JP2583527B2 - Engine intake system - Google Patents

Engine intake system

Info

Publication number
JP2583527B2
JP2583527B2 JP62248370A JP24837087A JP2583527B2 JP 2583527 B2 JP2583527 B2 JP 2583527B2 JP 62248370 A JP62248370 A JP 62248370A JP 24837087 A JP24837087 A JP 24837087A JP 2583527 B2 JP2583527 B2 JP 2583527B2
Authority
JP
Japan
Prior art keywords
intake
cylinder
passage
resonance
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62248370A
Other languages
Japanese (ja)
Other versions
JPH0192516A (en
Inventor
光夫 人見
昭則 山下
敏彦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62248370A priority Critical patent/JP2583527B2/en
Publication of JPH0192516A publication Critical patent/JPH0192516A/en
Application granted granted Critical
Publication of JP2583527B2 publication Critical patent/JP2583527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • F16C11/0623Construction or details of the socket member
    • F16C11/0642Special features of the plug or cover on the blind end of the socket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • F16C11/0623Construction or details of the socket member
    • F16C11/0628Construction or details of the socket member with linings
    • F16C11/0633Construction or details of the socket member with linings the linings being made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0685Manufacture of ball-joints and parts thereof, e.g. assembly of ball-joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多気筒エンジンの吸気装置に関し、特に、
吸気系において吸気の共振現象を生じさせて吸気過給を
行うようにしたものに関するものである。
Description: TECHNICAL FIELD The present invention relates to an intake device for a multi-cylinder engine,
The present invention relates to a system in which intake air supercharging is performed by causing a resonance phenomenon of intake air in an intake system.

(従来の技術) 従来より、エンジンの気筒内燃焼室に吸入される吸気
の動的効果によってその充填効率を高め、エンジンの出
力トルクを増大させるようにしたものは種々知られてい
る。その一例として、例えば特公昭60−14169号公報等
に示されるものでは、多気筒エンジンにおける吸気通路
を、吸気順序(点火順序)の連続しない気筒を同じグル
ープとする気筒グループにそれぞれ接続される2つの吸
気通路に分け、その各々の吸気通路を、吸気マニホール
ドのブランチ部上流端が接続された拡大室と、この拡大
室に接続された共鳴用吸気通路とで構成するとともに、
該共鳴用吸気通路の上流端を上流側集合室に連通させ、
上記拡大室に、両吸気通路同士を連通状態又は連通遮断
状態に切り換える切換装置を設け、上記切換装置によっ
て各吸気通路同士の連通を遮断したときには、各気筒の
吸気行程に生じた負の圧力波を上記上流側集合室で反射
させて正の圧力波に反転させ、その反転した正の圧力波
により比較的低い回転域で吸気の慣性過給効果を発揮さ
せる一方、各吸気通路同士を連通させたときには、上記
吸気圧力波の反転反射位置を吸気ポートに近付けて、吸
気圧力振動の固有周波数を高くし、高速回転域で慣性過
給効果を得るようになされている。
(Prior Art) Conventionally, there have been known various ones in which the filling efficiency is increased by a dynamic effect of intake air taken into a combustion chamber in a cylinder of an engine to increase the output torque of the engine. As one example, in Japanese Patent Publication No. Sho 60-14169, for example, an intake passage in a multi-cylinder engine is connected to cylinder groups in which cylinders in which the intake order (ignition order) is not continuous are the same. Divided into two intake passages, each of which is constituted by an enlarged chamber to which a branch section upstream end of the intake manifold is connected, and a resonance intake passage connected to the enlarged chamber,
The upstream end of the resonance intake passage is communicated with the upstream collecting chamber,
A switching device for switching the two intake passages to a communication state or a communication cutoff state is provided in the enlarged chamber, and when the communication between the intake passages is cut off by the switching device, a negative pressure wave generated in the intake stroke of each cylinder is provided. Is reflected in the upstream collecting chamber and inverted to a positive pressure wave, and the inverted positive pressure wave exerts an inertial supercharging effect of intake air in a relatively low rotation range, while allowing each intake passage to communicate with each other. In such a case, the reverse reflection position of the intake pressure wave is brought closer to the intake port, the natural frequency of the intake pressure vibration is increased, and an inertia supercharging effect is obtained in a high-speed rotation range.

