JPH0354318A - Intake device of multiple cylinder engine - Google Patents

Intake device of multiple cylinder engine

Info

Publication number
JPH0354318A
JPH0354318A JP1189529A JP18952989A JPH0354318A JP H0354318 A JPH0354318 A JP H0354318A JP 1189529 A JP1189529 A JP 1189529A JP 18952989 A JP18952989 A JP 18952989A JP H0354318 A JPH0354318 A JP H0354318A
Authority
JP
Japan
Prior art keywords
intake
cylinders
cylinder
passage
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1189529A
Other languages
Japanese (ja)
Inventor
Mitsuo Hitomi
光夫 人見
Kenji Kashiyama
謙二 樫山
Takeshi Umehara
健 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1189529A priority Critical patent/JPH0354318A/en
Publication of JPH0354318A publication Critical patent/JPH0354318A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0242Fluid communication passages between intake ducts, runners or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To eliminate the resonance effect except an intake resonance synchro- rotation range by mutually communicating independent intake passages with communication passages, and mutually connecting the respective communication passages corresponding to respective cylinders via an opening and closing valve. CONSTITUTION:In a V type six-cylinder engine 1, cylinders 3a, 3b are constituted at cylinders 2a, 2c, 2e, and 2b, 2d, 2f which are not close to each other in ignition order. Respective independent intake passages 5a, 5b which are communicated with the cylinders 2a, 2c, 2e and 2b, 2d, 2f of the cylinders 3a, 3b are communicated mutually by communication passages 14a, 14b. The communication passages 14a, 14b which correspond to respective cylinders 3a, 3b are connected by means of a connection passage 15 which opens and closes by an opening and closing valve V2. Consequently, a connection passage length L2 is shorter than the shortest length between the cylinder, and torque decrease by intake resonance effect except a resonance synchro-rotation range of an engine 1 is effectively eliminated. Intake air is thereby supercharged by only inertia effect so as to obtain torque improvement effect surely.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多気筒エンジンの吸気装置に関し、特に、吸
気を慣性効果及び共鳴効果により過給するようにしたも
のに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an intake system for a multi-cylinder engine, and particularly to one that supercharges intake air using an inertial effect and a resonance effect.

(従来の技術) 従来より、エンジンの気筒に供給される吸気を慣性効果
及び共鳴効果を利用して過給することにより、吸気の充
填効率を高め、エンジンの出力トルクを向上させるよう
にした技術は知られている。
(Conventional technology) Conventionally, technology has been used to increase the filling efficiency of the intake air and improve the output torque of the engine by supercharging the intake air supplied to the cylinders of the engine using inertia effects and resonance effects. is known.

吸気を慣性効果により過給する場合、エンジンの所定の
回転域(同調回転域)において、各気筒の吸気行程初期
で吸気弁の開弁に伴って吸気ボートに吸気の負圧波が発
生したとき、この吸気負圧波を吸気ボートに接続された
独立吸気通路内で上流側に向かって音速で伝播させ、こ
の負圧波を所定の容積部で正圧波に反転させる。さらに
、この正圧波を同一の経路で下流側に音速で伝播させて
吸気弁が閉弁する直前の吸気行程終期に同じ気筒の吸気
ボートに到達させ、この正圧波により吸気を燃焼室に押
し込んでその充填効率を高めるようにするものである。
When supercharging intake air by inertial effect, when a negative pressure wave of intake air is generated in the intake boat as the intake valve opens at the beginning of the intake stroke of each cylinder in a predetermined engine rotation range (synchronous rotation range), This intake negative pressure wave is propagated at the speed of sound toward the upstream side within an independent intake passage connected to the intake boat, and this negative pressure wave is reversed to a positive pressure wave in a predetermined volume. Furthermore, this positive pressure wave is propagated downstream along the same path at the speed of sound, reaching the intake boat of the same cylinder at the end of the intake stroke just before the intake valve closes, and this positive pressure wave pushes the intake air into the combustion chamber. The purpose is to increase the filling efficiency.

一方、吸気を共鳴効果により過給する場合、エンジンの
複数の気筒を点火時期の連続しない気筒(点火順序の隣
り合わない気筒)毎に分けて複数の気筒群にグループ化
し、この各気筒群の複数の気筒の独立吸気通路を上流端
で1つの集合吸気通路(共鳴吸気通路)に集合させ、こ
の集合吸気通路の所定位置に圧力反転部を設ける。そし
て、エンジンの同調回転域で気筒群の各気筒の吸気ボー
トに発生する吸気の基本圧力波と圧力反転部で反転した
反射圧力波との位相を一致させることで、圧力反転部と
各気筒との間を往復伝播する吸気の圧力波を集合吸気通
路内で共鳴させる。この共鳴によって各気筒毎に個々に
発生する圧力振動により大きな振幅をもった共鳴圧力波
を発生させ、この共鳴圧力波によって吸気を気筒の燃焼
室に押し込んで充填効率を高めるようにするものである
On the other hand, when intake air is supercharged by resonance effect, multiple cylinders of the engine are divided into cylinders with discontinuous ignition timing (cylinders with non-adjacent ignition order) and grouped into multiple cylinder groups, and each cylinder group is The independent intake passages of a plurality of cylinders are assembled into one collective intake passage (resonant intake passage) at the upstream end, and a pressure inversion section is provided at a predetermined position of this collective intake passage. By matching the phase of the basic pressure wave of intake air generated in the intake boat of each cylinder of the cylinder group in the synchronized rotation range of the engine and the reflected pressure wave reversed at the pressure inversion section, the pressure inversion section and each cylinder are The pressure waves of the intake air that propagate back and forth between the joints resonate within the collective intake passage. This resonance generates a resonance pressure wave with a large amplitude due to pressure vibrations that occur individually in each cylinder, and this resonance pressure wave pushes intake air into the combustion chamber of the cylinder to increase charging efficiency. .

