JP2835088B2 - Engine intake system - Google Patents
Engine intake systemInfo
- Publication number
- JP2835088B2 JP2835088B2 JP1197222A JP19722289A JP2835088B2 JP 2835088 B2 JP2835088 B2 JP 2835088B2 JP 1197222 A JP1197222 A JP 1197222A JP 19722289 A JP19722289 A JP 19722289A JP 2835088 B2 JP2835088 B2 JP 2835088B2
- Authority
- JP
- Japan
- Prior art keywords
- intake
- engine
- passages
- passage
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/005—Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
- F02B27/006—Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0205—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
- F02B27/021—Resonance charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0242—Fluid communication passages between intake ducts, runners or chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0247—Plenum chambers; Resonance chambers or resonance pipes
- F02B27/0252—Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B2075/1804—Number of cylinders
- F02B2075/1824—Number of cylinders six
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0226—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
- F02B27/0268—Valves
- F02B27/0273—Flap valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B27/00—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
- F02B27/02—Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
- F02B27/0294—Actuators or controllers therefor; Diagnosis; Calibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B75/22—Multi-cylinder engines with cylinders in V, fan, or star arrangement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Characterised By The Charging Evacuation (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸気系の圧力振動を利用することにより、
低回転時における吸気の充填効率を向上させたエンジン
の吸気装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention uses the pressure oscillation of an intake system to
The present invention relates to an intake device for an engine in which intake efficiency at the time of low rotation is improved.
従来より、エンジンの吸気装置においては、高出力を
得るために、エンジンの回転速度に応じて吸気弁の開閉
タイミングを調整する方法が知られている。例えば、特
開昭61−65036号公報では、吸気弁の開閉タイミングを
高回転時よりも低回転時の方が早くなるように制御する
構成が開示されている。このような構成では、低回転時
においても、慣性効果を有効に利用して吸気の充填量を
増大させることができ、全回転領域にわたり高出力化が
図られている。2. Description of the Related Art Conventionally, in an intake device for an engine, a method of adjusting the opening / closing timing of an intake valve according to the rotation speed of the engine in order to obtain high output has been known. For example, Japanese Patent Application Laid-Open No. 61-65036 discloses a configuration in which the opening / closing timing of an intake valve is controlled so that the opening timing of a low rotation is earlier than that of a high rotation. In such a configuration, even at a low rotation speed, the amount of intake air can be increased by effectively utilizing the inertia effect, and high output is achieved over the entire rotation range.
ところが、上記従来の技術では、低回転時に吸気弁の
開閉タイミングを早めることにより、吸気弁と排気弁と
がともに開いているオーバラップ期間が長くなってしま
う。このため、オーバラップ期間において、前回の燃焼
により生じた燃焼ガスが完全に排出されずに残留し、こ
の残留ガスにより吸気弁から導入される新気が温められ
てノッキングが生じやすくなっていた。また、残留ガス
により充填量の増加が制限されるため、さらに充填効率
を向上させることが困難となっていた。However, in the above-described conventional technology, the overlap period in which both the intake valve and the exhaust valve are open is lengthened by accelerating the opening / closing timing of the intake valve during low rotation. Therefore, during the overlap period, the combustion gas generated by the previous combustion remains without being completely exhausted, and the residual gas warms fresh air introduced from the intake valve, so that knocking is likely to occur. Further, since an increase in the filling amount is limited by the residual gas, it has been difficult to further improve the filling efficiency.
請求項1の発明に係るエンジンの吸気装置は、上記の
課題を解決するために、燃焼室へ新気を導入する吸気ポ
ートと、燃焼室から燃焼ガスを導出する排気ポートとを
備え、吸気順序の連続しない気筒に上記吸気ポートを介
して接続された独立吸気通路、独立吸気通路同士を集合
させる集合通路、および集合通路に通じる延長通路によ
り吸気系が形成されるとともに、エンジンの低回転時に
おける吸気のタイミングが開弁および閉弁のタイミング
ともエンジンの高回転時におけるそれより早くなるよう
に制御され、吸気ポートと排気ポートとがともに開いて
いるオーバラップ期間がエンジンの高回転時よりも低回
転時の方の大きく設定されるエンジンの吸気装置におい
て、エンジンの低回転域の回転全域にわたって、オーバ
ラップ期間に、吸気系の圧力振動により吸気ポート近傍
に正圧が作用するように、吸気系の固有振動数がエンジ
ンの回転数に応じて可変に設定されていることを特徴と
する。In order to solve the above problem, an intake device for an engine according to the present invention includes an intake port for introducing fresh air to a combustion chamber, and an exhaust port for extracting combustion gas from the combustion chamber. The intake system is formed by an independent intake passage connected to the discontinuous cylinders via the intake port, a collective passage that collects the independent intake passages, and an extended passage that communicates with the collective passage. The intake timing is controlled so that both the valve opening and valve closing timings are earlier than when the engine is running at a high speed, and the overlap period in which both the intake port and the exhaust port are open is lower than when the engine is at a high speed. In the intake device of the engine that is set to be larger at the time of rotation, the intake air is drawn during the overlap period over the entire rotation range of the low rotation range of the engine. To act positive pressure in the vicinity of the intake port by the pressure vibration of the natural frequency of the intake system is characterized in that it is set to be variable in accordance with the rotational speed of the engine.