また、特開昭59−565号公報には、V型エンジンの吸
気をその共振現象により過給する場合において、その具
体的な構造として、エンジンの左右バンク間に、内部に
空間を有する外壁と、該外壁の空間内に略鉛直面内で外
壁に沿って環状に延びるように配置され、下流端が各吸
気ポートに連通する複数のラム管式吸気管とを備えてな
るプレナム型吸気マニホールドを配置することにより、
コンパクトな吸気マニホールドでもって吸気を過給する
ようにすることが開示されている。
Japanese Patent Application Laid-Open No. 59-565 discloses that when the intake air of a V-type engine is supercharged due to its resonance phenomenon, as a specific structure, an outer wall having a space inside is provided between left and right banks of the engine. A plenum-type intake manifold comprising a plurality of ram pipe-type intake pipes arranged to extend annularly along the outer wall in the space of the outer wall in a substantially vertical plane and having a downstream end communicating with each intake port. By placing
It is disclosed that the intake air is supercharged by a compact intake manifold.

この他、例えば吸気順序の連続しない気筒グループに
おける各気筒の吸気ポートをサージタンク等の容積拡大
室のない共鳴用吸気通路(吸気通路)に接続し、その共
鳴用吸気通路での吸気の共振周波数がエンジンの特定回
転域になるように共鳴用吸気通路の長さを設定すること
により、吸気をその共鳴効果によって過給するようにす
ることも可能である。
In addition, for example, an intake port of each cylinder in a cylinder group in which the intake sequence is not continuous is connected to a resonance intake passage (intake passage) having no volume expansion chamber such as a surge tank, and the resonance frequency of intake air in the resonance intake passage is connected. By setting the length of the intake passage for resonance so that the intake air reaches a specific rotation range of the engine, the intake air can be supercharged by its resonance effect.

(発明が解決しようとする課題) ところで、例えばエンジンの複数の気筒に共鳴用吸気
通路を接続するとともに、該共鳴用吸気通路の上流端を
圧力反転部に接続し、その共鳴用吸気通路での吸気の共
振現象を利用して吸気を過給する場合、各気筒から圧力
反転部までの距離のばらつきにより、共鳴状態における
吸気の圧力波の伝播状態か異なり、各気筒間で吸気充填
量に差異が生じ、共鳴用吸気通路に流入する吸気の動圧
の影響と相俟って、圧力反転部に近い最上流側の気筒で
の吸気充填量が吸気供給通路から遠い下流側の気筒より
も多くなる。それ故、その上流側気筒での空燃比がリー
ン側に偏り過ぎ、ノッキングが生じる虞れがある。
(Problems to be Solved by the Invention) By the way, for example, a resonance intake passage is connected to a plurality of cylinders of an engine, and an upstream end of the resonance intake passage is connected to a pressure reversing portion, and the resonance intake passage is connected to the cylinder. When the intake air is supercharged using the resonance phenomenon of the intake air, the propagation state of the pressure wave of the intake air in the resonance state is different due to the variation in the distance from each cylinder to the pressure reversing part, and the intake charge amount differs between the cylinders. And the effect of the dynamic pressure of the intake air flowing into the intake passage for resonance, the amount of intake charge in the cylinder on the most upstream side near the pressure reversal part is larger than that on the downstream side far from the intake supply passage. Become. Therefore, the air-fuel ratio in the upstream cylinder may be too lean toward the lean side, and knocking may occur.

本発明は斯かる点に鑑みてなされ、その目的は、上記
の共鳴用吸気通路自体の構造を改良することにより、吸
気流通方向の最上流側気筒への吸気の流入を抑え、共鳴
域での気筒間の吸気充填量のばらつきを低減して、空燃
比の不均一によるノッキングの発生を抑制しようとする
ことにある。
The present invention has been made in view of such a point, and an object of the present invention is to improve the structure of the above-mentioned resonance intake passage itself to suppress the inflow of intake air into the most upstream cylinder in the intake air flow direction, and to improve the resonance region. It is an object of the present invention to reduce the variation in the intake charge amount between cylinders and to suppress the occurrence of knocking due to an uneven air-fuel ratio.

(課題を解決するための手段) この目的を達成するために、本発明で講じた解決手段
は、共鳴用吸気通路における最上流側気筒との連通部に
共鳴用吸気通路を気筒側と反気筒側とに分けつ仕切壁を
設け、その仕切壁により最上流側の気筒に流入する吸気
に抵抗を与えるものである。
(Means for Solving the Problems) In order to achieve this object, a solution taken in the present invention is to provide a resonance intake passage in a communication portion with the most upstream side cylinder in the resonance intake passage by connecting the resonance intake passage to the cylinder side and the opposite cylinder. A partition wall is provided on each side of the cylinder to provide resistance to the intake air flowing into the most upstream cylinder.

