JPH0361613A - Intake device for engine - Google Patents

Intake device for engine

Info

Publication number
JPH0361613A
JPH0361613A JP1197222A JP19722289A JPH0361613A JP H0361613 A JPH0361613 A JP H0361613A JP 1197222 A JP1197222 A JP 1197222A JP 19722289 A JP19722289 A JP 19722289A JP H0361613 A JPH0361613 A JP H0361613A
Authority
JP
Japan
Prior art keywords
intake
passages
engine
passage
intake system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1197222A
Other languages
Japanese (ja)
Other versions
JP2835088B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Toshihiko Hattori
服部 敏彦
Masashi Maruhara
正志 丸原
Motokimi Fujii
幹公 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1197222A priority Critical patent/JP2835088B2/en
Publication of JPH0361613A publication Critical patent/JPH0361613A/en
Application granted granted Critical
Publication of JP2835088B2 publication Critical patent/JP2835088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • F02B27/006Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0242Fluid communication passages between intake ducts, runners or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0294Actuators or controllers therefor; Diagnosis; Calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To speedily scavenge the residual gas from the inside of a combustion chamber by setting the characteristic frequency in an intake system so that each positive ressure acts into the vicinity of an intake port by the pressure vibration in the intake system during the overlap period at the low revolution. CONSTITUTION:An intake system consists of independent intake passages 21-26, collecting passages 27 and 28 and a passage 29, and main intake 30 and 31. Control is performed so that the intake timing in the low revolution speed of an engine is set to make earlier than that in the high revolution speed. In this case, the main intake passages 30 and 31 are formd in spiral shape, and connected by the communication passages 38-41 in the prescribed intervals is turn from the upstream side, and the communication passages 38-41 are opened and closed by the opening/closing operation of the opening/closing valves 42-45. Therefore, the positive pressure acts in the vicinity of the intake ports 9-14 by the pressure vibration in the intake system, during the overlap period in the low revolution operation. Therefore, the residual gas formed in the preceding combustion is pushed out through the exhaust ports 15-20 by the positive pressure, and scavenging can be carried out effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸気系の圧力振動を利用することにより、低
回転時における吸気の充填効率を向上させたエンジンの
吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an engine intake system that improves intake air filling efficiency at low engine speeds by utilizing pressure vibrations in the intake system.

〔従来の技術〕[Conventional technology]

従来より、エンジンの吸気装置においては、高出力を得
るために、エンジンの回転速度に応じて吸気弁の開閉タ
イミングを調整する方法が知られている。例えば、特開
昭61−65036号公報では、吸気弁の開閉タイミン
グを高回転時よりも低回転時の方が早くなるように制御
する構成が開示されている。このような構成では、低回
転時においても、慣性効果を有効に利用して吸気の充填
量を増大させることができ、全回転領域にわたり高出力
化が図られている。
2. Description of the Related Art Conventionally, in an engine intake system, a method has been known in which the opening and closing timing of an intake valve is adjusted according to the rotational speed of the engine in order to obtain high output. For example, Japanese Unexamined Patent Publication No. 61-65036 discloses a configuration in which the opening/closing timing of the intake valve is controlled to be earlier at low rotations than at high rotations. With this configuration, even at low rotation speeds, it is possible to effectively utilize the inertia effect to increase the intake air filling amount, and high output is achieved over the entire rotation range.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来の技術では、低回転時に吸気弁の開
閉タイミングを早めることにより、吸気弁と排気弁とが
ともに開いているオーバラップ期間が長くなってしまう
、このため、オーバラップ期間において、前回の燃焼に
より生じた燃焼ガスが完全に排出されずに残留し、この
残留ガスにより吸気弁から導入される新気が温められて
ノッキングが生じやすくなっていた。また、残留ガスに
より充填量の増加が制限されるため、さらに充填効率を
向上させることが困難となっていた。
However, with the above conventional technology, by advancing the opening/closing timing of the intake valve at low engine speeds, the overlap period during which both the intake valve and the exhaust valve are open becomes longer. The combustion gas generated by the combustion of the engine remains without being completely exhausted, and this residual gas warms the fresh air introduced from the intake valve, making it more likely to cause knocking. Further, since the increase in the filling amount is restricted by the residual gas, it has been difficult to further improve the filling efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るエンジンの吸気装置は、上記の課題を解決
するために、燃焼室へ新気を導入する吸気ポートと、燃
焼室から燃焼ガスを導出する排気ポートとを備え、吸気
順序の連続しない気筒に上記吸気ポートを介して接続さ
れた独立吸気通路、独立供給通路同士を集合させる集合
通路、および集合通路に通じる延長通路により吸気系が
形成されるとともに、エンジンの低回転時における吸気
のタイミングをエンジンの高回転時におけるそれより早
くなるように制御されているエンジンの吸気装置におい
て、エンジンの低回転時での吸気ポートと排気ポートと
がともに開いているオーバラップ期間に、吸気系の圧力
振動により吸気ポート近傍に正圧が作用するように、吸
気系の固有振動数が設定されていることを特徴としてい
る。
In order to solve the above-mentioned problems, an engine intake device according to the present invention includes an intake port for introducing fresh air into a combustion chamber and an exhaust port for leading out combustion gas from the combustion chamber, and the intake device has a non-continuous intake order. An intake system is formed by an independent intake passage connected to the cylinder via the intake port, a collective passage that brings together the independent supply passages, and an extension passage that leads to the collective passage. In an engine intake system, the pressure in the intake system is controlled to be faster than that at high engine speeds, and during the overlap period when the intake port and exhaust port are both open at low engine speeds, It is characterized in that the natural frequency of the intake system is set so that positive pressure acts near the intake port due to vibration.