また、請求項2の発明に係るエンジンの吸気装置は、
上記の課題を解決するために、請求項1に記載のエンジ
ンの吸気装置において、3気筒のそれぞれの独立吸気通
路を集合させた集合通路を2つ備えた6気筒のエンジン
の吸気装置であって、エンジンの低回転域の回転全域に
わたって、各気筒のオーバラップ期間に、吸気系の圧力
振動により2つの集合通路を介して吸気ポート近傍に正
圧が作用するように、吸気系の固有振動数がエンジンの
回転数に応じて可変に設定されていることを特徴として
いる。Further, the intake device for an engine according to the invention of claim 2 is:
In order to solve the above-mentioned problem, the intake device for an engine according to claim 1, wherein the intake device for a six-cylinder engine includes two collective passages each of which is an independent intake passage for three cylinders. The natural frequency of the intake system is such that positive pressure acts on the vicinity of the intake port via the two collecting passages due to the pressure vibration of the intake system during the overlap period of each cylinder over the entire rotation range of the low engine speed range of the engine. Is variably set according to the engine speed.
請求項1の構成によれば、低回転時では、高回転時よ
りも吸気のタイミングが早められているためオーバラッ
プ期間が長くなる。ところが、エンジンの低回転域の回
転全域にわたってこのオーバラップ期間に、吸気系の圧
力振動により吸気ポート近傍に正圧が作用するように、
吸気系の固有振動数がエンジンの回転数に応じて可変に
設定されているので、前回の燃焼により生じた残留ガス
が、上記正圧により排気ポートを介して押し出され、掃
気をより効果的に行うことができる。従って、充填効率
を向上させて低回転域での高出力化を図ることができ
る。また、掃気効果の向上により、燃焼室に導入された
新気が高温化することなく、低回転時におけるノッキン
グの発生を抑制することができる。According to the configuration of the first aspect, at the time of low rotation, the timing of intake is earlier than at the time of high rotation, so that the overlap period is longer. However, during this overlap period over the entire rotation range of the low rotation range of the engine, such that a positive pressure acts near the intake port due to the pressure oscillation of the intake system,
Since the natural frequency of the intake system is variably set according to the engine speed, the residual gas generated by the previous combustion is pushed out through the exhaust port by the above positive pressure, and scavenging is more effectively performed. It can be carried out. Therefore, it is possible to improve the filling efficiency and increase the output in the low rotation speed range. Further, by improving the scavenging effect, it is possible to suppress the occurrence of knocking at the time of low rotation without increasing the temperature of the fresh air introduced into the combustion chamber.
請求項2の構成によれば、請求項1の構成を6気筒の
エンジンに適用し、3気筒ずつの独立吸気通路を集合さ
せた集合通路を2つ備えることによって、各気筒のオー
バラップ期間に吸気系の圧力振動により2つの集合通路
を介して吸気ポート近傍に正圧が作用するようにしてい
る。従って、請求項1の場合と同様の作用を呈する。According to the configuration of claim 2, the configuration of claim 1 is applied to a six-cylinder engine, and by providing two collecting passages in which independent intake passages of three cylinders are gathered, during the overlap period of each cylinder. Positive pressure is applied to the vicinity of the intake port via two collecting passages due to the pressure vibration of the intake system. Therefore, the same operation as that of the first aspect is exhibited.
〔実施例1〕 本発明をV型6気筒エンジンに適用した場合の一実施
例を第1図ないし第8図に基づいて説明すれば、以下の
通りである。Embodiment 1 An embodiment in which the present invention is applied to a V-type six-cylinder engine will be described below with reference to FIGS. 1 to 8.
第1図に示すように、V型エンジンにおけるバンク1
には、気筒3〜5が併設される一方、バンク2には、気
筒6〜8が併設されており、これらの気筒3〜8は、気
筒3→気筒6→気筒4→気筒7→気筒5→気筒8の順に
吸気が行われるようになっている。上記気筒3〜8に
は、吸気ポート9〜14が設けられるとともに、排気ポー
ト15〜20が設けられている。これら吸気ポート9〜14お
よび排気ポート15〜20は、それぞれ図示しない吸気弁お
よび排気弁により所定のタイミングで開閉されるように
なっている。吸気のタイミングは、吸気弁の開閉のタイ
ミングによって決定され、例えば、エンジンの回転速度
が3000rpmより高い高速回転のときより、3000rpm以下の
低速回転のときの方が早くなるように設定されている。
上記吸気弁の開閉タイミングは、カムシャフトの位相角
を変化させたり、低回転時と高回転時とで異なるロッカ
アームにより吸気弁および排気弁の開閉を行ったりする
など、周知の方法により切り換えられる。As shown in FIG. 1, bank 1 in the V-type engine
, Cylinders 6 to 8 are provided in the bank 2, and cylinders 6 to 8 are provided in the bank 2. These cylinders 3 to 8 correspond to cylinder 3 → cylinder 6 → cylinder 4 → cylinder 7 → cylinder 5. → Intake is performed in the order of the cylinders 8. The cylinders 3 to 8 are provided with intake ports 9 to 14, and are provided with exhaust ports 15 to 20. The intake ports 9 to 14 and the exhaust ports 15 to 20 are opened and closed at predetermined timing by intake and exhaust valves (not shown). The timing of intake is determined by the timing of opening and closing the intake valve. For example, the intake timing is set to be faster when the engine is rotating at a low speed of 3000 rpm or less than when the engine is rotating at a high speed higher than 3000 rpm.
The opening / closing timing of the intake valve is switched by a well-known method such as changing the phase angle of the camshaft or opening / closing the intake valve and the exhaust valve by different rocker arms at low rotation and high rotation.