すなわち、本発明の構成は、上記の如く、複数の気筒
に連通された共鳴用吸気通路を備え、その共鳴用吸気通
路での吸気の共鳴同調によって吸気を過給するようにし
たエンジンの吸気装置に対し、上記共鳴用吸気通路の少
なくとも吸気流通方向の最上流側の気筒との連通部分
に、下流側に延びて気筒側通路と反気筒側通路とに仕切
る仕切壁を設け、さらに、上記吸気流通方向最上流側の
気筒よりも上流側の吸気通路に、吸気の圧力波を反転す
る圧力反転部を設ける構成とする。
That is, as described above, the configuration of the present invention includes the resonance intake passage communicated with the plurality of cylinders and supercharges the intake by resonance tuning of the intake air in the resonance intake passage. In contrast, at least a portion of the resonance intake passage that communicates with the cylinder on the most upstream side in the intake air flow direction is provided with a partition wall that extends downstream and partitions into a cylinder-side passage and a non-cylinder-side passage. A pressure reversing section for reversing the pressure wave of the intake air is provided in the intake passage upstream of the cylinder at the most upstream side in the flow direction.

(作用) 上記の構成により、本発明では、エンジンの運転中、
共鳴用吸気通路において、圧力反転部で反転して下流側
に戻る吸気の正の圧力波が気筒に作用する吸気と共鳴同
調が生じ、この共鳴同調により吸気が過給されて、エン
ジンの出力トルクが増大する。
(Operation) With the above configuration, according to the present invention, during operation of the engine,
In the resonance intake passage, the positive pressure wave of the intake air which is reversed at the pressure reversing unit and returned to the downstream side is resonantly tuned with the intake air acting on the cylinder, and the intake air is supercharged by the resonance tuned, and the output torque of the engine is increased. Increase.

その際、上記共鳴用吸気通路の少なくとも圧力反転部
に最も近い最上流側の気筒との連通部分に、その部分の
共鳴用吸気通路を気筒側通路と反気筒側通路とに仕切る
仕切壁が設けられているので、その仕切壁により、上記
圧力反転部で反転して下流側に戻る吸気の正の圧力波の
伝播が抵抗を受け、その最上流側気筒への作用が抑えら
れるとともに、共鳴用吸気通路に流入した吸気流が下流
側に延びる仕切壁の案内作用によって下流側へガイドさ
れて、最上流側気筒へ流入し難くなる。これらの理由に
より、その最上流側気筒への吸気充填量が抑えられて他
の気筒とほぼ同等になり、よって気筒間の空燃比のばら
つきによるノッキングの発生を低減できるのである。
At this time, a partition wall that partitions the resonance intake passage at that portion into a cylinder-side passage and an anti-cylinder-side passage is provided at least in a portion of the resonance intake passage that communicates with the most upstream cylinder closest to the pressure reversal portion. Therefore, the partition wall receives the resistance of the propagation of the positive pressure wave of the intake air which is reversed at the pressure reversing section and returns to the downstream side, so that the action on the most upstream cylinder is suppressed, and The intake air flow that has flowed into the intake passage is guided downstream by the guide action of the partition wall that extends downstream, and is less likely to flow into the most upstream cylinder. For these reasons, the filling amount of the intake air into the most upstream cylinder is suppressed to be substantially equal to that of the other cylinders, so that the occurrence of knocking due to the variation in the air-fuel ratio between the cylinders can be reduced.

(実施例) 以下、本発明の実施例について図面に基づき説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1実施例に係るエンジンの吸気装
置の全体構成を示し、1は直列に配置された第1〜第4
の4つの気筒2a〜2dを有する燃料噴射式4気筒エンジン
であって、上記各気筒2a〜2dは吸気ポート3及び図示し
ない排気ポート備え、上記各吸気ポート3にはサージタ
ンク等による容積拡大室のない吸気通路4が接続されて
いる。この吸気通路4は、下流端が上記各気筒2a〜2dの
吸気ポート3に接続された独立吸気通路5,5,…と、該各
独立吸気通路5の上流端が接続された共鳴用吸気通路6
とで構成されている。
FIG. 1 shows an overall configuration of an intake system for an engine according to a first embodiment of the present invention, wherein 1 is a first to fourth units arranged in series.
A fuel injection type four-cylinder engine having four cylinders 2a to 2d, wherein each of the cylinders 2a to 2d is provided with an intake port 3 and an exhaust port (not shown), and each of the intake ports 3 has a capacity expansion chamber such as a surge tank. Is connected to the intake passage 4. The intake passage 4 has an independent intake passage 5, 5,... Having a downstream end connected to the intake port 3 of each of the cylinders 2a to 2d, and a resonance intake passage having an upstream end connected to each of the independent intake passages 5. 6
It is composed of