ところで、上記の共鳴効果による過給を行う場合、エン
ジンの回転数が吸気通路長及び吸気通路の断面積で決定
される同調回転数になると、共鳴状態となってトルク向
上効果を得ることができるが、反面、エンジン回転数が
同調回転数を越えて上昇すると、通路長による圧力波の
伝播遅れに起因して、トルクが急激に低下するという特
性を有する。
By the way, when supercharging is performed using the above-mentioned resonance effect, when the engine rotation speed reaches the tuned rotation speed determined by the intake passage length and the cross-sectional area of the intake passage, a resonance state occurs and a torque improvement effect can be obtained. However, on the other hand, when the engine speed increases beyond the tuning speed, the torque suddenly decreases due to the pressure wave propagation delay due to the passage length.

このような共鳴効果による同調回転数以外の回転域での
トルクの落込みを解消するエンジンの吸気装置として、
従来、特開昭62−101820号公報において、複数
の気筒が点火時期の連続しない第1及び第2の2つの気
筒群に分けられた多気筒エンジンに対し、各気筒に連通
ずる独立吸気通路を、通路長が比較的長くかつ通路断面
積が比較的小さい主独立吸気通路と、通路長が比較的短
くかつ通路断面積が比較的大きく、切換弁によって開閉
されるバイパス独立吸気通路とに分け、第1気筒群の気
筒の主独立吸気通路上流端及び第2気筒群の気筒のバイ
パス独立吸気通路上流端を第1分配チャンバに、第2気
筒群の気筒の主独立吸気通路上流端及び第1気筒群の気
筒のバイパス独立吸気通路上流端を第2分配チャンバに
それぞれ接続し、両分配チャンバを開閉弁によって開閉
される連通路で連通ずるとともに、両分配チャンバの上
流端を集合チャンバに連通したものが知られている。
As an engine intake system that eliminates the drop in torque in rotation ranges other than the synchronized rotation speed due to such resonance effects,
Conventionally, in JP-A-62-101820, an independent intake passage communicating with each cylinder is provided for a multi-cylinder engine in which a plurality of cylinders are divided into two groups of first and second cylinders with non-consecutive ignition timings. The main independent intake passage has a relatively long passage length and a relatively small passage cross-sectional area, and the bypass independent intake passage has a relatively short passage length and a relatively large passage cross-sectional area and is opened and closed by a switching valve, The upstream ends of the main independent intake passages of the cylinders in the first cylinder group and the upstream ends of the bypass independent intake passages of the cylinders in the second cylinder group are used as the first distribution chamber, and the upstream ends of the main independent intake passages of the cylinders in the second cylinder group and the The upstream ends of the bypass independent intake passages of the cylinders in the cylinder group were respectively connected to the second distribution chamber, and both distribution chambers were communicated through a communication passage opened and closed by an on-off valve, and the upstream ends of both distribution chambers were communicated with the collecting chamber. something is known.

そして、このものでは、エンジンの低速域で各気筒群の
気筒と集合チャンバとの間で吸気の圧力波を共鳴させて
、吸気の共鳴効果を得ることができ、エンジンの中速域
では開閉弁を開いて分配チャンバ同士を連通路により連
通させることで、両気筒群の気筒で発生した吸気の圧力
波を分配チャンバで打ち消し合って共鳴効果を抑制する
とともに、主独立吸気通路により慣性効果を得るように
し、さらに高回転域では、切換弁を開いてバイパス独立
吸気通路により慣性効果を得るようになされている。
In this system, the pressure waves of the intake air resonate between the cylinders of each cylinder group and the gathering chamber in the low speed range of the engine, and an intake resonance effect can be obtained, and in the middle speed range of the engine, the open/close valve By opening the distribution chambers to communicate with each other through a communication passage, the pressure waves of intake air generated in the cylinders of both cylinder groups cancel each other out in the distribution chambers, suppressing the resonance effect, and the main independent intake passage provides an inertial effect. Furthermore, in the high rotation range, the switching valve is opened to obtain an inertia effect through the bypass independent intake passage.

(発明が解決しようとする課題) しかし、この従来のものでは、第1気筒群の気筒の主独
立吸気通路上流端及び第2気筒群の気筒のバイパス独立
吸気通路上流端を第1分配チャンバに、第2気筒群の気
筒の主独立吸気通路上流端及び第1気筒群の気筒のバイ
パス独立吸気通路上流端を第2分配チャンバにそれぞれ
接続している構造上、両チャンバ間の連通路が長くなる
。このため、連通路を開いたエンジンの高回転域で、連
通路と各気筒との間で,つまり連通路を圧力反転部とす
る意図しない共鳴効果が生じ、共鳴効果を有効に消すこ
とは困難となる虞れがある。
(Problem to be Solved by the Invention) However, in this conventional system, the upstream ends of the main independent intake passages of the cylinders of the first cylinder group and the upstream ends of the bypass independent intake passages of the cylinders of the second cylinder group are connected to the first distribution chamber. , the upstream ends of the main independent intake passages of the cylinders in the second cylinder group and the upstream ends of the bypass independent intake passages of the cylinders in the first cylinder group are connected to the second distribution chamber, so the communication path between both chambers is long. Become. For this reason, in the high speed range of an engine with the communication passage open, an unintended resonance effect occurs between the communication passage and each cylinder, that is, the communication passage becomes a pressure reversal part, and it is difficult to effectively eliminate the resonance effect. There is a possibility that this will happen.