上記吸気ポート9〜14には、それぞれ独立吸気通路21
〜26が接続されており、独立吸気通路21〜26内を流れる
新気が、吸気ポート9〜14を介して図示しない燃焼室へ
導入されるようになっている。一方、排気ポート15〜20
には、それぞれ独立排気通路(図示せず)が接続されて
おり、燃焼室の燃焼ガスが、排気ポート15〜20を介して
導出され、さらに上記独立排気通路を含む排気系を介し
て外部に排出されるようになっている。The intake ports 9 to 14 have independent intake passages 21 respectively.
To 26 are connected, and fresh air flowing through the independent intake passages 21 to 26 is introduced into a combustion chamber (not shown) via the intake ports 9 to 14. On the other hand, exhaust port 15-20
Are connected to respective independent exhaust passages (not shown), and the combustion gas in the combustion chamber is led out through exhaust ports 15 to 20 and further to the outside through an exhaust system including the independent exhaust passages. It is being discharged.
独立吸気通路21〜26は、独立吸気通路21〜23同士が集
合通路27に接続され、独立吸気通路24〜26が集合通路28
に接続されている。集合通路27・28は、下流側が通路29
により互いに通じる一方、上流側がそれぞれ主吸気通路
30・31に通じている。集合通路27・28と通路29との境界
部には、後述するアクチュエータ46により駆動されて開
閉する開閉弁32・33が設けられている。主吸気通路30・
31は、上流側で集合し共通吸気通路34に通じている。こ
の共通吸気通路34は、主吸気通路30・31の集合部近傍に
スロットル弁35が設けられるとともに、スロットル弁35
からさらに上流側にエアフローメータ36が設けられてお
り、最上流部がエアクリーナ37に接続されている。な
お、上記の独立吸気通路21〜26、集合通路27・28、通路
29および主吸気通路30・31により、吸気装置における吸
気系が構成されている。また、通路29および主吸気通路
30・31は、吸気系における延長通路に相当する。In the independent intake passages 21 to 26, the independent intake passages 21 to 23 are connected to the collective passage 27, and the independent intake passages 24 to 26 are connected to the collective passage 28.
It is connected to the. Collective passages 27 and 28 have passage 29 on the downstream side.
And the upstream side is the main intake passage
It leads to 30 and 31. On the boundary between the collecting passages 27 and 28 and the passage 29, on-off valves 32 and 33 that are opened and closed by being driven by an actuator 46 described later are provided. Main intake passage 30
31 are gathered on the upstream side and communicate with the common intake passage 34. The common intake passage 34 is provided with a throttle valve 35 near the confluence of the main intake passages 30 and 31 and a throttle valve 35
An air flow meter 36 is provided further upstream of the air conditioner, and the most upstream portion is connected to an air cleaner 37. The independent intake passages 21 to 26, the collective passages 27 and 28, the passages
An intake system in the intake device is constituted by 29 and the main intake passages 30 and 31. Also, the passage 29 and the main intake passage
Reference numerals 30 and 31 correspond to extended passages in the intake system.
上記吸気系は、吸気ポート9〜14および排気ポート15
〜20がともに開いている期間、すなわちオーバラップ期
間に、吸気系の圧力振動により吸気ポート9〜14近傍に
正圧が作用するように、その固有振動数が設定されてい
る。そこで、本実施例では、主吸気通路30・31を複数の
異なる位置に設けられた連通部により互いに連通させる
ことにより、連通した位置と吸気ポート9〜14との間の
距離を変化させて、必要とする固有振動数を得ている。
この場合、エンジンの回転速度に応じて吸気ポート9〜
14の開閉期間が異なるため、主吸気通路30・31の連通位
置を、エンジンの回転速度が上昇するに従って吸気ポー
ト9〜14に近づけるように可変にしている。The intake system includes an intake port 9 to 14 and an exhaust port 15
The natural frequency is set such that a positive pressure acts on the intake ports 9 to 14 in the vicinity of the intake ports 9 to 14 due to the pressure oscillation of the intake system during a period in which the intake valves 20 to 20 are open, that is, an overlap period. Therefore, in the present embodiment, the main intake passages 30 and 31 are communicated with each other by communication portions provided at a plurality of different positions, thereby changing the distance between the communicated position and the intake ports 9 to 14, The required natural frequency has been obtained.
In this case, the intake ports 9 to
Since the opening and closing periods of the ports 14 are different, the communication positions of the main intake passages 30 and 31 are made variable so as to approach the intake ports 9 to 14 as the engine speed increases.
また、低回転時における高トルク化を共鳴効果により
図る場合、低回転であるほど共鳴同調回転速度において
高トルクが得られる傾向があるが、その半面、低回転域
ではトルクが急峻に変化し、所定以上のトルクが得られ
る回転速度の範囲が狭くなる。このため、主吸気通路30
・31の連通部が少ないと、各連通部の連通を切り換える
際に、トルクの落ち込みが大きくなったり、騒音に大き
な変動が生じたりする。従って、理想的には、上記の吸
気系を備えた吸気装置を実車に搭載する場合、低回転域
での安定したトルク特性を得るためには、主吸気通路30
・31間に多数の連通部を設け、エンジンの回転速度に応
じて位置の連通部を連通させるように、各連通部の連通
を切り換えることが望ましい。しかしながら、実際に
は、コストや連通の切り換えに要する制御等を考慮すれ
ば、できるだけ連通部を少なくする必要がある。このた
め、本実施例では、連通部を少なくとも2箇所設け、そ
れらの連通の切り換えを、エンジンの回転速度が上昇す
るほど間隔を広げて行うとともに、共鳴同調回転速度か
ら±20%以内の範囲で行うようにしている。Further, when increasing the torque at the time of low rotation by the resonance effect, a high torque tends to be obtained at the resonance tuning rotation speed as the rotation is low, but on the other hand, the torque changes sharply in a low rotation range, The range of the rotational speed at which a torque equal to or larger than a predetermined value is obtained is narrowed. Therefore, the main intake passage 30
If the number of the communication portions 31 is small, when switching the communication of each communication portion, the drop of the torque becomes large and the noise fluctuates greatly. Therefore, ideally, when an intake device having the above-described intake system is mounted on an actual vehicle, in order to obtain a stable torque characteristic in a low rotation range, the main intake passage 30 is required.