上記共鳴用吸気通路6の下流端は閉塞されている一
方、上流端はエアクリーナ9に接続され、そのエアクリ
ーナ9と該エアクリーナ9に最も近い最上流側の第4気
筒2dに対応する独立吸気通路5への接続部との間の共鳴
用吸気通路6には吸入空気量を測定するエアフローメー
タ10と、その下側に吸気通路4を絞るスロットルバルブ
11とが配置されている。また、上記エアフローメータ10
とスロットルバルブ11との間の吸気通路6は共鳴タンク
12内の圧力反転室13に連通されており、各気筒2a〜2dの
吸気ポート3付近に、該各気筒2a〜2dの吸気行程初期に
生じた吸気の負の圧力波を共鳴用吸気通路6内で上流側
に伝播させて共鳴タンク12内の圧力反転部13で反転させ
て正の圧力波に反転させ、その正の圧力波を下流側に戻
して同じ気筒2a〜2dの吸気行程終期に作用させることに
より、吸気を慣性過給させるように構成されている。
The downstream end of the resonance intake passage 6 is closed, while the upstream end is connected to an air cleaner 9. The independent intake passage 5 corresponding to the air cleaner 9 and the fourth upstream cylinder 2 d closest to the air cleaner 9. An air flow meter 10 for measuring the amount of intake air, and a throttle valve for restricting the intake passage 4 to a lower side thereof.
11 and are arranged. In addition, the air flow meter 10
The intake passage 6 between the throttle valve 11 and the
In the vicinity of the intake port 3 of each of the cylinders 2a to 2d, a negative pressure wave of the intake air generated at the beginning of the intake stroke of each of the cylinders 2a to 2d is communicated with the resonance intake passage 6 near the intake port 3 of each of the cylinders 2a to 2d. Inside the resonance tank 12, inverts it to a positive pressure wave, and returns the positive pressure wave to the downstream side at the end of the intake stroke of the same cylinder 2a to 2d. By acting, the intake air is inertia-supercharged.

さらに、上記共鳴用吸気通路6にはその通路方向に沿
って延びる仕切壁14が配設され、この仕切壁14により共
鳴用吸気通路6が部分的に気筒側通路7と反気筒側通路
8とに仕切られている。そして、上記仕切壁14は、上記
スロットルバルブ11直下流位置から上記最上流側の第4
気筒2dに対応する独立吸気通路5への接続部を経て下流
側の第2気筒2bに対応する独立吸気通路5への接続部付
近まで延びている。
Further, a partition wall 14 extending along the direction of the passage is disposed in the resonance intake passage 6, and the partition wall 14 partially divides the resonance intake passage 6 into the cylinder side passage 7 and the non-cylinder side passage 8. It is divided into. The partition wall 14 is located at the fourth most upstream side from the position immediately downstream of the throttle valve 11.
It extends through the connection to the independent intake passage 5 corresponding to the cylinder 2d to the vicinity of the connection to the independent intake passage 5 corresponding to the second cylinder 2b on the downstream side.

したがって、上記実施例においては、エンジン1の運
転中、その各気筒2a〜2dの吸気ポート3付近に該各気筒
2a〜2dの吸気行程初期に生じた吸気の負の圧力波が共鳴
用吸気通路6を上流側に伝播して、その途中の圧力反転
部13で反射されて正の圧力波に反転し、この正の圧力波
が下流側に戻って同じ気筒2a〜2dの吸気行程終期に作用
する吸気の慣性過給状態となり、このことにより吸気が
過給されてエンジン1の出力トルクが増大する。
Therefore, in the above-described embodiment, during the operation of the engine 1, each of the cylinders 2 a to 2 d is located near the intake port 3 of each of the cylinders 2 a to 2 d.
The negative pressure wave of the intake air generated at the beginning of the intake stroke of 2a to 2d propagates upstream through the resonance intake passage 6, is reflected by the pressure inverting unit 13 in the middle thereof, and inverts to a positive pressure wave. The positive pressure wave returns to the downstream side, and an inertial supercharging state of the intake air acting at the end of the intake stroke of the same cylinders 2a to 2d occurs, whereby the intake air is supercharged and the output torque of the engine 1 increases.