〔作 用〕[For production]

上記の構成によれば、低回転時では、高回転時よりも吸
気のタイミングが早められているためオーバラップ期間
が長くなる。ところが、このオーバラップ期間に、吸気
系の圧力振動により吸気ポート近傍に正圧が作用するよ
うに、吸気系の固有振動数が設定されているので、前回
の燃焼により生じた残留ガスが、上記正圧により排気ポ
ートを介して押し出され、掃気をより効果的に行うこと
ができる。従って、充填効率を向上させて低回転域での
高出力化を図ることができる。また、掃気効果の向上に
より、燃焼室に導入された新気が高温化することなく、
低回転時にけおるノッキングの発生を抑制することがで
きる。
According to the above configuration, the overlap period becomes longer at low engine speeds because the intake timing is earlier than at high engine speeds. However, during this overlap period, the natural frequency of the intake system is set so that positive pressure acts near the intake port due to pressure oscillations in the intake system, so the residual gas generated from the previous combustion is Positive pressure forces the air out through the exhaust port, allowing for more effective scavenging. Therefore, it is possible to improve charging efficiency and achieve high output in a low rotation range. In addition, the improved scavenging effect prevents the fresh air introduced into the combustion chamber from becoming too hot.
It is possible to suppress the occurrence of knocking that occurs at low rotation speeds.

〔実施例1〕 本発明をV型6気筒エンジンに適用した場合の一実施例
を第1図ないし第8図に基づいて説明すれば、以下の通
りである。
[Embodiment 1] An embodiment in which the present invention is applied to a V-type six-cylinder engine will be described below with reference to FIGS. 1 to 8.

第1図に示すように、V型エンジンにおけるバンク1に
は、気筒3〜5が併設される一方、バンク2には、気筒
6〜8が併設されており、これらの気筒3〜8は、気筒
3→気筒6→気筒4→気筒7→気筒5→気筒8の順に吸
気が行われるようになっている。上記気筒3〜8には、
吸気ポート9〜14が設けられるとともに、排気ポート
15〜20が設けられている。これら吸気ポート9〜1
4および排気ポート15〜20は、それぞれ図示しない
吸気弁および排気弁により所定のタイミングで開閉され
るようになっている。吸気のタイミングは、吸気弁の開
閉のタイミングによって決定され、例えば、エンジンの
回転速度が300Orpmより高い高速回転のときより
、3000rpm以下の低速回転のときの方が早くなる
ように設定されている。上記吸気弁の開閉タイミングは
、カムシャフトの位相角を変化させたり、低回転時と高
回転時とで異なるロッカアームにより吸気弁および排気
弁の開閉を行ったりするなど、周知の方法により切り換
えられる。
As shown in FIG. 1, bank 1 of a V-type engine includes cylinders 3 to 5, while bank 2 includes cylinders 6 to 8. Intake is performed in the order of cylinder 3 → cylinder 6 → cylinder 4 → cylinder 7 → cylinder 5 → cylinder 8. For the cylinders 3 to 8,
Intake ports 9-14 are provided, and exhaust ports 15-20 are provided. These intake ports 9-1
4 and exhaust ports 15 to 20 are opened and closed at predetermined timings by intake valves and exhaust valves (not shown), respectively. The intake timing is determined by the timing of opening and closing of the intake valve, and is set to be earlier when the engine is rotating at a low speed of 3000 rpm or less than when the engine is rotating at a high speed higher than 300 rpm. The opening/closing timing of the intake valves is switched by a known method, such as changing the phase angle of the camshaft or opening and closing the intake and exhaust valves using different rocker arms at low and high rotations.

上記吸気ポート9〜14には、それぞれ独立吸気通路2
1〜26が接続されており、独立吸気通路21〜26内
を流れる新気が、吸気ポート9〜14を介して図示しな
い燃焼室へ導入されるようになっている。一方、排気ポ
ート15〜20には、それぞれ独立排気通路(図示せず
)が接続されており、燃焼室の燃焼ガスが、排気ボー)
15〜20を介して導出され、さらに上記独立排気通路
を含む排気系を介して外部に排出されるようになってい
る。
Each of the intake ports 9 to 14 has an independent intake passage 2.
1 to 26 are connected, and fresh air flowing through the independent intake passages 21 to 26 is introduced into a combustion chamber (not shown) via intake ports 9 to 14. On the other hand, independent exhaust passages (not shown) are connected to the exhaust ports 15 to 20, respectively, so that the combustion gas in the combustion chamber is
15 to 20, and is further discharged to the outside via an exhaust system including the independent exhaust passage.