It is desirable to provide a large number of communication portions between the 31 and switch the communication between the communication portions so that the communication portions at positions communicate with each other in accordance with the rotation speed of the engine. However, in practice, it is necessary to reduce the number of communication parts as much as possible in consideration of cost, control required for switching communication, and the like. For this reason, in the present embodiment, at least two communication portions are provided, and the communication is switched at a wider interval as the rotation speed of the engine increases, and within a range of ± 20% from the resonance tuning rotation speed. I'm trying to do it.
続いて、上記の諸条件を満たす吸気系の構成を説明す
る。Subsequently, the configuration of the intake system that satisfies the above conditions will be described.
第2図(a)および(b)に示すように、吸気系にお
ける主吸気通路30・31は、渦巻き状をなしており、上流
側から順に所定の間隔で連通部として設けられた連通路
38〜41により互いに接続されている。第1図に示すよう
に、連通路38〜41には、それぞれ開閉弁42〜45が設けら
れており、これら開閉弁42〜45の開閉動作により連通路
38〜41の開閉が行われるようになっている。As shown in FIGS. 2 (a) and 2 (b), the main intake passages 30 and 31 in the intake system have a spiral shape, and are provided as communication portions at predetermined intervals in order from the upstream side.
They are interconnected by 38-41. As shown in FIG. 1, the communication passages 38 to 41 are provided with opening / closing valves 42 to 45, respectively.
38 to 41 are opened and closed.
開閉弁42〜45および開閉弁32・33を駆動するアクチュ
エータ46…は、回転速度検出センサ47により検出された
エンジンの回転速度が、比較部48においてあらかじめ設
定されたいくつかの回転速度と高低が比較され、検出回
転速度がある設定回転速度より高いと、その設定回転速
度に対応する開閉弁42〜45および開閉弁32・33のいずれ
かを開くようになされている。つまり、開閉弁32・33・
42〜45は、上記のように駆動されて、エンジンの回転速
度が低速から高速になる場合、連通路38→連通路39→連
通路40→連通路41→連通路29の順で順次開き、エンジン
の回転速度が高速から低速になる場合、その逆の順で閉
じるようになっている。The actuators 46 for driving the opening / closing valves 42 to 45 and the opening / closing valves 32 and 33 are arranged such that the rotation speed of the engine detected by the rotation speed detection sensor 47 is different from some of the rotation speeds set in advance in the comparing section 48 and the height. If the detected rotational speed is higher than a certain set rotational speed, one of the on-off valves 42 to 45 and the on-off valves 32 and 33 corresponding to the set rotational speed is opened. In other words, the on-off valves 32, 33,
42 to 45 are driven as described above, and when the rotation speed of the engine changes from low to high, the communication passage 38 → the communication passage 39 → the communication passage 40 → the communication passage 41 → the communication passage 29 is sequentially opened in this order, When the engine speed changes from high to low, the engine closes in the reverse order.
開閉弁32・33・42〜45の開閉の切り換えにおいて、最
小共鳴同調回転速度Nrから開閉弁42が開くまでの回転速
度差をN0、開閉弁42が開いてから開閉弁43〜45および開
閉弁32・33が順次開くときの回転速度差をそれぞれN1、
N2、N3、N4とすれば、これらの大小関係は下記のように
設定されている。In switching between opening and closing of the on-off valves 32, 33, 42 to 45, the rotation speed difference from the minimum resonance tuning rotation speed Nr to the opening of the on-off valve 42 is N 0 , and the on-off valves 43 to 45 and The rotation speed difference when the valves 32 and 33 are sequentially opened is N 1 ,
Assuming N 2 , N 3 , and N 4 , these magnitude relationships are set as follows.
N0<N1<N2<N3<N4 ただし、N0はエンジンノ特性等によって決まる回転速
度差ΔNを2倍したものである。N 0 <N 1 <N 2 <N 3 <N 4 where N 0 is a value obtained by doubling the rotation speed difference ΔN determined by the engine characteristics and the like.
上記の構成において、エンジン回転速度3000rpm以下
の低回転域では、吸気弁および吸気弁の開閉タイミング
が、第6図の曲線Cに示すように、曲線Dに示す高回転
域の場合より早められ、オーバラップ期間が長くなる。
一方、吸気系では、圧力振動が生じており、その圧力波
が吸気ポート9〜14から最も近い位置で連通している連
通路38〜41および通路29のいずれかにより反射されて正
圧となる。例えば、第7図の(a)に示す主吸気通路30
により生じた圧力波は、同図の(b)〜(d)に示すよ
うに、気筒3〜5におけるオーバラップ期間中の吸気ポ
ート9〜11に作用する。また、図示はしないが、主吸気
通路31により生じた圧力波も、上記と同様にオーバラッ
プ期間中の吸気ポート12〜14に作用する。通常、低回転
域でオーバラップ期間が長くなると、燃焼が不安定にな
るなどの不都合が生じるが、本実施例の場合、オーバラ
ップ期間中に排出されずに残留する燃焼ガスを上記正圧
により押し出して掃気効果を向上させることができ、上
記のような不都合を解消することができる。また、正圧
により吸気量を増大させることができ、充填効率を向上
させることができる。In the above configuration, in the low rotation range where the engine rotation speed is 3000 rpm or less, the opening and closing timing of the intake valve and the intake valve is advanced as compared with the case of the high rotation range indicated by the curve D as shown by the curve C in FIG. The overlap period becomes longer.