その場合、上記共鳴用吸気通路6には、スロットルバ
ルブ11直下流位置から最上流側の第4気筒2dへの接続部
を経て下流側の第2気筒2bへの接続部付近まで通路方向
に沿って延びる仕切壁14が配設されているので、この仕
切壁14により、上記圧力反転部13で反転して下流側に戻
る吸気の正の圧力波の一部が仕切壁14によって区画形成
された反気筒側通路8を伝播することとなり、第2気筒
2b〜第4気筒2dに対する圧力波の作用が抑制される。し
かも、エアクリーナ10から共鳴用吸気通路6に流入した
吸気流も仕切壁14のガイド作用によって下流側に方向付
けられるので、上記上流側の3つの気筒2b〜2dへ流入し
難くなる。その結果、これら3気筒2b〜2dに対する吸気
充填量が抑えられて、本来は構造的に流入し難い最下流
の第1気筒2aと同等になり、よってエンジン1の気筒2a
〜2d間の空燃比のばらつきに起因したノッキングの発生
を低減することができる。
In this case, the resonance intake passage 6 extends along the passage direction from the position immediately downstream of the throttle valve 11 to the vicinity of the connection to the downstream second cylinder 2b via the connection to the fourth upstream cylinder 2d. The partition wall 14 extends so that a part of the positive pressure wave of the intake air that is reversed by the pressure reversing unit 13 and returned to the downstream side is defined by the partition wall 14. Propagating through the non-cylinder side passage 8, the second cylinder
The action of the pressure wave on the second cylinder 4d to the fourth cylinder 2d is suppressed. In addition, since the intake air flowing from the air cleaner 10 into the resonance intake passage 6 is directed downstream by the guide action of the partition wall 14, it is difficult to flow into the three upstream cylinders 2b to 2d. As a result, the amount of intake air charged to these three cylinders 2b to 2d is suppressed, and becomes equal to that of the first downstream cylinder 2a which is originally difficult to flow structurally.
It is possible to reduce the occurrence of knocking due to the variation of the air-fuel ratio between 2 and 2d.

また、このようなノッキング抑制効果を共鳴用吸気通
路6に仕切壁14を設けるだけで得ることができるので、
吸気系のレイアウトを大幅に変更せずとも済み、その構
造も簡略化することができる。
Further, since such a knocking suppression effect can be obtained only by providing the partition wall 14 in the resonance intake passage 6,
The layout of the intake system does not need to be changed significantly, and the structure can be simplified.

第2図は第2実施例を示し(尚、第1図と同じ部分に
ついては同じ符号を付してその詳細な説明は省略す
る)、共鳴用吸気通路6に配設する仕切壁14の範囲を、
最上流側の第4気筒2dに対応する独立吸気通路5への接
続部から第3気筒2cに対応する独立吸気通路5への接続
部直上流位置までの範囲としたものである。
FIG. 2 shows a second embodiment (note that the same parts as in FIG. 1 are denoted by the same reference numerals and detailed description thereof is omitted), and a range of a partition wall 14 disposed in the resonance intake passage 6 is shown. To
The range is from the connection to the independent intake passage 5 corresponding to the fourth cylinder 2d on the most upstream side to the position immediately upstream of the connection to the independent intake passage 5 corresponding to the third cylinder 2c.

この実施例の場合、最上流側の第4気筒2dに対する吸
気充填量のみを低減することができる。よって、上記第
1実施例と同様に、エンジン1のノッキングの発生を抑
制することができる。
In the case of this embodiment, it is possible to reduce only the intake charge amount to the fourth cylinder 2d on the most upstream side. Therefore, similarly to the first embodiment, the occurrence of knocking of the engine 1 can be suppressed.

また、第3図は第3実施例を示し、V型6気筒エンジ
ンに適用したものである。
FIG. 3 shows a third embodiment, which is applied to a V-type six-cylinder engine.

すなわち、本実施例では、エンジン1′はV型に配置
された第1〜第6の6つの気筒2′a〜2′fを有する
V型6気筒エンジンであって、これら6気筒2′a〜
2′fの点火順序は気筒番号どおりに第1気筒2′a〜
第6気筒2′fの順序に設定されている。上記6つの気
筒2′a〜2′fは点火順序の連続しない第1、第3及
び第5気筒2′a,2′c,2′eの3つの気筒と、第2、第
4及び第6気筒2′b,2′d,2′fの3つの気筒とでそれ
ぞれ構成される2つの気筒グループに分けられ、その一
方の3つ気筒2′a,2′c,2′eはエンジン1′のV型に
配置された一方のバンク1′aに順に形成され、他方の
気筒グループの3気筒2′b,2′d,2′fは他方のバンク
1′aに順に形成されている。
That is, in this embodiment, the engine 1 'is a V-type six-cylinder engine having six first to sixth cylinders 2'a to 2'f arranged in a V-type, and these six cylinders 2'a ~
The ignition order of 2'f is the same as that of the first cylinder 2'a ~
The order is set in the order of the sixth cylinder 2'f. The six cylinders 2'a to 2'f are composed of three first, third, and fifth cylinders 2'a, 2'c, 2'e, which are not continuous in ignition order, and second, fourth, and fourth cylinders. It is divided into two cylinder groups each composed of three cylinders of six cylinders 2'b, 2'd, 2'f, and one of the three cylinders 2'a, 2'c, 2'e is an engine. The three cylinders 2'b, 2'd, 2'f of the other cylinder group are sequentially formed in the other bank 1'a. I have.