本発明は斯かる諸点に鑑みてなされたもので、その目的
とするところは、上記の吸気通路の構造を変えることに
より、吸気の共鳴同調回転域を外れたエンジン回転域で
の共鳴効果を有効に解消して、吸気を慣性効果のみによ
り過給できるようにし、よってエンジンのトルクを確実
に向上させることにある。
The present invention has been made in view of the above points, and its purpose is to make the resonance effect effective in the engine rotation range outside the resonance synchronized rotation range of the intake air by changing the structure of the above-mentioned intake passage. The purpose is to solve this problem by making it possible to supercharge the intake air only by the inertial effect, thereby reliably improving the engine torque.

(課題を解決するための手段) 上記の目的を達成するために、請求項(1)に係る発明
では、点火順序の隣り合わない気筒で気筒群を構戊し、
その気筒群の気筒l;連通する独立吸気通路同士を連通
路によって連通ずるともに、両気筒群に対応する連通路
同士を開閉弁を介して接続するようにする。
(Means for Solving the Problem) In order to achieve the above object, in the invention according to claim (1), a cylinder group is constituted by cylinders whose ignition order is not adjacent to each other,
Cylinder l of the cylinder group: The communicating independent intake passages are communicated with each other by a communication passage, and the communication passages corresponding to both cylinder groups are connected with each other via an on-off valve.

具体的には、この発明では、複数の気筒が点火順序の隣
り合わない気筒同士で複数の気筒群に分けられ、この各
気筒群の気筒がそれぞれ独立吸気通路を介して気筒群毎
のポリ、ユーム室に接続された多気筒エンジンの吸気装
置が前提である。
Specifically, in this invention, a plurality of cylinders are divided into a plurality of cylinder groups, which are cylinders whose ignition order is not adjacent to each other, and the cylinders in each cylinder group are connected to each other through independent intake passages. The premise is that the intake system of a multi-cylinder engine is connected to the Yum chamber.

そして、上記各気筒群の気筒に対応する独立吸気通路同
士を互いに連通ずる気筒群毎の連通路と、該連通路同士
を接続する接続通路と、該接続通路を開閉する開閉弁と
を設ける。
A communication passage for each cylinder group that communicates the independent intake passages corresponding to the cylinders of each cylinder group, a connection passage that connects the communication passages, and an on-off valve that opens and closes the connection passage are provided.

さらに、上記接続通路の長さを各気筒群の気筒間の最短
距離(隣接する気筒間の距離)よりも短くする。
Furthermore, the length of the connection passage is made shorter than the shortest distance between cylinders in each cylinder group (distance between adjacent cylinders).

(作用) 上記の構成により、請求項(1)に係る発明では、エン
ジンの所定の運転域で、開閉弁が閉じて連通路同士の連
通が遮断される。この状態では、各気筒群の気筒と連通
路の接続通路への接続部との間で吸気圧力波が共鳴する
共鳴効果が生じるとともに、各気筒群における各気筒の
独立吸気通路で慣性効果が生じ、この共鳴効果ないし慣
性効果により吸気が過給される。
(Function) With the above configuration, in the invention according to claim (1), the on-off valve closes and communication between the communication passages is cut off in a predetermined operating range of the engine. In this state, a resonance effect occurs in which the intake pressure waves resonate between the cylinders in each cylinder group and the connection part of the communication passage to the connection passage, and an inertia effect occurs in the independent intake passage of each cylinder in each cylinder group. , the intake air is supercharged by this resonance effect or inertia effect.

一方、エンジンが上記運転域から変わると、開閉弁が開
いて連通路同士が接続通路により連通される。このとき
、上記と同様の慣性効果が得られるが、連通路同士の接
続通路による連通により両連通路ないし接続通路からな
る大きな容積部が形成されるので、この容積部により上
記慣性効果が強められる。同時に、連通路の連通により
上記吸気の共鳴効果が消失し、共鳴効果によるトルク低
下がなくなる。このため、この共鳴効果の消失の分だけ
トルク低下が抑制され、よって慣性効果によるトルク向
上効果を得ることができる。
On the other hand, when the engine changes from the above operating range, the on-off valve opens and the communication passages are communicated with each other through the connection passage. At this time, the same inertial effect as above is obtained, but the communication between the communicating passages through the connecting passage forms a large volume section consisting of both communicating passages or the connecting passage, and this volume section strengthens the above-mentioned inertial effect. . At the same time, the resonance effect of the intake air disappears due to the communication of the communication passage, and the reduction in torque due to the resonance effect disappears. Therefore, the torque decrease is suppressed by the amount of the disappearance of this resonance effect, and therefore, it is possible to obtain the torque improvement effect due to the inertia effect.