On the other hand, in the intake system, pressure vibration is generated, and the pressure wave is reflected by one of the communication passages 38 to 41 and the passage 29 communicating at the position closest to the intake ports 9 to 14, and becomes a positive pressure. . For example, the main intake passage 30 shown in FIG.
Causes the pressure waves to act on the intake ports 9 to 11 of the cylinders 3 to 5 during the overlap period, as shown in FIGS. Although not shown, the pressure wave generated by the main intake passage 31 also acts on the intake ports 12 to 14 during the overlap period as described above. Normally, if the overlap period is long in the low rotation speed range, inconveniences such as unstable combustion occur.In the case of this embodiment, however, the combustion gas remaining without being discharged during the overlap period is reduced by the positive pressure. It can be pushed out to improve the scavenging effect, and the above-mentioned inconvenience can be solved. Further, the intake pressure can be increased by the positive pressure, and the charging efficiency can be improved.
ところで、吸気ポート9〜14および排気ポート15〜20
の開閉時間は、エンジン回転速度に応じて異なるので、
これに対しては、吸気系の固有振動数を可変させること
により、吸気ポート9〜14に正圧を作用させる。この場
合、第8図に示すように、回転速度が最低共鳴同調回転
速度Nrから上昇するとトルクが低下するが、回転速度が
Nr+N0に達すると連通路38が連通し、再びトルクが上昇
する。続いて、エンジン回転速度が連通路38の連通から
回転速度差N1だけ上昇すると連通路39が連通し、以降、
エンジン回転速度が順次回転速度差N2、N3、N4の間隔で
上昇するに応じて連通路40、連通路41、通路29が連通す
る。しかも、連通路38〜41および通路29は、各共鳴同調
回転速度±20%以内の範囲で連通する。それゆえ、連通
路38〜41および通路29が連通する際に、大きなトルク落
ち込みや騒音の変動を抑制することができる。By the way, the intake ports 9 to 14 and the exhaust ports 15 to 20
The opening and closing time varies depending on the engine speed,
On the other hand, by changing the natural frequency of the intake system, positive pressure is applied to the intake ports 9-14. In this case, as shown in FIG. 8, when the rotation speed increases from the minimum resonance tuning rotation speed Nr, the torque decreases, but the rotation speed decreases.
Upon reaching the nr + N 0 communicated with the communication passage 38, again a torque is increased. Subsequently, when the engine rotational speed increases by a rotation speed difference N 1 from the communication of the communication passage 38 communicates with the communication passage 39, and later,
As the engine rotation speed sequentially increases at intervals of the rotation speed differences N 2 , N 3 , N 4 , the communication passage 40, the communication passage 41, and the passage 29 communicate with each other. Moreover, the communication passages 38 to 41 and the passage 29 communicate with each other within a range of ± 20% of each resonance tuning rotation speed. Therefore, when the communication paths 38 to 41 and the path 29 communicate with each other, it is possible to suppress a large drop in torque and fluctuation in noise.
なお、主吸気通路30・31は、第2図(a)および
(b)に示したものに限定されず、必要とされる長さに
応じて、例えば、第3図ないし第5図に示すような形状
が考えられる。第3図(a)および(b)に示す主吸気
通路30・31は、折り曲げられて重なり合う形状をなして
おり、やや長く形成される場合に適している。第4図
(a)および(b)に示す主吸気通路30・31は、一方向
に長い渦巻き状をなしており、かなり長く形成される場
合に適している。第5図(a)および(b)に示す主吸
気通路30・31は、2箇所で湾曲し長円形に似た形状をな
しており、比較的短く形成される場合に適している。た
だし、これらの主吸気通路30・31も、第2図(a)およ
び(b)に示したものと同様に連通が切り換えられるよ
うになっている。The main intake passages 30 and 31 are not limited to those shown in FIGS. 2 (a) and 2 (b). For example, as shown in FIGS. 3 to 5, depending on the required length. Such a shape is conceivable. The main intake passages 30 and 31 shown in FIGS. 3 (a) and 3 (b) have bent and overlapped shapes and are suitable for a case where they are formed slightly longer. The main intake passages 30 and 31 shown in FIGS. 4 (a) and 4 (b) have a spiral shape that is long in one direction and are suitable for a case where the main intake passages are formed to be considerably long. The main intake passages 30 and 31 shown in FIGS. 5 (a) and 5 (b) are curved at two locations and have a shape similar to an ellipse, and are suitable when formed relatively short. However, the communication between these main intake passages 30 and 31 is switched similarly to those shown in FIGS. 2 (a) and 2 (b).