独立吸気通路21〜26は、独立吸気通路21〜23同
士が集合通路27に接続され、独立吸気通路24〜26
が集合通路28に接続されている。集合通路27・28
は、下流側が通路29により互いに通じる一方、上流側
がそれぞれ主吸気通路30・31に通じている。集合通
路27・28と通路29との境界部には、後述するアク
チュエータ46により駆動されて開閉する開閉弁32・
33が設けられている。主吸気通路30・31は上流側
で集合し共通吸気通路34に通じている。この共通吸気
通路34は、主吸気通路30・31の集合部近傍にスロ
ットル弁35が設けられるとともに、スロットル弁35
からさらに上流側にエアフローメータ36が設けられて
おり、最上流部がエアクリーナ37に接続されている。
The independent intake passages 21 to 26 are connected to the collective passage 27, and the independent intake passages 21 to 23 are connected to the collective passage 27.
is connected to the collective passage 28. Gathering aisles 27 and 28
The downstream sides communicate with each other through a passage 29, while the upstream sides communicate with main intake passages 30 and 31, respectively. At the boundary between the collective passages 27 and 28 and the passage 29, there are on-off valves 32 and 32, which are driven to open and close by an actuator 46, which will be described later.
33 are provided. The main intake passages 30 and 31 come together on the upstream side and communicate with a common intake passage 34. This common intake passage 34 is provided with a throttle valve 35 near the gathering part of the main intake passages 30 and 31, and a throttle valve 35
An air flow meter 36 is provided further upstream from the air flow meter 36, and the most upstream portion thereof is connected to an air cleaner 37.

なお、上記の独立吸気通路21〜26、集合通路27・
28、通路29および主吸気通路30・31により、吸
気装置における吸気系が構成されている。
In addition, the above-mentioned independent intake passages 21 to 26, collective passage 27,
28, passage 29, and main intake passages 30 and 31 constitute an intake system in the intake device.

また、通路29および主吸気通路30・31は、吸気系
における延長通路に相当する。
Furthermore, the passage 29 and the main intake passages 30 and 31 correspond to extended passages in the intake system.

上記吸気系は、吸気ポート9〜14および排気ポート1
5〜20がともに開いている期間、すなわちオーバラッ
プ期間に、吸気系の圧力振動により吸気ポート9〜14
近傍に正圧が作用するように、その固有振動数が設定さ
れている。そこで、本実施例では、主吸気通路30・3
1を複数の異なる位置に設けられた連通部により互いに
連通させることにより、連通した位置と吸気ポート9〜
14との間の距離を変化させて、必要とする固有振動数
を得ている。この場合、エンジンの回転速度に応じて吸
気ポート9〜14の開閉期間が異なるため、主吸気通路
30・31の連通位置を、エンジンの回転速度が上昇す
るに従って吸気ポート9〜14に近づけるように可変に
している。
The above intake system includes intake ports 9 to 14 and exhaust port 1.
During the period when ports 5 to 20 are both open, that is, during the overlap period, pressure vibrations in the intake system cause intake ports 9 to 14 to open.
Its natural frequency is set so that positive pressure acts nearby. Therefore, in this embodiment, the main intake passages 30, 3
1 to communicate with each other through communicating portions provided at a plurality of different positions, the communicating positions and the intake ports 9 to
14 to obtain the required natural frequency. In this case, since the opening and closing periods of the intake ports 9 to 14 differ depending on the engine rotation speed, the communication position of the main intake passages 30 and 31 is moved closer to the intake ports 9 to 14 as the engine rotation speed increases. It is made variable.