上記各気筒2′a〜2′fの吸気ポート3に接続され
た吸気通路4′は、独立吸気通路5,5,…と共鳴用吸気通
路6′と吸気供給通路15とで構成される。上記共鳴用吸
気通路6′は、下流端が閉塞され直線状に延びる1対の
連通路6′a,6′aと、該連通路6′a,6′aの各上流端
部同士を接続する上流側連通路6′bとからなり、上記
連通路6′a,6′aにそれぞれ上記各気筒グループの気
筒2′a,2′c,2′e(又は2′b,2′d,2′f)に対応す
る3つの独立吸気通路5,5,…の上流端が接続されてい
る。
An intake passage 4 'connected to the intake port 3 of each of the cylinders 2'a to 2'f includes an independent intake passage 5, 5,..., A resonance intake passage 6', and an intake supply passage 15. The resonance intake passage 6 'connects a pair of communication passages 6'a, 6'a which are closed at the downstream end and extends linearly, and respective upstream ends of the communication passages 6'a, 6'a. Upstream communication passages 6'b which communicate with the cylinders 2'a, 2'c, 2'e (or 2'b, 2'd of each cylinder group). , 2'f), the upstream ends of three independent intake passages 5, 5, ... are connected.

さらに、上記吸気供給通路15は、その下流端が上記共
鳴用吸気通路6′の上流側連通路6′bの中央部つまり
上流端に接続されており、この上流側連通路6′bの吸
気供給通路15との合流部が圧力反転部とされている。上
記吸気供給通路15の上流端はエアクリーナ9に接続さ
れ、その途中にエアフローメータ10及びスロットルバル
ブ11が配設されている。
Further, the intake supply passage 15 has a downstream end connected to a central portion, that is, an upstream end of an upstream communication passage 6'b of the resonance intake passage 6 '. The junction with the supply passage 15 is a pressure reversal section. An upstream end of the intake supply passage 15 is connected to an air cleaner 9, and an air flow meter 10 and a throttle valve 11 are provided in the middle thereof.

そして、上記共鳴用吸気通路6′には第1及び第2の
2つの仕切壁14′a,14′bが配設されている。上記第1
の仕切壁14′aは、共鳴用吸気通路6′の上流側連通路
6′bにおける吸気供給通路15との合流部付近から一方
の連通路6′aにおいて一方の気筒グループの最上流側
の第5気筒2′eへの接続部を経てその下流側の第3気
筒2′cへの接続部付近まで延びている。一方、第2の
仕切壁14′bは、同様に、上流側連通路6′bにおける
吸気供給通路15との合流部付近から他方の連通路6′a
において他方の気筒グループの最上流側の第6気筒2′
fへの接続部を経てその下流側の第4気筒2′dへの接
続部付近まで延びている。
The first and second partition walls 14'a and 14'b are disposed in the resonance intake passage 6 '. The first
The partition wall 14'a is located at the most upstream side of one of the cylinder groups in one of the communication passages 6'a from the vicinity of the junction with the intake supply passage 15 in the upstream communication passage 6'b of the resonance intake passage 6 '. It extends to the vicinity of the connection to the third cylinder 2'c downstream from the connection to the fifth cylinder 2'e. On the other hand, similarly, the second partition wall 14'b is connected to the upstream communication path 6'b from the vicinity of the junction with the intake supply path 15 from the other communication path 6'a.
At the most upstream side of the other cylinder group.
It extends to the vicinity of the connection to the fourth cylinder 2'd on the downstream side via the connection to f.

したがって、この実施例においては、エンジン1′の
運転中、各気筒グループの各気筒2′a〜2′fについ
て吸気の慣性過給が行われる。すなわち、各気筒2′a,
2′c,2′e(又は2′b,2′d,2′f)の吸気ポート3付
近に該各気筒2′a,2′c,2′e(又は2′b,2′d,2′
f)の吸気行程初期に生じた吸気の負の圧力波が共鳴用
吸気通路6′の連通路6′aを上流側に伝播して、上流
側連通路6′bの吸気供給通路15との合流部(圧力反転
部)での反射により正の圧力波に反転し、この正の圧力
波が下流側に伝播して同じ気筒2′a,2′c,2′e(又は
2′b,2′d,2′f)の吸気行程終期に作用するという吸
気の慣性過給状態となる。
Therefore, in this embodiment, during the operation of the engine 1 ', the inertial supercharging of the intake air is performed for each of the cylinders 2'a to 2'f of each cylinder group. That is, each cylinder 2'a,
Each cylinder 2'a, 2'c, 2'e (or 2'b, 2'd) is located near the intake port 3 of 2'c, 2'e (or 2'b, 2'd, 2'f). , 2 ′
The negative pressure wave of the intake air generated in the early stage of the intake stroke of f) propagates to the upstream side through the communication passage 6'a of the resonance intake passage 6 'and the negative pressure wave from the intake passage 15 of the upstream communication passage 6'b. The reflection at the merging section (pressure reversal section) reverses the pressure to a positive pressure wave, and this positive pressure wave propagates downstream to the same cylinder 2′a, 2′c, 2′e (or 2′b, An inertia supercharging state of the intake air occurs at the end of the intake stroke of 2'd, 2'f).

そして、この実施例でも、各気筒グループにおける上
流側の第3及び第5気筒2′c,2′e並びに第4及び第
6気筒2′d,2′fに対する吸気充填量がそれぞれ仕切
壁14′a,14′bによって抑制され、よってエンジン1′
のノッキングを低減することができる。
Also in this embodiment, the amount of intake air for the third and fifth cylinders 2'c, 2'e and the fourth and sixth cylinders 2'd, 2'f on the upstream side in each cylinder group is determined by the partition wall 14 respectively. 'A, 14'b, and thus the engine 1'
Knocking can be reduced.

第4図及び第5図はそれぞれ本発明の第4及び第5実
施例を示し、共鳴用吸気通路6,6′のうち、仕切壁14,1
4′a,14′bによって区画形成された気筒側通路7,7′を
開閉弁によって開閉制御するようにしたものである。
FIGS. 4 and 5 show a fourth and a fifth embodiment of the present invention, respectively.
The cylinder-side passages 7, 7 'defined by 4'a, 14'b are controlled to be opened and closed by on-off valves.

すなわち、第4図に示す第4実施例では、上記第1実
施例の構成(第1図参照)において、共鳴用吸気通路6
の気筒側通路7に、該通路7を開閉する蝶弁からなる開
閉弁16が配設されている。また、第5図に示す第5実施
例では、上記第3実施例の構成(第3図参照)におい
て、共鳴用吸気通路6′の各気筒側通路7′に開閉弁1
6′が配設されている。
That is, in the fourth embodiment shown in FIG. 4, in the configuration of the first embodiment (see FIG. 1), the resonance intake passage 6
An on-off valve 16 composed of a butterfly valve for opening and closing the passage 7 is disposed in the cylinder-side passage 7. Further, in the fifth embodiment shown in FIG. 5, in the configuration of the third embodiment (see FIG. 3), an on-off valve 1 is provided in each cylinder side passage 7 'of the resonance intake passage 6'.
6 'is provided.

したがって、これらの実施例の場合、開閉弁16,16′
を開いたときには、上記第1及び第3実施例と同じ状態
となり、それらと同様の作用効果を奏することができ
る。
Therefore, in the case of these embodiments, the on-off valves 16, 16 '
Is opened, the same state as in the first and third embodiments is obtained, and the same operation and effect can be obtained.

一方、開閉弁16,16′を閉じたときには、共鳴用吸気
通路6,6′の気筒側通路7,7′が閉塞されるため、反射さ
れて下流側に戻る正の圧力波及び吸気流は全て反気筒側
通路8,8′を通ることとなり、最上流側気筒に対する吸
気充填量をより一層低減でき、エンジン1,1′のノッキ
ングの発生をさらに効果的に抑制することができる。
On the other hand, when the on-off valves 16, 16 'are closed, the cylinder side passages 7, 7' of the resonance intake passages 6, 6 'are closed, so that the positive pressure wave and the intake air flow which are reflected and return to the downstream side are All of them pass through the non-cylinder side passages 8, 8 ', so that the intake charge amount to the most upstream cylinder can be further reduced, and the occurrence of knocking of the engine 1, 1' can be more effectively suppressed.

尚、本発明は、上記実施例の如き直列4気筒及びV型
6気筒以外のエンジンに対しても適用することができる
のはいうまでもない。
It is needless to say that the present invention can be applied to engines other than the in-line four-cylinder and V-type six-cylinder as in the above embodiment.

(発明の効果) 以上説明したように、本発明によると、エンジンの気
筒に共鳴用吸気通路を接続して、その共鳴用吸気通路で
の吸気の共鳴同調により空気を過給する場合において、
上記共鳴用吸気通路における最上流側気筒との連通部に
気筒側通路と反気筒側通路とに仕切壁を設け、その最上
流側の気筒よりも上流側吸気通路に吸気圧力波の反転の
ための圧力反転部を設けたことにより、その仕切壁によ
り最上流側の気筒への吸気充填量を抑えて他の気筒と同
等にでき、よって気筒間の空燃比のばらつきによるノッ
キングの発生を有効に抑制することができるものであ
る。
(Effects of the Invention) As described above, according to the present invention, when a resonance intake passage is connected to a cylinder of an engine and air is supercharged by resonance tuning of intake air in the resonance intake passage,
A partition wall is provided between the cylinder-side passage and the counter-cylinder-side passage in a portion of the resonance intake passage that communicates with the most upstream cylinder, and for inversion of the intake pressure wave in the intake passage upstream of the most upstream cylinder. The pressure reversal part of the cylinder allows the amount of intake air to be charged to the cylinder at the most upstream side by the partition wall to be equal to that of other cylinders, thus effectively preventing the occurrence of knocking due to the variation in air-fuel ratio between cylinders. It can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第5図はそれぞれ本発明の第1〜第5実施例の
全体構成を示す模式平面図である。 1,1′……エンジン、2a〜2d,2′a〜2′f……気筒、
6,6′……共鳴用吸気通路、13……圧力反転部、14,14′
a,14′b……仕切壁。
1 to 5 are schematic plan views showing the entire structure of the first to fifth embodiments of the present invention, respectively. 1,1 '... engine, 2a-2d, 2'a-2'f ... cylinder,
6,6 '… Resonance intake passage, 13… Pressure reversal part, 14,14'
a, 14'b: Partition wall.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の気筒に連通された共鳴用吸気通路を
備え、該共鳴用吸気通路での吸気の共鳴同調により吸気
を過給するようにしたエンジンの吸気装置であって、 上記共鳴用吸気通路の少なくとも吸気流通方向最上流側
の気筒との連通部分に、下流側に延びて共鳴用吸気通路
を気筒側通路と反気筒側通路とに仕切る仕切壁を設け、 上記吸気流通方向最上流側の気筒よりも上流側の吸気通
路に、吸気の圧力波を反転する圧力反転部を設けたこと
を特徴とするエンジンの吸気装置。
1. An intake system for an engine, comprising: a resonance intake passage communicated with a plurality of cylinders, wherein the intake air is supercharged by resonance tuning of the intake air in the resonance intake passage. A partition wall extending downstream and dividing the resonance intake passage into a cylinder-side passage and a counter-cylinder-side passage is provided at least in a communication portion of the intake passage with a cylinder on the most upstream side in the intake flow direction. An intake system for an engine, further comprising a pressure reversing unit for reversing a pressure wave of intake air in an intake passage upstream of a cylinder on a side of the engine.
JP62248370A 1987-10-01 1987-10-01 Engine intake system Expired - Lifetime JP2583527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248370A JP2583527B2 (en) 1987-10-01 1987-10-01 Engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248370A JP2583527B2 (en) 1987-10-01 1987-10-01 Engine intake system

Publications (2)

Publication Number Publication Date
JPH0192516A JPH0192516A (en) 1989-04-11
JP2583527B2 true JP2583527B2 (en) 1997-02-19

Family

ID=17177088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248370A Expired - Lifetime JP2583527B2 (en) 1987-10-01 1987-10-01 Engine intake system

Country Status (1)

Country Link
JP (1) JP2583527B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050968B2 (en) * 1980-08-13 1985-11-11 日野自動車株式会社 intake manifold

Also Published As

Publication number Publication date
JPH0192516A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
JP2543537B2 (en) Intake device for V-type multi-cylinder engine
KR930007605B1 (en) Intake system for multiple cylinder engine
KR920010121B1 (en) Intake manifold in v-type engine
US5379735A (en) Tuned intake system
JP2583527B2 (en) Engine intake system
JP2583528B2 (en) Engine intake system
JP2583529B2 (en) Engine intake system
JP2583526B2 (en) Engine intake system
JP2772674B2 (en) Intake device for V-type multi-cylinder internal combustion engine
JP2502621B2 (en) Engine intake system
JPH0450424Y2 (en)
JP2543906B2 (en) Engine intake system
JPH048304Y2 (en)
JP2808312B2 (en) Valve Noise Prevention Method for Multi-Cylinder Internal Combustion Engine
JP2779253B2 (en) Multi-cylinder engine intake system
JPH0629559B2 (en) Multi-cylinder engine intake system
JP3115078B2 (en) Engine intake system
JPH0354318A (en) Intake device of multiple cylinder engine
JPH0649864Y2 (en) Intake device for V-type multi-cylinder internal combustion engine
JP2776865B2 (en) Engine intake system
JP2771176B2 (en) Engine intake system
JPH0823295B2 (en) Engine intake system
JP2552284B2 (en) Engine intake system
JP2552478B2 (en) V-type engine exhaust system
JPH01237318A (en) Air intake device for engine with supercharger