そして、この場合、上記接続通路の長さは各気筒群の気
筒間の最短距離よりも短いため、接続通路を吸気集合部
として吸気の圧力波が共鳴するつまり目的以外のエンジ
ン回転数で共鳴効果が生じることはなく、よって上記共
鳴効果は有効に消失して慣性効果によるトルク向上効果
が確実に得られることとなる。
In this case, since the length of the connecting passage is shorter than the shortest distance between the cylinders of each cylinder group, the pressure waves of the intake air resonate with the connecting passage as an intake gathering point, which means that a resonance effect occurs at an engine speed other than the intended one. Therefore, the above-mentioned resonance effect is effectively eliminated, and the torque improvement effect due to the inertial effect is reliably obtained.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例の全体構成を示し、1は第1〜
第6の6つの気筒2a〜2fを有するV型6気筒エンジ
ンであって、このエンジン1は対向する第1及び第2の
1文・jのバンクla  lbを有し、第1バンク1a
には第1気筒2a,第3気筒2C及び第5気筒2eの3
つの気筒が、また第2バンク1bには第2気筒2b,第
4気筒2d及び第6気筒2fの3つの気筒がそれぞれ等
間隔L2をあけて直列に形成されている。そして、第1
〜第6気筒2a〜2fは気筒番号順に点火されるように
設定されており、第1バンク1aの3つの気筒2a,2
c,2eにより点火順序の隣り合わない第1気筒群3a
が、また同様に第2バンク1bの3つの気筒2b.2d
,2fにより点火順序の隣り合わない第2気筒群3bが
それぞれ構戊されている。
FIG. 1 shows the overall configuration of an embodiment of the present invention, and 1 indicates the first to
A V-type six-cylinder engine having six six cylinders 2a to 2f, the engine 1 has opposing first and second banks la lb, and a first bank 1a to 2f.
There are three cylinders: the first cylinder 2a, the third cylinder 2C, and the fifth cylinder 2e.
In addition, in the second bank 1b, three cylinders, a second cylinder 2b, a fourth cylinder 2d, and a sixth cylinder 2f, are formed in series at equal intervals L2. And the first
~The sixth cylinders 2a to 2f are set to be ignited in order of cylinder number, and the three cylinders 2a and 2 of the first bank 1a
c, 2e, the first cylinder group 3a whose ignition order is not adjacent
However, similarly, the three cylinders 2b. of the second bank 1b. 2d
, 2f, the second cylinder groups 3b whose ignition order is not adjacent are respectively configured.

4は上記各気筒2a〜2fに吸気を供給する吸気通路で
、この吸気通路4は、下流端が第1気筒群3aの3つの
気筒2a,2c,2eにそれぞれ接続された3つの第1
独立吸気通路5a,5a,・・と、下流端が第2気筒群
3bの3つの気筒2b,2d,2fにそれぞれ接続され
た3つの第2独立吸気通路5b,5b,・・・と、上記
第1独立吸気通路5a.,5a,・・・の上流端に接続
された第1ボリューム室6aと、第2独立吸気通路5b
,5b,・・・の上流端に接続された第2ボリューム室
6bとを偏えている。これらはエンジン1の両バンク1
a,lb間に配置され、第1及び第2独立吸気通路5a
,5bはバンクla,lbと直交する方向に延びかつ互
いに交差している。また、第1及び第2ボリューム室6
a,6bは吸気通路4(吸気管)の一部を他の部分より
も大きな断面積としたもので、両バンクla,lb間で
互いに対向した状態でバンクla,lbと平行に配置さ
れ、その上流端にはそれぞれ具鳴吸気通路7a,7bが
接続されている。この両共鳴吸気通路7a,7bの上流
端は互いに集合されて共通吸気通路8の下流端に接続さ
れ、共通吸気通路8の上流端はエアクリーナ9に接続さ
れている。上記共通吸気通路8の途中には吸入空気量を
検出するエアフローメータ10が、各共鳴吸気通路7a
,7bの下流端には互いに同期して共鳴吸気通路7a,
7b (吸気通路4)を開閉するスロットル弁11.1
1がそれぞれ配設されている。
Reference numeral 4 denotes an intake passage that supplies intake air to each of the cylinders 2a to 2f.
independent intake passages 5a, 5a, . . . , three second independent intake passages 5b, 5b, . First independent intake passage 5a. , 5a, . . . and a second independent intake passage 5b.
, 5b, . These are both banks 1 of engine 1.
The first and second independent intake passages 5a are arranged between the first and second independent intake passages 5a and lb.
, 5b extend in a direction perpendicular to the banks la, lb and intersect with each other. In addition, the first and second volume chambers 6
a and 6b have a part of the intake passage 4 (intake pipe) with a larger cross-sectional area than the other part, and are arranged parallel to the banks la and lb in a state where they face each other between the two banks la and lb, Each of the upstream ends thereof is connected to a chirping intake passage 7a, 7b. The upstream ends of both resonance intake passages 7a and 7b are brought together and connected to the downstream end of a common intake passage 8, and the upstream end of the common intake passage 8 is connected to an air cleaner 9. An air flow meter 10 for detecting the amount of intake air is installed in the middle of the common intake passage 8 for each resonant intake passage 7a.
, 7b are synchronized with each other at the downstream ends of the resonant intake passages 7a, 7b.
7b Throttle valve 11.1 that opens and closes (intake passage 4)
1 are arranged respectively.

上記両共鳴吸気通路7a,7bの途中部分は第1連通路
12により互いに連通され、この連通路12には連通路
12を開閉する開閉弁からなる常時閉の第1共鳴可変バ
ルブv1が配設されている。
The intermediate portions of both the resonance intake passages 7a and 7b are communicated with each other by a first communication passage 12, and a normally closed first resonance variable valve v1, which is an on-off valve that opens and closes the communication passage 12, is disposed in the communication passage 12. has been done.