また、低回転時における高トルク化を共鳴効果により図
る場合、低回転であるほど共鳴同調回転速度において高
トルクが得られる傾向があるが、その反面、低回転域で
はトルクが急峻に変化し、所定以上のトルクが得られる
回転速度の範囲が狭くなる。このため、主吸気通路30
・31の連通部が少ないと、各連通部の連通を切り換え
る際にトルクの落ち込みが大きくなったり、騒音に大き
な変動が生じたりする。従って、理想的には、上記の吸
気系を備えた吸気装置を実車に搭載する場合、低回転域
での安定したトルク特性を得るためには、主吸気通路3
0・31間に多数の連通部を設け、エンジンの回転速度
に応じた位置の連通部を連通させるように、各連通部の
連通を切り換えることが望ましい。しかしながら、実際
には、コストや連通の切り換えに要する制御等を考慮す
れば、できるだけ連通部を少なくする必要がある。この
ため、本実施例では、連通部を少なくとも2箇所設け、
それらの連通の切り換えを、エンジンの回転速度が上昇
するほど間隔を広げて行うとともに、共鳴同調回転速度
から±20%以内の範囲で行うようにしている。
In addition, when increasing torque at low rotation speeds by the resonance effect, the lower the rotation speed, the higher the torque tends to be obtained at the resonance tuned rotation speed, but on the other hand, the torque changes sharply in the low rotation range, The range of rotational speeds in which torque greater than a predetermined value can be obtained becomes narrower. For this reason, the main intake passage 30
- If the number of communication parts 31 is small, the drop in torque becomes large when switching the communication of each communication part, and large fluctuations in noise occur. Therefore, ideally, when installing an intake system equipped with the above-mentioned intake system on an actual vehicle, in order to obtain stable torque characteristics in the low rotation range, it is necessary to
It is desirable to provide a large number of communication parts between 0. However, in reality, it is necessary to reduce the number of communication parts as much as possible in consideration of cost, control required for communication switching, and the like. For this reason, in this embodiment, at least two communication portions are provided,
The switching of these communications is performed at wider intervals as the engine rotational speed increases, and is performed within a range of ±20% from the resonance tuning rotational speed.

続いて、上記の諸条件を満たす吸気系の構成を説明する
Next, the configuration of an intake system that satisfies the above conditions will be described.

第2図(a)および(b)に示すように、吸気系におけ
る主吸気通路30・31は、渦巻き状をなしており、上
流側から順に所定の間隔で連通部として設けられた連通
路38〜41により互いに接続されている。第1図に示
すように、連通路38〜41には、それぞれ開閉弁42
〜45が設けられており、これら開閉弁42〜45の開
閉動作により連通路38〜41の開閉が行われるように
なっている。
As shown in FIGS. 2(a) and 2(b), the main intake passages 30 and 31 in the intake system have a spiral shape, and communicating passages 38 are provided as communicating portions at predetermined intervals from the upstream side. .about.41. As shown in FIG. 1, the communication passages 38 to 41 each have an on-off valve 42.
- 45 are provided, and the communication passages 38 - 41 are opened and closed by the opening and closing operations of these on-off valves 42 - 45 .

開閉弁42〜45および開閉弁32・33を駆動するア
クチュエータ46・・・は、回転速度検出センサ47に
より検出されたエンジンの回転速度が、比較部48にお
いてあらかじめ設定されたいくつかの回転速度と高低が
比較され、検出回転速度がある設定回転速度より高いと
、その設定回転速度に対応する開閉弁42〜45および
開閉弁32・33のいずれかを開くようになされている
。つまり、開閉弁32・33・42〜45は、上記のよ
うに駆動されて、エンジンの回転速度が低速から高速に
なる場合、連通路38→連通路39→連通路40→連通
路41→通路29の順で順次開き、エンジンの回転速度
が高速から低速になる場合、その逆の順で閉じるように
なっている。
The actuators 46 for driving the on-off valves 42 to 45 and the on-off valves 32 and 33 are configured so that the engine rotational speed detected by the rotational speed detection sensor 47 is different from some rotational speeds preset in the comparison section 48. The height is compared, and if the detected rotational speed is higher than a certain set rotational speed, one of the on-off valves 42 to 45 and on-off valves 32 and 33 corresponding to the set rotational speed is opened. In other words, when the on-off valves 32, 33, 42 to 45 are driven as described above and the rotational speed of the engine changes from low to high speed, the communication passage 38 → communication passage 39 → communication passage 40 → communication passage 41 → passage They open in sequence in the order of 29, and close in the reverse order when the engine speed changes from high to low.

開閉弁32・33・42〜45の開閉の切り換えにおい
て、最小共鳴同調回転速度Nrから開閉弁42が開くま
での回転速度差型N0、開閉弁42が開いてから開閉弁
43〜45および開閉弁32・33が順次開くときの回
転速度差をそれぞれN+ 、Nz 、Ni 、N4とす
れば、これらの大小関係は下記のように設定されている
In switching the opening/closing of the on-off valves 32, 33, 42-45, the rotational speed difference type N0 from the minimum resonance tuned rotational speed Nr until the on-off valve 42 opens, and the on-off valve 43-45 and the on-off valve after the on-off valve 42 opens, Assuming that the rotational speed differences when 32 and 33 open sequentially are N+, Nz, Ni, and N4, their magnitude relationships are set as follows.

No <Nl <N2 <N3 <N4ただし、Noは
エンジンの特性等によって決まる回転速度差ΔNを2倍
したものである。
No <Nl <N2 <N3 <N4 However, No is twice the rotational speed difference ΔN determined by engine characteristics and the like.

上記の構成において、エンジン回転速度300Qrpm
以下の低回転域では、吸気弁および排気弁の開閉タイミ
ングが、第6図の曲線Cに示すように、曲線りに示す高
回転域の場合より早められ、オーバラップ期間が長くな
る。一方、吸気系では、圧力振動が生じており、その圧
力波が吸気ポート9〜14から最も近い位置で連通して
いる連通路38〜41および通路29のいずれかにより
反射されて正圧となる。例えば、第7図の(a)に示す
主吸気通路30により生じた圧力波は、同図の(b)〜
(c)に示すように、気筒3〜5におけるオーバラップ
期間中の吸気ポート9〜11に作用する。また、図示は
しないが、主吸気通路31により生じた圧力波も、上記
と同様にオーバラップ期間中の吸気ポート12〜14に
作用する。通常、低回転域でオーバラップ期間が長くな
ると、燃焼が不安定になるなどの不都合が生じるが、本
実施例の場合、オーバラップ期間中に排出されずに残留
する燃焼ガスを上記正圧により押し出して掃気効果を向
上させることができ、上記のような不都合を解消するこ
とができる。また、正圧により吸気量を増大させること
ができ、充填効率を向上させることができる。
In the above configuration, the engine rotation speed is 300 Qrpm.
In the following low rotation range, the opening/closing timing of the intake valve and the exhaust valve is advanced, as shown by curve C in FIG. 6, than in the curved high rotation range, and the overlap period becomes longer. On the other hand, in the intake system, pressure oscillations occur, and the pressure waves are reflected by one of the communication passages 38 to 41 and the passage 29 that communicate with the intake ports 9 to 14 at a position closest to the intake ports 9 to 14, resulting in positive pressure. . For example, the pressure waves generated by the main intake passage 30 shown in FIG. 7(a) are
As shown in (c), it acts on intake ports 9 to 11 during the overlap period in cylinders 3 to 5. Although not shown, the pressure waves generated by the main intake passage 31 also act on the intake ports 12 to 14 during the overlap period in the same manner as described above. Normally, when the overlap period becomes long in the low rotation range, problems such as unstable combustion occur, but in this example, the combustion gas remaining without being exhausted during the overlap period is removed by the positive pressure. The scavenging effect can be improved by pushing out the air, and the above-mentioned inconveniences can be solved. Moreover, the amount of intake air can be increased by positive pressure, and the filling efficiency can be improved.

ところで、吸気ポート9〜14および排気ポート15〜
20の開閉時間は、エンジン回転速度に応じて異なるの
で、これに対しては、吸気系の固有振動数を可変させる
ことにより、吸気ポート9〜14に正圧を作用させる。
By the way, the intake ports 9 to 14 and the exhaust ports 15 to
Since the opening/closing time of 20 varies depending on the engine speed, positive pressure is applied to the intake ports 9 to 14 by varying the natural frequency of the intake system.

この場合、第8図に示すように、回転速度が最低共鳴同
調回転速度Nrから上昇するとトルクが低下するが、回
転速度がNr+N、に達すると連通路38が連通し、再
びトルクが上昇する。続いて、エンジン回転速度が連通
路38の連通から回転速度差N、だけ上昇すると連通路
39が連通し、以降、エンジン回転速度が順次回転速度
差NZ 、Nz 、Naの間隔で上昇するに応じて連通
路40、連通路41、通路29が連通する。しかも、連
通路38〜41および通路29は、各共鳴同調回転速度
±20%以内の範囲で連通ずる。それゆえ、連通路38
〜41および通路29が連通する際に、大きなトルク落
ち込みや騒音の変動を抑制することができる。
In this case, as shown in FIG. 8, when the rotational speed increases from the lowest resonance tuning rotational speed Nr, the torque decreases, but when the rotational speed reaches Nr+N, the communication path 38 opens and the torque increases again. Subsequently, when the engine rotational speed increases from the communication of the communication passage 38 by the rotational speed difference N, the communication passage 39 becomes open, and thereafter, as the engine rotational speed sequentially increases at intervals of the rotational speed difference NZ, Nz, Na. The communication passage 40, the communication passage 41, and the passage 29 communicate with each other. Moreover, the communication passages 38 to 41 and the passage 29 communicate within a range of each resonance tuning rotation speed within ±20%. Therefore, the communication path 38
41 and the passage 29 communicate with each other, it is possible to suppress a large drop in torque and fluctuations in noise.

なお、主吸気通路30・31は、第2図(a)および(
b)に示したものに限定されず、必要とされる長さに応
じて、例えば、第3図ないし第5図に示すような形状が
考えられる。第3図(a)および(b)に示す主吸気通
路30・31は、折り曲げられて重なり合う形状をなし
ており、やや長(形成される場合に適している。第4図
(a)および(b)に示す主吸気通路30・31は、−
方向に長い渦巻き状をなしており、かなり長く形成され
る場合に適している。第5図(a)および(b)に示す
主吸気通路30・31は、2箇所で湾曲し長円形に似た
形状をなしており、比較的短く形成される場合に適して
いる。ただし、これらの主吸気通路30・31も、第2
図(a)および(b)に示したものと同様に連通が切り
換えられるようになっている。
The main intake passages 30 and 31 are shown in FIGS. 2(a) and (
The shape is not limited to that shown in b), and depending on the required length, for example, shapes as shown in FIGS. 3 to 5 can be considered. The main intake passages 30 and 31 shown in FIGS. 3(a) and (b) have a bent and overlapping shape, and are suitable for cases where they are formed with a slightly long length. FIGS. 4(a) and ( The main intake passages 30 and 31 shown in b) are -
It has a spiral shape that is long in the direction, and is suitable when it is formed quite long. The main intake passages 30 and 31 shown in FIGS. 5(a) and 5(b) are curved at two places and have a shape resembling an oval, and are suitable for being formed relatively short. However, these main intake passages 30 and 31 are also
Communication can be switched in the same way as shown in Figures (a) and (b).

〔実施例2〕 続いて、本発明の他の実施例を第2図ないし第9図に基
づいて説明する。なお、前記第1実施例と同様の機能を
有する部材には、同一の符号を付記してその説明を省略
する。
[Embodiment 2] Next, another embodiment of the present invention will be described based on FIGS. 2 to 9. It should be noted that members having the same functions as those in the first embodiment are denoted by the same reference numerals, and their explanations will be omitted.

第9図に示すように、本実施例における吸気系は、エン
ジンの各気筒3〜8に設けられた吸気ポート9〜14と
、主吸気通路30・31との間に独立吸気通路21〜2
6が設けられているのは、前記第1実施例と同様である
が、主吸気通路30・31の下流側が連通していない点
で異なっている。この場合も、低回転領域でオーバラッ
プ期間に吸気ポート9〜14に正圧を作用させるために
、主吸気通路30・31は、要求される長さに応して第
2図ないし第5図に示すような形状に形成される。そし
て、主吸気通路30・31間に設けられた連通路38〜
41の開閉は、図示はしないが、第1図に示した吸気系
と同様に制御されるようになっている。
As shown in FIG. 9, the intake system in this embodiment has independent intake passages 21 to 2 between intake ports 9 to 14 provided in each cylinder 3 to 8 of the engine and main intake passages 30 and 31.
6 is provided in the same manner as in the first embodiment, but is different in that the downstream sides of the main intake passages 30 and 31 are not communicated with each other. In this case as well, in order to apply positive pressure to the intake ports 9 to 14 during the overlap period in the low rotation region, the main intake passages 30 and 31 are arranged as shown in FIGS. 2 to 5 depending on the required length. It is formed into the shape shown in . And the communication passage 38~ provided between the main intake passages 30 and 31.
Although not shown, the opening and closing of 41 is controlled in the same manner as the intake system shown in FIG.

また、本発明では、吸気系の固有振動数を要求に応じて
可変することができればよいので、図中二点鎖線で示す
ように、上記と同様な形状をなす主吸気通路30・31
を集合通路27・28の下流側に設けたものであっても
よい。あるいは、主吸気通路30・31における連通路
38〜41を、上流側および下流側に分散させて設けて
もよい。この場合、集合通路27・28の下流側に設け
られた主吸気通路30・31は、端部が互いに接続され
るか、あるいは閉止されており、それぞれに開閉弁32
・33が設けられている。なお、集合通路27・28の
下流側に設けられた主吸気通路30・31間には、開閉
弁32・33から下流側へ連通路38〜41が設けられ
ているが、簡単のため図中では省略した。
In addition, in the present invention, since it is only necessary to be able to vary the natural frequency of the intake system according to the demand, as shown by the two-dot chain line in the figure, main intake passages 30 and 31 having the same shape as above are shown.
may be provided on the downstream side of the collection passages 27 and 28. Alternatively, the communication passages 38 to 41 in the main intake passages 30 and 31 may be distributed and provided on the upstream side and the downstream side. In this case, the main intake passages 30 and 31 provided on the downstream side of the collective passages 27 and 28 are either connected to each other at their ends or are closed, and each has an on-off valve 32.
・33 is provided. Note that between the main intake passages 30 and 31 provided on the downstream side of the collective passages 27 and 28, communication passages 38 to 41 are provided downstream from the on-off valves 32 and 33, but they are not shown in the figure for simplicity. I omitted it.

このような構成において、第6図に示すように、低回転
時では、吸気弁の開閉タイミングが早められて、オーバ
ラップ期間が長くなっても、第7図に示すように、オー
バラップ期間中の吸気ポート9〜11に正圧が作用し、
同様に吸気ポート12〜14にも正圧が作用する。それ
ゆえ、前記第1実施例と同様、掃気効果を向上させるこ
とができ、低回転域でのノッキングの発生を抑制すると
ともに、充填効率の向上を図ることができる。また、開
閉弁32・33・42〜45の開閉のタイミングが第8
図に示すように設定されているので、通路29および連
通路38〜41の開閉時に、大きなトルクの落ち込みや
騒音の変動を抑制することができる。
In such a configuration, as shown in FIG. 6, even if the opening/closing timing of the intake valve is advanced at low rotation speeds and the overlap period becomes longer, as shown in FIG. Positive pressure acts on the intake ports 9 to 11 of
Similarly, positive pressure acts on the intake ports 12-14. Therefore, as in the first embodiment, the scavenging effect can be improved, the occurrence of knocking in the low rotation range can be suppressed, and the charging efficiency can be improved. In addition, the timing of opening and closing of the on-off valves 32, 33, 42 to 45 is 8th.
Since the settings are as shown in the figure, it is possible to suppress large drops in torque and fluctuations in noise when the passage 29 and the communication passages 38 to 41 are opened and closed.

〔発明の効果〕〔Effect of the invention〕

本発明に係るエンジンの吸気装置は、以上のように、燃
焼室へ新気を導入する吸気ポートと、燃焼室から燃焼ガ
スを導出する排気ポートとを備え、吸気順序の連続しな
い気筒に上記吸気ポートを介して接続された独立吸気通
路、独立供給通路同士を集合させる集合通路、および集
合通路に通じる延長通路により吸気系が形成されるとと
もに、エンジンの低回転時における吸気のタイミングを
エンジンの高回転時におけるそれより早くなるように制
御されているエンジンの吸気装置において、エンジンの
低回転時での吸気ポートと排気ポートとがともに開いて
いるオーバラップ期間に、吸気系の圧力振動により吸気
ポート近傍に正圧が作用するように、吸気系の固有振動
数が設定されている構成である。
As described above, the engine intake device according to the present invention includes an intake port that introduces fresh air into a combustion chamber and an exhaust port that leads out combustion gas from the combustion chamber, and the intake device is provided with an intake port that introduces fresh air into a combustion chamber, and an exhaust port that leads out combustion gas from the combustion chamber. An intake system is formed by independent intake passages connected via ports, a collective passage that brings together the independent supply passages, and an extension passage leading to the collective passage. In an engine intake system that is controlled to speed up faster than when the engine is rotating, during the overlap period when the intake port and exhaust port are both open when the engine is running at low speed, the intake port is closed due to pressure vibrations in the intake system. The natural frequency of the intake system is set so that positive pressure acts nearby.

これにより、吸気系の固有振動数が、オーバラップ期間
において、吸気系の圧力振動により吸気ポート近傍に正
圧が作用するように設定されているので、オーバラップ
期間が長いエンジンの低回転時には、燃焼室内から前回
の燃焼により生じた残留ガスが速やかに掃気されること
により、掃気効果をより向上させることができる。従っ
て、充填量を増大させることができ、低回転域での高出
力化を図ることができるとともに、燃焼室に導入された
新気が高温化することなく、低速時におけるノッキング
の発生を抑制することができるという効果を奏する。
As a result, the natural frequency of the intake system is set so that positive pressure acts near the intake port due to pressure vibrations in the intake system during the overlap period, so when the engine is running at low speed during the long overlap period, By quickly scavenging residual gas generated from the previous combustion from within the combustion chamber, the scavenging effect can be further improved. Therefore, it is possible to increase the charging amount and achieve high output in the low rotation range, and the fresh air introduced into the combustion chamber does not become hot, suppressing the occurrence of knocking at low speeds. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すものであって、吸気装
置の構成を示す概略図である。 第9図は本発明の他の実施例を示すものであって、吸気
装置の構成を示す概略図である。 第2図ないし第8図は上記の両実施例に共通するもので
ある。 第2図ないし第5図の(a)は主吸気通路の形状を示す
第1図および第9図のA方向矢視図である。 第2図ないし第5図の(b)は主吸気通路の形状を示す
第1図および第9図のB方向矢視断面図である。 第6図は吸気弁および排気弁の開度とクランク角との関
係を示すグラフである。 第7図は正圧波がオーバラップ期間に作用している様子
を示す説明図である。 第8図はエンジン回転速度とトルクとの関係を示すグラ
フである。 3〜8は気筒、9〜14は吸気ポート、15〜20は排
気ポート、21〜26は独立吸気通路、27・28は集
合通路、29は通路、30・31は主吸気通路(延長通
路)、32・33・42〜45は開閉弁、 38〜4 1は連通路である。
FIG. 1 shows one embodiment of the present invention, and is a schematic diagram showing the configuration of an intake device. FIG. 9 shows another embodiment of the present invention, and is a schematic diagram showing the configuration of an intake device. 2 to 8 are common to both of the above embodiments. (a) of FIGS. 2 to 5 are views taken in the direction of arrow A in FIGS. 1 and 9, showing the shape of the main intake passage. (b) of FIGS. 2 to 5 are sectional views taken in the direction of arrow B in FIGS. 1 and 9, showing the shape of the main intake passage. FIG. 6 is a graph showing the relationship between the opening degrees of the intake valve and exhaust valve and the crank angle. FIG. 7 is an explanatory diagram showing how positive pressure waves act during the overlap period. FIG. 8 is a graph showing the relationship between engine speed and torque. 3 to 8 are cylinders, 9 to 14 are intake ports, 15 to 20 are exhaust ports, 21 to 26 are independent intake passages, 27 and 28 are collective passages, 29 is passage, 30 and 31 are main intake passages (extension passages) , 32, 33, 42 to 45 are on-off valves, and 38 to 4 1 are communication passages.

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼室へ新気を導入する吸気ポートと、燃焼室から
燃焼ガスを導出する排気ポートとを備え、吸気順序の連
続しない気筒に上記吸気ポートを介して接続された独立
吸気通路、独立供給通路同士を集合させる集合通路、お
よび集合通路に通じる延長通路により吸気系が形成され
るとともに、エンジンの低回転時における吸気のタイミ
ングをエンジンの高回転時におけるそれより早くなるよ
うに制御されているエンジンの吸気装置において、エン
ジンの低回転時での吸気ポートと排気ポートとがともに
開いているオーバラップ期間に、吸気系の圧力振動によ
り吸気ポート近傍に正圧が作用するように、吸気系の固
有振動数が設定されていることを特徴とするエンジンの
吸気装置。
1. An independent intake passage that is equipped with an intake port that introduces fresh air into the combustion chamber and an exhaust port that brings out combustion gas from the combustion chamber, and that is connected to cylinders whose intake order is not consecutive through the intake port, and an independent supply. An intake system is formed by a collection passage that brings passages together and an extension passage that leads to the collection passage, and the timing of intake during low engine speeds is controlled to be earlier than when the engine is at high rotations. In an engine intake system, during the overlap period when the intake port and exhaust port are both open at low engine speeds, the intake system is designed so that positive pressure acts near the intake port due to pressure vibrations in the intake system. An engine intake device characterized by having a set natural frequency.
JP1197222A 1989-07-28 1989-07-28 Engine intake system Expired - Fee Related JP2835088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1197222A JP2835088B2 (en) 1989-07-28 1989-07-28 Engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197222A JP2835088B2 (en) 1989-07-28 1989-07-28 Engine intake system

Publications (2)

Publication Number Publication Date
JPH0361613A true JPH0361613A (en) 1991-03-18
JP2835088B2 JP2835088B2 (en) 1998-12-14

Family

ID=16370869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197222A Expired - Fee Related JP2835088B2 (en) 1989-07-28 1989-07-28 Engine intake system

Country Status (1)

Country Link
JP (1) JP2835088B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092698A1 (en) * 2000-05-27 2001-12-06 Mahle Filtersysteme Gmbh Internal combustion engine with a suction system
EP1178189A3 (en) * 2000-08-04 2002-11-27 Dr.Ing. h.c.F. Porsche Aktiengesellschaft Intake system
JP2007040275A (en) * 2005-08-05 2007-02-15 Toyota Motor Corp Supercharging control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092698A1 (en) * 2000-05-27 2001-12-06 Mahle Filtersysteme Gmbh Internal combustion engine with a suction system
EP1178189A3 (en) * 2000-08-04 2002-11-27 Dr.Ing. h.c.F. Porsche Aktiengesellschaft Intake system
US6557511B2 (en) 2000-08-04 2003-05-06 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Suction system
JP2007040275A (en) * 2005-08-05 2007-02-15 Toyota Motor Corp Supercharging control device for internal combustion engine
JP4630755B2 (en) * 2005-08-05 2011-02-09 トヨタ自動車株式会社 Supercharging control device for internal combustion engine

Also Published As

Publication number Publication date
JP2835088B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US8919303B2 (en) Multi-cylinder spark ignition engine
JPH06108857A (en) Intake device of engine with mechanism supercharger
JPS63111227A (en) Suction device for engine
JPH06108858A (en) Intake device of engine
JPH0230919A (en) Air intake device for engine
JPH0323316A (en) Suction control device for engine with exhaust turbo type supercharger
JPH0361613A (en) Intake device for engine
JPH071009B2 (en) Engine intake control device
JPS61164036A (en) Intake control device of engine
JP5673214B2 (en) Intake and exhaust system for multi-cylinder engine
JP2011214438A (en) Exhaust device of multicylinder engine
JP2783420B2 (en) Engine intake system
JP3536519B2 (en) Intake valve control device and control method for internal combustion engine
JPS6326261B2 (en)
JP2000248948A (en) Exhaust control method of engine and device thereof
JP3249163B2 (en) Intake device for turbocharged engine
JPH0331534A (en) Intake/exhaust timing controller for engine
JPH01316A (en) engine intake system
JPH0823294B2 (en) Engine intake system
JP3427396B2 (en) Intake device for engine with mechanical supercharger
JP2007056831A (en) Intake control device of internal combustion engine
JPH0663456B2 (en) Engine intake system
JPS6325314A (en) Intake device for engine
JPH0361612A (en) Exhaust rotary valve of two-cycle engine
JPS60156930A (en) Suction device for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees