-cylinder engine | |
JP2779253B2 (en) | Multi-cylinder engine intake system | |
JPS638815Y2 (en) | ||
JP2750122B2 (en) | Engine intake system | |
JPH04166614A (en) | Variable air intake device for horizontal opposed type engine | |
JP2611798B2 (en) | Engine intake system | |
JPH03286128A (en) | Air intake device for multiple cylinder engine | |
JP2771176B2 (en) | Engine intake system | |
JP2688947B2 (en) | Intake device for multi-cylinder engine with supercharger | |
JPH03286132A (en) | Air intake device for multiple cylinder engine | |
JPH02136510A (en) | Intake air system for engine | |
JPH0354318A (en) | Intake device of multiple cylinder engine | |
JPH03286131A (en) | Air intake passage structure for multiple cylinder engine | |
JPH01237318A (en) | Air intake device for engine with supercharger |