また、上記両ボリューム室6a,6bの下流端同士は第
2連通路13により互いに連通され、この連通路13に
は連通路13を開閉する1対の開閉弁からなる常時閉の
第2共鳴可変バルブV2,V2が配設されている。
Further, the downstream ends of both volume chambers 6a and 6b are communicated with each other by a second communication passage 13, and this communication passage 13 has a normally closed second resonance variable valve that is comprised of a pair of on-off valves that open and close the communication passage 13. Valves V2 and V2 are provided.

また、上記第1気筒群3aの気筒2a,2c,2eに連
通ずる3つの第1独立吸気通路5a,5a,・・・同士
はその第1ボリューム室6a近傍の上流端部分でバンク
la,lbの長手方向に延びる第1独立吸気通路連通路
14aにより互いに連通されている。一方、同様に、第
2気筒群3bの気筒2b,2d,2fに連通ずる3つの
第2独立吸気通路5b,5b,・・・同士は第2ボリュ
ーム室6b近傍の上流端部分でバンク長手方向に延びる
第2独立吸気通路連通路14bにより互いに連通されて
いる。そして、上記第1独立吸気通路連通路14aと各
独立吸気通路5aとの連通部分、及び第2独立吸気通路
連通路14bと各独立吸気通路5bとの連通部分には互
いに同期して開閉する開閉弁からなる常時閉の慣性可変
バルブV,,v,が配設されており、このバルブV1を
開いたときに3つの第1独立吸気通路5a,5a,・・
・同士及び第2独立吸気通路5b,5b,・・・同士が
それぞれ互いに連通ずるようになっている。
Furthermore, the three first independent intake passages 5a, 5a, . are communicated with each other by a first independent intake passage communication passage 14a extending in the longitudinal direction. On the other hand, similarly, the three second independent intake passages 5b, 5b, . They are communicated with each other by a second independent intake passage communication passage 14b that extends into the second independent intake passage. The communication portion between the first independent intake passage communication passage 14a and each independent intake passage 5a, and the communication portion between the second independent intake passage communication passage 14b and each independent intake passage 5b are opened and closed in synchronization with each other. A normally closed inertia variable valve V,,v, consisting of a valve is disposed, and when this valve V1 is opened, three first independent intake passages 5a, 5a, . . .
- The second independent intake passages 5b, 5b, . . . communicate with each other.

さらに、上記2つの独立吸気通路連通路14a,14b
はその中間部で接続通路15により接続され、この接続
通路15の通路長L1は各気筒群3a(又は3b)にお
ける気筒2a,2c,2e(又は2b,2d,2f)間
の最短距離L2  (隣接する気筒間距#)よりも短い
長さとされている。
Furthermore, the two independent intake passage communication passages 14a, 14b
are connected by a connecting passage 15 in the middle thereof, and the passage length L1 of this connecting passage 15 is the shortest distance L2 ( The length is shorter than the distance between adjacent cylinders (#).

また、上記接続通路15には接続通路15を開閉する開
閉弁からなる共鳴効果解消バルブV2が配設されている
。そして、上記第1共鳴可変バルブVl、第2共鳴可変
バルブv2、慣性可変バルブV1及び共鳴効果解消ハル
ブV2は、第2図に示す如くエンジン1の低回転域から
高回転域に向かって順に開弁されるようになされている
Further, the connection passage 15 is provided with a resonance effect canceling valve V2 consisting of an on-off valve that opens and closes the connection passage 15. The first variable resonance valve Vl, the second variable resonance valve v2, the variable inertia valve V1, and the resonance effect canceling valve V2 are opened in order from the low speed range to the high speed range of the engine 1, as shown in FIG. It is made to be praised.

次に、上記実施例の作用について説明するに、エンジン
1の回転数が上昇するのに伴って第1共鳴可変バルブv
1、第2共鳴可変バルブV,?、慣性可変バルブv1及
び共鳴効果解消バルブV2が順に開弁される。すなわち
、第2図に示すように、エンジン1の回転数が低い低回
転域では、全てのバルブv1,■2,V1,V2か閉じ
る。この状態では、エンジン1の所定回転数(同調回転
数)で各気筒群3a(又は3b)の気筒2a,2c,2
e(又は2b,2d,2f)の吸気ポートで発生する吸
気の基本圧力波が共鳴吸気通路7a(又は7b)の上流
端集合部(共通吸気通路8との接続部)で反射した反射
圧力波の位相と一致して吸気の圧力波が共鳴し、この共
鳴によって各気筒2a,2c,2e (又は2b,2d
,2f)毎に個々に発生する圧力振動により大きな振幅
をもった共鳴圧力波が発生し、この共鳴圧力波により吸
気が気筒2a,2C,2e (又は2b,2d,2f)
内の燃焼室に押し込まれてその充填効率が増大する。こ
のことにより、図で実線にて示す如くエンジン1の出力
トルクが増大する。また、この回転域では、独立吸気通
路5a,5bによる吸気の慣性効果は生じない。
Next, to explain the operation of the above embodiment, as the rotational speed of the engine 1 increases, the first resonance variable valve v
1. Second resonance variable valve V,? , the variable inertia valve v1, and the resonance effect canceling valve V2 are opened in order. That is, as shown in FIG. 2, in a low rotation range where the rotation speed of the engine 1 is low, all valves v1, 2, V1, and V2 are closed. In this state, at a predetermined rotational speed (tuned rotational speed) of the engine 1, the cylinders 2a, 2c, and 2 of each cylinder group 3a (or 3b)
A reflected pressure wave in which the fundamental pressure wave of the intake air generated at the intake port e (or 2b, 2d, 2f) is reflected at the upstream end gathering part (connection part with the common intake passage 8) of the resonant intake passage 7a (or 7b) The intake pressure wave resonates in phase with the phase of each cylinder 2a, 2c, 2e (or 2b, 2d
, 2f), a resonant pressure wave with a large amplitude is generated by the pressure vibrations that occur individually for each cylinder 2a, 2C, 2e (or 2b, 2d, 2f).
The fuel is pushed into the combustion chamber within the combustion chamber, increasing its charging efficiency. As a result, the output torque of the engine 1 increases as shown by the solid line in the figure. Further, in this rotation range, the inertia effect of the intake air due to the independent intake passages 5a and 5b does not occur.

また、エンジン回転数が上昇すると、第1共鳴可変バル
ブv1のみが開弁して第1連通路12が開く。この連通
路12の開放に伴い、共鳴同調時における吸気の基本圧
力波の位相は共鳴吸気通路7a(又は7b)の上流端集
合部からそれよりも近い第1連通路12で反射した反射
圧力波の位相と一致するようになり、このことにより同
調回転数が上昇する。よって同様に吸気の充項効率が増
大し、第2図で点線にて示す如くエンジン1の出力トル
クを増大させることができる。
Further, when the engine speed increases, only the first resonance variable valve v1 opens, and the first communication passage 12 opens. With this opening of the communication passage 12, the phase of the fundamental pressure wave of intake air during resonance tuning is changed to the reflected pressure wave reflected from the upstream end gathering part of the resonance intake passage 7a (or 7b) at the first communication passage 12 which is closer to it. The phase of the motor becomes consistent with that of the motor, and as a result, the tuned rotational speed increases. Therefore, the charging efficiency of the intake air is similarly increased, and the output torque of the engine 1 can be increased as shown by the dotted line in FIG.

エンジン回転数がさらに上昇して中回転域になると、上
記第1共鳴可変バルブvlに加えて第2共鳴可変バルブ
V2,V2も開かれ、第2連通路13が開放される。こ
の状態では、吸気の基本圧力1伎の位相は第2連通路1
3で反1、ナシた反射圧力波の位相と一致するようにな
り、同調回転数がさらに上昇する。このことによって吸
気の充項効率が増大し、第2図で破線にて示す如くエン
ジン1の出力トルクを増大させることがてきる。
When the engine speed further increases to a medium speed range, the second variable resonance valves V2 and V2 are opened in addition to the first variable resonance valve vl, and the second communication passage 13 is opened. In this state, the phase of the basic intake pressure 1 is the second communication path 1.
At 3, the phase of the reflected pressure wave becomes equal to 1, and the phase of the reflected pressure wave is 0, and the tuned rotation speed further increases. This increases the charging efficiency of the intake air, making it possible to increase the output torque of the engine 1 as shown by the broken line in FIG.

さらに、エンジン回転数が上がると、6つの慣性可変バ
ルブV,,v,,・・・ち開弁じ、この慣性可変バルブ
V1の開弁により第1独立吸気通路5a,5a,・・・
同士が第1独立吸気通路連通路14aにより、また第2
独立吸気通路5b,5b,・・・同士が第2独立吸気通
路連通路1. 4 bによりそれぞれ連通される。この
エンジン回転域では、上記各気筒2a,2c.2e (
又は2b,2d,2f)と第2連通路]3との間の吸気
圧力波の共口『ヒによる共川効果の同調回転数から外れ
ているので、この共鳴効果によるエンジン1の出力トル
クが低下しようとするが、今度は各気筒2a,2c,2
e(又は2b,2d,2f)と連通路14a(又は14
b)との間で共鳴効果が生じると同時に、独立吸気通路
5a,5bで吸気の慣性効果が生じる。
Furthermore, when the engine speed increases, the six variable inertia valves V,, v,... open, and the opening of the variable inertia valve V1 causes the first independent intake passages 5a, 5a,...
are connected to each other by the first independent intake passage communication passage 14a, and the second
The independent intake passages 5b, 5b, . . . are connected to the second independent intake passage communication passage 1. 4b, respectively. In this engine rotation range, each of the cylinders 2a, 2c. 2e (
2b, 2d, 2f) and the second communication path]3, the output torque of the engine 1 due to this resonance effect is However, this time each cylinder 2a, 2c, 2
e (or 2b, 2d, 2f) and the communication path 14a (or 14
b) At the same time, an inertial effect of intake air occurs in the independent intake passages 5a and 5b.

つまり、各気筒2a〜2fの吸気行程初期で吸気ポート
に発生した吸気負圧波が独立吸気通路5a,5b内で上
流側に向かって音速で伝播し、この負圧波は連通路14
a,14bで正圧波に反転する。
That is, the intake negative pressure wave generated at the intake port at the beginning of the intake stroke of each cylinder 2a to 2f propagates at the speed of sound toward the upstream side within the independent intake passages 5a and 5b, and this negative pressure wave is transmitted to the communication passage 14.
It is reversed to a positive pressure wave at points a and 14b.

そして、この正圧波は同一の経路で下流側に音速で伝播
して吸気行程終期に同じ気筒2a〜2fの吸気ポートに
到達し、この正圧波により吸気が気筒2a〜2f内燃焼
室に押し込まれ、その充填効率が増大する。この慣性効
果による吸気の充填効率は大きく、このことにより第2
図で一点鎖線にて示す如くエンジン1の出力トルクを増
大させることができる。
Then, this positive pressure wave propagates downstream along the same path at the speed of sound and reaches the intake ports of the same cylinders 2a to 2f at the end of the intake stroke, and this positive pressure wave pushes the intake air into the combustion chambers in the cylinders 2a to 2f. , its filling efficiency increases. The filling efficiency of intake air due to this inertial effect is large, and this causes the second
As shown by the dashed line in the figure, the output torque of the engine 1 can be increased.

そして、エンジン1が高回転域に移ると、上記と同様の
慣性効果が得られるが、このとき、共鳴効果解消バルブ
V2が開弁じて第1及び第2独立吸気通路連通路14a
,14bの双方が連通し、この連通に伴い両連通路14
a,14bないし接続通路15により大きな容積部が形
成され、この容積部により上記した吸気の共鳴効果自体
が解消されるとともに、慣性効果が高められる。このた
め、吸気の慣性効果に対する共鳴効果の影響がなくなり
、慣性効果が十分に活かされ、よって第2図で二点鎖線
にて示すように慣性効果によるトルク向上効果を得るこ
とができる。
Then, when the engine 1 moves to a high speed range, the same inertial effect as described above is obtained, but at this time, the resonance effect canceling valve V2 opens and the first and second independent intake passage communication passages 14a
, 14b communicate with each other, and with this communication, both communication passages 14
A, 14b or the connecting passage 15 form a large volume, which eliminates the resonance effect of the intake air described above and enhances the inertial effect. Therefore, the influence of the resonance effect on the inertia effect of intake air is eliminated, and the inertia effect is fully utilized, so that the torque improvement effect due to the inertia effect can be obtained as shown by the two-dot chain line in FIG.

その際、上記接続通路15の長さL1は各気筒7ET3
a(又は3b)の気筒2a.2c,2e (又は2b,
2d,2f)間の最短距離L2よりも短いため、接続通
路15を吸気集合部として吸気の圧力波が共鳴する,つ
まり目的以外のエンジン回転数で共鳴効果が生じること
はなく、よって上記共鳴効果を有効に消失させることが
でき、慣性効果によるトルク向上効果を確実に得ること
ができる。
At that time, the length L1 of the connection passage 15 is set for each cylinder 7ET3.
a (or 3b) cylinder 2a. 2c, 2e (or 2b,
2d, 2f), the pressure waves of the intake air resonate with the connecting passage 15 as the intake air collection point.In other words, the resonance effect does not occur at engine speeds other than the intended one, and therefore the above-mentioned resonance effect does not occur. can be effectively eliminated, and the torque improvement effect due to the inertia effect can be reliably obtained.

尚、上記実施例において、ボリューム室6a,6bをサ
ージタンクにより形成してもよい。また、その際、ボリ
ューム室6a,6bを両バンクlalb間に対向配置す
る代りに、1つのサージタンク内を隔壁により2室に仕
切ることで、両ボリューム室を形成するようにしてもよ
い。
In the above embodiment, the volume chambers 6a and 6b may be formed by surge tanks. Further, in this case, instead of arranging the volume chambers 6a and 6b facing each other between both banks LALB, the inside of one surge tank may be partitioned into two chambers by a partition wall to form both volume chambers.

また、本発明は、V型6気筒エンジン]に適用した場合
であるが、本発明は8気筒、9気筒 12気筒等のV型
エンジンや、直列型エンジン等の他のタイプの多気筒エ
ンジ冫にも適用することがてきる。
Furthermore, although the present invention is applied to a V-type 6-cylinder engine, the present invention is applicable to V-type engines such as 8-cylinder, 9-cylinder, and 12-cylinder engines, and other types of multi-cylinder engines such as in-line engines. It can also be applied to

(発明の効果) 以上説明したように、訪求項(1)に係る発明によると
、複数の気筒が点火待期の連続しない気筒同士でグルー
プ化され、各気筒群の気筒が独立吸気通路を介してボリ
ューム室に連通された多気筒エンジンにおいて、各気筒
群の独立吸気通路同士を連通路で連通ずるとともに、そ
の連通路同士を開閉弁によって開閉される接続通路で接
続し、接続通路の長さを気筒群における気筒間の最短距
ス正よりも短くしたことにより、エンジンの共鳴同調回
転域以外の運転域での吸気の共鳴効果によるトルク低下
を有効に解消して慣性効果のみにより吸気を過給するこ
とができ、慣性効果によるトルク向上効果を確実に得る
ことができる。
(Effects of the Invention) As explained above, according to the invention related to visit item (1), a plurality of cylinders are grouped into cylinders with discontinuous ignition waiting periods, and the cylinders in each cylinder group are connected to each other through independent intake passages. In a multi-cylinder engine that is connected to a volume chamber, the independent intake passages of each cylinder group are communicated with each other by a communication passage, and the communication passages are connected by a connection passage that is opened and closed by an on-off valve, and the length of the connection passage is By making the shortest distance between the cylinders in the cylinder group shorter than the shortest distance between the cylinders in the cylinder group, the reduction in torque due to the resonance effect of the intake air in operating ranges other than the resonance synchronized rotation range of the engine is effectively eliminated, and intake overload is suppressed only by the inertia effect. It is possible to reliably obtain the torque improvement effect due to the inertia effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はエンジンの吸気
装置の全体構成を模式的に示す平面図、第2図は各バル
ブの開閉に伴うエンジンの出力トルク変化の特性を示す
特性図である。 1・・・エンジン 2a〜2f・・・気筒 3a,3b・・・気筒群 5a,5b・・・独立吸気通路 6a,6b・・・ボリューム室 12・・・第1連通路 13・・・第2連通路 14a,14b・・・独立吸気通路連通路(連通路)1
5・・・接続通路 Vl,V2・・・共鳴可変バルブ V1・・・慣性可変バルブ v2・・・共鳴効果解消バルブ(開閉弁)L1・・・接
続通路長 L2・・・気筒間の最短長さ 代 理 人 弁理士 前 田  弘(ほか2名)第 2 図
The drawings show an embodiment of the present invention, and FIG. 1 is a plan view schematically showing the overall configuration of an engine intake system, and FIG. 2 is a characteristic diagram showing the characteristics of engine output torque changes as each valve opens and closes. It is. 1...Engine 2a to 2f...Cylinder 3a, 3b...Cylinder group 5a, 5b...Independent intake passage 6a, 6b...Volume chamber 12...First communication passage 13...No. Two communication passages 14a, 14b...Independent intake passage communication passage (communication passage) 1
5... Connection passages Vl, V2... Variable resonance valve V1... Variable inertia valve v2... Resonance effect elimination valve (opening/closing valve) L1... Connection passage length L2... Shortest length between cylinders Rihito Sayo Patent attorney Hiroshi Maeda (and 2 others) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)複数の気筒が点火順序の隣り合わない気筒同士で
複数の気筒群に分けられ、この各気筒群の気筒がそれぞ
れ独立吸気通路を介して気筒群毎のボリューム室に接続
された多気筒エンジンの吸気装置において、上記各気筒
群の気筒に対応する独立吸気通路同士を互いに連通する
気筒群毎の連通路と、該連通路同士を接続する接続通路
と、該接続通路を開閉する開閉弁とを設け、上記接続通
路の長さが各気筒群の気筒間の最短距離よりも短く構成
されたことを特徴とする多気筒エンジンの吸気装置。
(1) A multi-cylinder cylinder in which multiple cylinders are divided into multiple cylinder groups with non-adjacent firing orders, and each cylinder in each cylinder group is connected to the volume chamber of each cylinder group via an independent intake passage. In an engine intake system, there is a communication passage for each cylinder group that communicates the independent intake passages corresponding to the cylinders of each cylinder group, a connection passage that connects the communication passages, and an on-off valve that opens and closes the connection passage. An intake system for a multi-cylinder engine, characterized in that the length of the connecting passage is shorter than the shortest distance between the cylinders of each cylinder group.
JP1189529A 1989-07-20 1989-07-20 Intake device of multiple cylinder engine Pending JPH0354318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189529A JPH0354318A (en) 1989-07-20 1989-07-20 Intake device of multiple cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189529A JPH0354318A (en) 1989-07-20 1989-07-20 Intake device of multiple cylinder engine

Publications (1)

Publication Number Publication Date
JPH0354318A true JPH0354318A (en) 1991-03-08

Family

ID=16242819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189529A Pending JPH0354318A (en) 1989-07-20 1989-07-20 Intake device of multiple cylinder engine

Country Status (1)

Country Link
JP (1) JPH0354318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7793633B2 (en) * 2007-02-23 2010-09-14 Dr. Ing. H.C. F. Porsche Ag Switching resonance intake system for an internal combustion engine
WO2015046370A1 (en) 2013-09-26 2015-04-02 三井化学株式会社 Eyewear material, eyewear frame and eyewear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7793633B2 (en) * 2007-02-23 2010-09-14 Dr. Ing. H.C. F. Porsche Ag Switching resonance intake system for an internal combustion engine
WO2015046370A1 (en) 2013-09-26 2015-04-02 三井化学株式会社 Eyewear material, eyewear frame and eyewear
KR20160044036A (en) 2013-09-26 2016-04-22 미쓰이 가가쿠 가부시키가이샤 Eyewear material, eyewear frame, and eyewear

Similar Documents

Publication Publication Date Title
EP0265960A2 (en) Intake system for multiple-cylinder engine
JPS6014169B2 (en) Intake system for multi-cylinder engines
JPS61149519A (en) Intake-air passage device in multi-cylinder internal combustion engine
JPH03281927A (en) Air intake device of engine
JPH03286129A (en) Air intake device for multiple cylinder engine
JPH01106922A (en) Intake apparatus of v-shaped engine
JPH0354318A (en) Intake device of multiple cylinder engine
JP2583528B2 (en) Engine intake system
JPH048304Y2 (en)
JP2835088B2 (en) Engine intake system
JP2583529B2 (en) Engine intake system
JP2583526B2 (en) Engine intake system
JP2779253B2 (en) Multi-cylinder engine intake system
JP2771176B2 (en) Engine intake system
JP2543906B2 (en) Engine intake system
JP2583527B2 (en) Engine intake system
JPH03286130A (en) Air intake device for multiple cylinder engine
JP3240492B2 (en) Engine intake system
JPS61241418A (en) Suction device for multicylinder engine
JP2502621B2 (en) Engine intake system
JP2808312B2 (en) Valve Noise Prevention Method for Multi-Cylinder Internal Combustion Engine
JP3330067B2 (en) Variable intake device for internal combustion engine
JPH0392534A (en) Intake device for multi-cylinder engine
JPH03100320A (en) Intake device of multi-cylinder engine
JPH03100319A (en) Intake device of multi-cylinder engine