〔実施例2〕 続いて、本発明の他の実施例を第2図ないし第9図に
基づいて説明する。なお、前記第1実施例と同様の機能
を有する部材には、同一の符号を付記してその説明を省
略する。Embodiment 2 Next, another embodiment of the present invention will be described with reference to FIGS. The members having the same functions as in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
第9図に示すように、本実施例における吸気系は、エ
ンジンの各気筒3〜8に設けられた吸気ポート9〜14
と、主吸気通路30・31との間に独立吸気通路21〜26が設
けられているのは、前記第1実施例と同様であるが、主
吸気通路30・31の下流側が連通していない点で異なって
いる。この場合も、低回転領域でオーバラップ期間に吸
気ポート9〜14に正圧を作用させるために、主吸気通路
30・31は、要求される長さに応じて第2図ないし第5図
に示すような形状に形成される。そして、主吸気通路30
・31間に設けられた連通路38〜41の開閉は、図示はしな
いが、第1図に示した吸気系と同様に制御されるように
なっている。As shown in FIG. 9, the intake system in this embodiment includes intake ports 9 to 14 provided in each of the cylinders 3 to 8 of the engine.
And the independent intake passages 21 to 26 are provided between the main intake passages 30 and 31 as in the first embodiment, but the downstream sides of the main intake passages 30 and 31 are not connected. Are different in that Also in this case, in order to apply a positive pressure to the intake ports 9 to 14 during the overlap period in the low rotation region, the main intake passage
30 and 31 are formed in a shape as shown in FIGS. 2 to 5 according to the required length. And the main intake passage 30
Opening and closing of the communication passages 38 to 41 provided between the 31s is controlled in the same manner as in the intake system shown in FIG.
また、本発明では、吸気系の固有振動数を要求に応じ
て可変することができればよいので、図中二点鎖線で示
すように、上記と同様な形状をなす主吸気通路30・31を
集合通路27・28の下流側に設けたものであってもよい。
あるいは、主吸気通路30・31における連通路38〜41を、
上流側および下流側に分散させて設けてもよい。この場
合、集合通路27・28の下流側に設けられた主吸気通路30
・31は、端部が互いに接続されるか、あるいは閉止され
ており、それぞれ開閉弁32・33が設けられている。な
お、集合通路27・28の下流側に設けられた主吸気通路30
・31間には、開閉弁32・33から下流側へ連通路38〜41が
設けられているが、簡単のため図中では省略した。Further, in the present invention, since it is sufficient that the natural frequency of the intake system can be changed as required, the main intake passages 30 and 31 having the same shape as the above are assembled as shown by a two-dot chain line in the drawing. It may be provided downstream of the passages 27 and 28.
Alternatively, the communication passages 38 to 41 in the main intake passages 30 and 31 are
They may be provided separately on the upstream and downstream sides. In this case, the main intake passage 30 provided downstream of the collecting passages 27 and 28
31 is connected or closed at its ends, and provided with on-off valves 32 and 33, respectively. In addition, the main intake passage 30 provided downstream of the collective passages 27 and 28
The communication passages 38 to 41 are provided between the valves 31 and 31 from the on-off valves 32 and 33 to the downstream side, but are omitted in the drawing for simplicity.
このような構成において、第6図に示すように、低回
転時では、吸気弁の開閉タイミングが早められて、オー
バラップ期間が長くなっても、第7図に示すように、オ
ーバラップ期間中の吸気ポート9〜11に正圧が作用し、
同様に吸気ポート12〜14にも正圧が作用する。それゆ
え、前記第1実施例と同様、掃気効果を向上させること
ができ、低回転域でのノッキングの発生を抑制するとと
もに、充填効率の向上を図ることができる。また、開閉
弁32・33・42〜45の開閉のタイミングが第8図に示すよ
うに設定されているので、通路29および連通路38〜41の
開閉時に、大きなトルクの落ち込みや騒音の変動を抑制
することができる。In such a configuration, at the time of low rotation, as shown in FIG. 6, the opening / closing timing of the intake valve is advanced, and even if the overlap period becomes longer, as shown in FIG. Positive pressure acts on the intake ports 9-11 of
Similarly, a positive pressure acts on the intake ports 12-14. Therefore, similarly to the first embodiment, the scavenging effect can be improved, and the occurrence of knocking in a low rotation range can be suppressed, and the charging efficiency can be improved. Further, since the opening / closing timing of the on-off valves 32, 33, 42 to 45 is set as shown in FIG. 8, when the passage 29 and the communication passages 38 to 41 are opened and closed, a large drop in torque and fluctuation of noise are generated. Can be suppressed.
請求項1の発明に係るエンジンの吸気装置は、以上の
ように、燃焼室へ新気を導入する吸気ポートと、燃焼室
から燃焼ガスを導出する排気ポートとを備え、吸気順序
の連続しない気筒に上記吸気ポートを介して接続された
独立吸気通路、独立吸気通路同士を集合させる集合通
路、および集合通路に通じる延長通路により吸気系が形
成されるとともに、エンジンの低回転時における吸気の
タイミングが開弁および閉弁のタイミングともエンジン
の高回転時におけるそれより早くなるように抑制され、
吸気ポートと排気ポートとがともに開いているオーバラ
ップ期間がエンジンの高回転時よりも低回転時の方が大
きく設定されるエンジンの吸気装置において、エンジン
の低回転域の回転全域にわたって、オーバラップ期間
に、吸気系の圧力振動により吸気ポート近傍に正圧が作
用するように、吸気系の固有振動数がエンジンの回転数
に応じて可変に設定されている構成である。As described above, the intake device for an engine according to the first aspect of the present invention includes the intake port for introducing fresh air into the combustion chamber and the exhaust port for extracting combustion gas from the combustion chamber, and the cylinders in which the intake sequence is not continuous. The intake system is formed by an independent intake passage connected via the intake port, an aggregate passage for gathering the independent intake passages, and an extended passage leading to the aggregate passage, and the intake timing at the time of low engine rotation is adjusted. Both the valve opening and valve closing timings are suppressed so as to be earlier than at the time of high engine speed,
In the intake system of an engine, in which the overlap period in which both the intake port and the exhaust port are open is set to be larger at low engine speeds than at high engine speeds, the engine overlaps over the entire low engine speed range. During the period, the natural frequency of the intake system is variably set in accordance with the engine speed so that a positive pressure acts near the intake port due to the pressure vibration of the intake system.
これにより、吸気系の固有振動数が、オーバラップ期
間において、エンジンの低回転域の回転全域にわたって
吸気系の圧力振動により吸気ポート近傍に正圧が作用す
るようにエンジンの回転数に応じて可変に設定されてい
るので、オーバラップ期間が長いエンジンの低回転時に
は、燃焼室内から前回の燃焼により生じた残留ガスが速
やかに掃気されることにより、掃気効果をより向上させ
ることができる。従って、充填量を増大させることが、
低回転域での高出力化を図ることができるとともに、燃
焼室に導入された新気が高温化することなく、低速時に
おけるノッキングの発生を抑制することができるという
効果を奏する。This allows the natural frequency of the intake system to vary according to the engine speed such that a positive pressure acts near the intake port due to the pressure vibration of the intake system over the entire rotation range of the low engine speed range during the overlap period. Therefore, when the engine is running at a low rotation speed with a long overlap period, the residual gas generated by the previous combustion is quickly scavenged from the combustion chamber, so that the scavenging effect can be further improved. Therefore, increasing the filling amount
It is possible to increase the output in the low rotation range, and to suppress the occurrence of knocking at low speed without increasing the temperature of the fresh air introduced into the combustion chamber.
請求項2の発明に係るエンジンの吸気装置は、以上の
ように、請求項1に記載のエンジンの吸気装置におい
て、3気筒のそれぞれの独立吸気通路を集合させた集合
通路を2つ備えた6気筒のエンジンの吸気装置であっ
て、エンジンの低回転域の回転全域にわたって、各気筒
のオーバラップ期間に、吸気系の圧力振動により2つの
集合通路を介して吸気ポート近傍に正圧が作用するよう
に、吸気系の固有振動数がエンジンの回転数に応じて可
変に設定されている構成である。As described above, the intake system for an engine according to the second aspect of the present invention is the intake system for an engine according to the first aspect, wherein the two intake passages are formed by integrating the independent intake passages of the three cylinders. An intake device for an engine of a cylinder, wherein positive pressure acts on the vicinity of an intake port via two collective passages due to pressure vibration of an intake system during an overlap period of each cylinder over an entire rotation range of a low rotation range of the engine. As described above, the natural frequency of the intake system is variably set in accordance with the engine speed.
これにより、共鳴効果が大きく引き出せる2つの集合
通路を備えた6気筒エンジンで、より吸気の充填量を増
大させることができ、低回転域での高出力化を充分に図
ることができるとともに、燃焼室に導入された新気が高
温化することなく、低速時におけるノッキングの発生を
抑制することができるという効果を奏する。As a result, in a six-cylinder engine provided with two collective passages from which the resonance effect can be greatly extracted, the amount of intake air can be further increased, and a high output in a low rotation range can be sufficiently achieved. There is an effect that the occurrence of knocking at low speed can be suppressed without increasing the temperature of the fresh air introduced into the chamber.
第1図は本発明の一実施例を示すものであって、吸気装
置の構成を示す概略図である。 第9図は本発明の他の実施例を示すものであって、吸気
装置の構成を示す概略図である。 第2図ないし第8図は上記の両実施例に共通するもので
ある。 第2図ないし第5図の(a)は主吸気通路の形状を示す
第1図および第9図のA方向矢視図である。 第2図ないし第5図の(b)は主吸気通路の形状を示す
第1図および第9図のB方向矢視断面図である。 第6図は吸気弁および排気弁の開度とクランク角との関
係を示すグラフである。 第7図は正圧波がオーバラップ期間に作用している様子
を示す説明図である。 第8図はエンジン回転速度とトルクとの関係を示すグラ
フである。 3〜8は気筒、9〜14は吸気ポート、15〜20は排気ポー
ト、21〜26は独立吸気通路、27・28は集合通路、29は通
路、30・31は主吸気通路(延長通路)、32・33・42〜45
は開閉弁、38〜41は連通路である。FIG. 1 shows one embodiment of the present invention, and is a schematic view showing a configuration of an intake device. FIG. 9 shows another embodiment of the present invention, and is a schematic view showing a configuration of an intake device. FIGS. 2 to 8 are common to both of the above embodiments. 2 (a) are diagrams showing the shape of the main intake passage as viewed in the direction of arrow A in FIGS. 1 and 9. FIG. 2 (b) are cross-sectional views showing the shape of the main intake passage as viewed in the direction of arrow B in FIGS. 1 and 9. FIG. FIG. 6 is a graph showing the relationship between the opening degree of the intake valve and the exhaust valve and the crank angle. FIG. 7 is an explanatory diagram showing a state in which the positive pressure wave is acting during the overlap period. FIG. 8 is a graph showing the relationship between the engine speed and the torque. 3 to 8 are cylinders, 9 to 14 are intake ports, 15 to 20 are exhaust ports, 21 to 26 are independent intake passages, 27 and 28 are collective passages, 29 is a passage, and 30 and 31 are main intake passages (extended passages). , 32 ・ 33 ・ 42〜45
Is an on-off valve, and 38 to 41 are communication paths.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 幹公 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 平2−207133(JP,A) (58)調査した分野(Int.Cl.6,DB名) F02B 27/02────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mikiko Fujii 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Co., Ltd. (56) References JP-A-2-207133 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) F02B 27/02
Claims (2)
焼室から燃焼ガスを導出する排気ポートとを備え、吸気
順序の連続しない気筒に上記吸気ポートを介して接続さ
れた独立吸気通路、独立吸気通路同士を集合させる集合
通路、および集合通路に通じる延長通路により吸気系が
形成されるとともに、エンジンの低回転時における吸気
のタイミングが開弁および閉弁のタイミングともエンジ
ンの高回転時におけるそれより早くなるように制御さ
れ、吸気ポートと排気ポートとがともに開いているオー
バラップ期間がエンジンの高回転時よりも低回転時の方
が大きく設定されるエンジンの吸気装置において、 エンジンの低回転域の回転全域にわたって、オーバラッ
プ期間に、吸気系の圧力振動により吸気ポート近傍に正
圧が作用するように、吸気系の固有振動数がエンジンの
回転数に応じて可変に設定されていることを特徴とする
エンジンの吸気装置。1. An independent intake passage having an intake port for introducing fresh air into a combustion chamber and an exhaust port for extracting combustion gas from the combustion chamber, the independent intake passage being connected to the cylinders whose intake sequence is not continuous through the intake port. An intake passage is formed by a collective passage for collecting independent intake passages and an extended passage leading to the collective passage, and the intake timing at low engine speeds is high when the engine opens and closes at high engine speeds. In the intake system of the engine, the overlap period in which both the intake port and the exhaust port are open is set to be larger at a low rotation speed than at a high rotation speed of the engine. During the overlap period, the intake system operates so that the positive pressure acts near the intake port due to the pressure oscillation of the intake system over the entire rotation range in the low rotation range. An intake device for an engine, wherein a natural frequency of an air system is variably set according to an engine speed.
せた集合通路を2つ備えた6気筒のエンジンの吸気装置
であって、エンジンの低回転域の回転全域にわたって、
各気筒のオーバラップ期間に、吸気系の圧力振動により
2つの集合通路を介して吸気ポート近傍に正圧が作用す
るように、吸気系の固有振動数がエンジンの回転数に応
じて可変に設定されていることを特徴とする請求項1に
記載のエンジンの吸気装置。2. An intake device for a six-cylinder engine provided with two collecting passages in which respective independent intake passages of three cylinders are collected.
During the overlap period of each cylinder, the natural frequency of the intake system is variably set in accordance with the engine speed so that a positive pressure acts near the intake port via the two collecting passages due to the pressure vibration of the intake system. The intake device for an engine according to claim 1, wherein the intake device is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1197222A JP2835088B2 (en) | 1989-07-28 | 1989-07-28 | Engine intake system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1197222A JP2835088B2 (en) | 1989-07-28 | 1989-07-28 | Engine intake system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0361613A JPH0361613A (en) | 1991-03-18 |
JP2835088B2 true JP2835088B2 (en) | 1998-12-14 |
Family
ID=16370869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1197222A Expired - Fee Related JP2835088B2 (en) | 1989-07-28 | 1989-07-28 | Engine intake system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2835088B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10026358B4 (en) * | 2000-05-27 | 2005-06-30 | Mahle Filtersysteme Gmbh | Internal combustion engine with intake system |
DE10038011A1 (en) * | 2000-08-04 | 2002-02-14 | Porsche Ag | suction |
JP4630755B2 (en) * | 2005-08-05 | 2011-02-09 | トヨタ自動車株式会社 | Supercharging control device for internal combustion engine |
-
1989
- 1989-07-28 JP JP1197222A patent/JP2835088B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0361613A (en) | 1991-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63111227A (en) | Suction device for engine | |
JPH06108858A (en) | Intake device of engine | |
JPH0230919A (en) | Air intake device for engine | |
JPH0192518A (en) | Engine intake-air device | |
JP2835088B2 (en) | Engine intake system | |
JP2754978B2 (en) | Control device for 6-cylinder internal combustion engine | |
JP2771176B2 (en) | Engine intake system | |
JPH0533661A (en) | Air intake device of engine with mechanical supercharger | |
JPH06280576A (en) | Intake device of engine | |
JP3249163B2 (en) | Intake device for turbocharged engine | |
JP2783420B2 (en) | Engine intake system | |
JPH0730698B2 (en) | Multi-cylinder engine intake system | |
JP3240492B2 (en) | Engine intake system | |
JPH07109172B2 (en) | Valve drive for supercharged engine | |
JP3518044B2 (en) | Engine intake system | |
JPH0354318A (en) | Intake device of multiple cylinder engine | |
JPH02108818A (en) | Air intake device for engine | |
JP2721982B2 (en) | V-type engine intake system | |
JPH0823294B2 (en) | Engine intake system | |
JPS6030419Y2 (en) | Resonant supercharging intake system for multi-cylinder engines | |
JP2771175B2 (en) | Engine intake system | |
JP2750122B2 (en) | Engine intake system | |
JPH073175B2 (en) | Engine intake system | |
JPH0726544B2 (en) | Intake device for 4-cylinder engine | |
JP3427396B2 (en) | Intake device for engine with mechanical supercharger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |