JPH0392534A - Intake device for multi-cylinder engine - Google Patents
Intake device for multi-cylinder engineInfo
- Publication number
- JPH0392534A JPH0392534A JP1230612A JP23061289A JPH0392534A JP H0392534 A JPH0392534 A JP H0392534A JP 1230612 A JP1230612 A JP 1230612A JP 23061289 A JP23061289 A JP 23061289A JP H0392534 A JPH0392534 A JP H0392534A
- Authority
- JP
- Japan
- Prior art keywords
- upstream
- passage
- intake
- engine
- gathering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 97
- 238000005192 partition Methods 0.000 claims description 16
- 230000000694 effects Effects 0.000 abstract description 48
- 238000002485 combustion reaction Methods 0.000 abstract description 6
- 238000009826 distribution Methods 0.000 description 7
- 230000005284 excitation Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Characterised By The Charging Evacuation (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は多気尚エンジンの吸気装置、待に各気筒に接続
される複数の分岐通路と、これらの分岐通路が集合する
集合室と、その上流側に連設される上流通路とで構成さ
れる多気筒エンジンの吸気装置に関する.
く従来の技術〉
近年、自動車用等のエンジンにおいては、出力性能の向
上のために、慣性効果や共鳴効果等の吸気系内における
吸気の動的効果を利用して吸気充填効率を高めるように
する場合がある。この場合、吸気系統には、エアクリー
ナがら導がれた上流通路が接続されるサージタンク等の
集合部が設けられ、該集合部から分岐された気筒数と同
数の分岐通路を各気時にそれぞれ接続する構成とされる
。Detailed Description of the Invention (Industrial Application Field) The present invention relates to an intake system for a high-pressure engine, a plurality of branch passages connected to each cylinder, a gathering chamber where these branch passages gather, and This article relates to an intake system for a multi-cylinder engine that is composed of an upstream passage connected to the upstream side. In recent years, in order to improve the output performance of automobile engines, efforts have been made to utilize dynamic effects of intake air within the intake system, such as inertia effects and resonance effects, to increase intake air filling efficiency. There are cases where In this case, the intake system is provided with a collection part such as a surge tank to which the upstream passage led from the air cleaner is connected, and the same number of branch passages as the number of cylinders branched from the collection part are connected to each air intake system. It is configured to connect.
このような楕成によれば、上記集合部を、吸気弁の開時
に分岐通路の下流部に発生する負圧波を正圧波に反転さ
せる大気解放部として作用させることにより、慣性効果
による吸気充填量の増大効果が得られ、また、該集合部
とその上流側通路とでなる空間を吸気系内の圧力振動に
対する共鳴空間として作用させることにより、共鳴効果
による吸気充填量の増大効果が得られる。According to such an ellipse, by making the gathering part act as an atmosphere release part that reverses the negative pressure wave generated in the downstream part of the branch passage when the intake valve opens into a positive pressure wave, the intake air filling amount due to the inertial effect can be reduced. Furthermore, by making the space formed by the gathering portion and the upstream passageway act as a resonance space for pressure vibrations within the intake system, an effect of increasing the intake air filling amount due to the resonance effect can be obtained.
ところで、上記のような集合部として、従来は、一端の
壁面もしくは周壁面の中央部に上流側通路が接続され且
つ各分岐通路が周壁面に並設される細長いサージタンク
状のものが多く用いられているが、このような集合部の
場合、上記上流側通路の接続部から各分岐通路の接続部
までの距離や各分岐通路の長さが相違するため、各気筒
への吸気の分配性或は各気筒に対する慣性効果の作用等
が不均一になり、また上流側通路の開口部から各分岐通
路の開口部に至る吸気の流動経路が急激に屈曲すること
になって、吸気の吸入抵抗が増大することになる。By the way, conventionally, as the above-mentioned gathering part, a long and narrow surge tank-like structure is often used, in which an upstream passage is connected to the wall surface of one end or the center of the peripheral wall surface, and each branch passage is arranged in parallel on the peripheral wall surface. However, in the case of such a gathering part, the distance from the connection part of the upstream passage to the connection part of each branch passage and the length of each branch passage are different, so the distribution of intake air to each cylinder may be affected. Alternatively, the effect of inertia on each cylinder becomes uneven, and the flow path of intake air from the opening of the upstream passage to the opening of each branch passage becomes sharply curved, which increases the intake resistance of intake air. will increase.
これに対しては、例えば実開昭60−88062号公報
に第7図に示すような形状の集合部が開示されている.
つまり、この集合部Aは、略円錐台状とされていると共
に、その小径側の端面に開口する上流通路の開口部Bの
中心を通る軸線LLに関して、該集合部自体の形状及び
大径側の端面に開口する各分岐通路C・・・Cの開口部
の配置を略線対称に設けた形状とされている。In response to this, for example, Japanese Utility Model Application Publication No. 60-88062 discloses a gathering part having a shape as shown in FIG. 7.
In other words, this collecting part A has a substantially truncated conical shape, and the shape of the collecting part itself and the large diameter The openings of each of the branch passages C...C opening at the side end faces are arranged approximately line symmetrically.
これによれば、集合部Aにおける上流側通路の開口部B
から各分岐通路C・・・Cの開口部までの距離や各分岐
通路C・・・Cの長さが略等しくなって、各気筒への吸
気の分配性や各気筒に対する慣性効果の作用等が均一化
され、また吸気の流動経路の急激な屈曲がなくなって吸
気抵抗が低減され、その結果、吸気充填効率ないしエン
ジン出力性能が向上することになる。また、集合部Aの
下流側の端面に各分岐通路C・・・Cの上流端が近接し
て開口するので、慣性効果に関して、各分岐通路C・・
・Cが互いに他の分岐通路Cに対する大気解放空間とし
て作用し、従って集合部Aの容積を小さくすることがで
きるのである.
(発明が解決しようとする課題)
ところで、上記の慣性効果は、吸気弁の開時に分岐通路
の下流部に生じる負圧波が該通路を上流側に向かって伝
播し、大気解放部(集合部)で正圧波に反転した上で下
流側に方向変換した後、この正圧波が吸気弁の閉弁直前
に分岐通路下流端に到達したときに最も大きな過給効果
が得られるものであり、このように圧力波が分岐通路を
2往復する時間と吸気弁の開時から閉時までの時間とが
略等しくなる特定のエンジン回転数で効果が最大となる
.また、共鳴効果も、各気筒における吸気弁の開時に順
次生じる負圧波が吸気振動の起振力となって、その振動
周波数が集合部とその上流側通路とでなる共鳴空間の固
有振動数に一致したときに大きな過給効果が得られるも
のであるから、同じく特定のエンジン回転数で効果が最
大となる.
つまり、吸気の慣性効果や共鳴効果等の動的効果は、吸
気系統の所定の形状に対して、特定の同調回転数及びそ
の近傍の回転数においてのみ得られるものであって、広
いエンジン回転領域で常に過給効果が得られるものでは
なく、一般に、慣性効果を利用する場合には同調回転数
を比較的高回転数に設定し、共鳴効果を利用する場合に
は同調回転数を比較的低回転数に設定するのが通例であ
る。According to this, the opening B of the upstream passage in the gathering part A
The distance from the opening of each branch passage C...C and the length of each branch passage C...C are approximately equal, which improves the distribution of intake air to each cylinder and the effect of inertia on each cylinder. In addition, the intake air flow path is no longer sharply curved, reducing intake resistance, and as a result, intake air filling efficiency and engine output performance are improved. In addition, since the upstream ends of the branch passages C...C open close to the downstream end face of the collecting portion A, each branch passage C...
・C acts as an air release space for other branch passages C, and therefore the volume of the gathering part A can be reduced. (Problem to be Solved by the Invention) By the way, the above-mentioned inertial effect is caused by the negative pressure wave generated in the downstream part of the branch passage when the intake valve is opened propagating upstream in the passage, and the air release part (collecting part) The greatest supercharging effect is obtained when this positive pressure wave is reversed into a positive pressure wave and changed direction downstream, and then reaches the downstream end of the branch passage just before the intake valve closes. The effect is greatest at a specific engine speed where the time for the pressure wave to travel back and forth through the branch passage twice is approximately equal to the time from opening to closing of the intake valve. In addition, the resonance effect occurs when the negative pressure waves that occur sequentially when the intake valves in each cylinder open act as an excitation force for intake vibration, and the vibration frequency changes to the natural frequency of the resonant space consisting of the collecting section and its upstream passage. When they match, a large supercharging effect can be obtained, so the effect is maximized at a specific engine speed. In other words, dynamic effects such as the inertial effect and resonance effect of the intake air can only be obtained at a specific tuned rotational speed and a rotational speed in its vicinity for a given shape of the intake system, and are limited to a wide range of engine rotational speeds. Generally, when using inertia effect, the tuning speed is set to a relatively high speed, and when using resonance effect, the tuning speed is set to a relatively low speed. It is customary to set the rotation speed.
そこで、本発明は、前述の吸気の分配性の均一化や吸気
抵抗の低減化等を図った吸気装置において、吸気の動的
効果による過給効果が広いエンジン回転領域で得られる
ようにすることを課題とする.
(課題を解決するための手段〉
上記課題を解決するため、本発明は次のように構成した
ことを特徴とする。SUMMARY OF THE INVENTION Therefore, the present invention aims to provide an intake system that achieves uniform distribution of intake air, reduces intake resistance, etc., so that the supercharging effect due to the dynamic effect of intake air can be obtained over a wide range of engine rotations. The task is to (Means for Solving the Problems) In order to solve the above problems, the present invention is characterized by being configured as follows.
すなわち、本発明に係る多気筒エンジンの吸気装置は、
吸気行程が等間隔となる複数の気筒毎にグループ分け可
能な4気筒以上の気筒を有し、且つ各気筒にそれぞれ接
続される気筒数と同数の分岐通路と、これらの分岐通路
が集合する集合室と、該集合室の上流側に連設される上
流通路とを有すると共に、上記集合室を、上記各分岐通
路上流端の開口部における軸線と略同一方向の軸線を有
し且つ上流通路が接続された上流側端面がら各分岐通路
が接続された上記上流側端面より大きい断面積を有する
下流側端面にかけて断面積が滑らかに変化する形状とし
た構成において、上記集合室及び上流通路を、これらの
軸線に沿って延びる隔壁により、上記気筒グループ毎に
複数の集合室及び上流通路に分割する.そして、該隔壁
における集合室下流側端面の近傍位置に分割された各集
合室を互いに連通させる連通孔を設けると共に、該連通
孔に、エンジンの低回転領域で閉じ、高回転領域で開く
開閉弁を備えたことを特徴とする。That is, the intake system for a multi-cylinder engine according to the present invention has the following features:
A cylinder that has four or more cylinders that can be grouped into multiple cylinders whose intake strokes are equally spaced, and that has the same number of branch passages as the number of cylinders connected to each cylinder, and a collection of these branch passages. a chamber, and an upstream passage connected to the upstream side of the gathering chamber, and the gathering chamber has an axis in substantially the same direction as the axis at the opening at the upstream end of each of the branch passages, and has an upstream passageway connected to the upstream side of the gathering chamber. In a configuration in which the cross-sectional area smoothly changes from the upstream end face to which the passages are connected to the downstream end face having a larger cross-sectional area than the upstream end face to which each branch passage is connected, the gathering chamber and the upstream passage is divided into a plurality of gathering chambers and upstream passages for each cylinder group by partition walls extending along these axes. A communication hole is provided in the vicinity of the downstream end face of the collecting chamber in the partition wall for communicating the divided collecting chambers with each other, and an on-off valve is provided in the communicating hole, which closes in a low engine speed range and opens in a high engine speed range. It is characterized by having the following.
(作 用〉
上記の構成によれば、エンジンの低回転領域では、rM
閉弁が集合室と上流通路とを分割する隔壁に設けられた
連通孔を閉じるので、該集合室及び上流通路が複数の気
筒グループ毎に完全に分割されることになる。その場合
に、該集合室及び上流通路は吸気行程が等間隔となる気
筒のグループ毎に分割されるので、各グループにおいて
は、分割された集合室と上流通路内に、各気筒の吸気行
程時に発生する負圧波を起振力とするエンジン回転数に
比例する周波数の圧力振動が発生する。そして、低エン
ジン回転領域の所定回転数で、この圧力振動が上記の分
割された集合室と上流通路とでなる共鳴空間内で共鳴す
るように該空間の固有振動数を設定しておくことにより
、その共鳴現象によって大きな圧力振動が発生し、これ
により燃焼室に対する吸気の過給作用が生じることにな
る。(Function) According to the above configuration, in the low rotation range of the engine, rM
Since the closing of the valve closes the communication hole provided in the partition wall that divides the gathering chamber and the upstream passage, the gathering chamber and the upstream passage are completely divided into a plurality of cylinder groups. In that case, the gathering chamber and upstream passage are divided into groups of cylinders whose intake strokes are equally spaced, so in each group, the intake air of each cylinder is divided into the divided gathering chamber and upstream passage. Pressure vibrations with a frequency proportional to the engine speed are generated using the negative pressure waves generated during stroke as an excitation force. Then, the natural frequency of the space is set so that this pressure vibration resonates within the resonance space formed by the divided gathering chamber and the upstream passage at a predetermined rotation speed in a low engine rotation region. As a result, large pressure oscillations occur due to the resonance phenomenon, which causes a supercharging effect of intake air to the combustion chamber.
また、エンジンの高回転領域では、上記開閉弁が隔壁に
設けられた連通孔を開くので、集合室内の全体が所要の
容積を有する比較的大きな空間となる。そのため、各気
筒の吸気弁の開時に分岐通路の下流部に発生する負圧波
が該分岐通路を上流側に伝播して集合室に到達したとき
に、該集合室が大気解放部として作用して負圧波が確実
に正圧波に反転されることになる。従って、上記各分岐
通路の長さ等を適切に設定しておくことにより、高エン
ジン回転領域の所定の回転数で上記の正圧波が吸気弁の
閉弁直前に分岐通路の下流端に到達して、慣性効果によ
る燃焼室内への吸気の過給作用が得られることになる。Furthermore, in the high rotational range of the engine, the on-off valve opens the communication hole provided in the partition wall, so that the entire inside of the collective chamber becomes a relatively large space with a required volume. Therefore, when the negative pressure wave generated in the downstream part of the branch passage when the intake valve of each cylinder is opened propagates upstream through the branch passage and reaches the collecting chamber, the collecting chamber acts as an atmosphere release part. Negative pressure waves will definitely be reversed into positive pressure waves. Therefore, by appropriately setting the length of each branch passage, etc., the above positive pressure wave can reach the downstream end of the branch passage just before the intake valve closes at a predetermined rotation speed in the high engine rotation range. As a result, a supercharging effect of intake air into the combustion chamber can be obtained due to the inertial effect.
そして、特に上記集合室は、上記各分岐通路上流端の開
口部における軸線と略同一方向の軸線を有し且つ上流通
路が開口する上流側端面から各分岐通路が開口する上記
上流側端面より断面積が大きい下流側端面にかけて断面
積が滑らかに変化する形状とされているので、コンパク
トに構成されると共に、吸気抵抗が少なくなり、しかも
各気筒への吸気の分配性等が均一化されて、上記の共鳴
効果及び慣性効果と相俟って吸気充填効率ないしエンジ
ン出力が効果的に向上することになる。In particular, the gathering chamber has an axis in substantially the same direction as the axis at the opening at the upstream end of each of the branch passages, and from the upstream end face where the upstream passage opens to the upstream end face where each branch passage opens. The cross-sectional area changes smoothly toward the downstream end face, which has a large cross-sectional area, so it is compact, reduces intake resistance, and evens out the distribution of intake air to each cylinder. In combination with the resonance effect and inertia effect described above, the intake air filling efficiency or engine output is effectively improved.
(実 施 例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.
第1図は本発明を直列4気筒エンジンに適用した実施例
を示すもので、この実施例に係る吸気マニホルド10は
、エンジンのシリンダヘッド(図示せず冫に取り付けら
れるフランジ部11と、該フランジ部11に一端が接続
されて上記シリンダヘッドにおける吸気ボートを介して
第1〜第4気筒の燃焼室にそれぞれ連通される第1〜第
4分岐通路12+〜124と、これらの分岐通路121
〜124の上流端部が集合する集合室13と、該集合室
13から上流側に延びる上流通1?il4とを有し、該
上流通路14の上流端にエアフローメータ15を介して
エアクリーナ16が取り付けられている。FIG. 1 shows an embodiment in which the present invention is applied to an in-line four-cylinder engine, and an intake manifold 10 according to this embodiment includes a flange portion 11 attached to the cylinder head (not shown) of the engine, and a flange portion 11 attached to the cylinder head (not shown) of the engine. first to fourth branch passages 12+ to 124 having one end connected to the section 11 and communicating with the combustion chambers of the first to fourth cylinders via the intake boat in the cylinder head, and these branch passages 121;
A gathering chamber 13 where the upstream ends of the upstream sections 1 to 124 gather, and an upper flow 1 extending from the gathering chamber 13 to the upstream side. il4, and an air cleaner 16 is attached to the upstream end of the upstream passage 14 via an air flow meter 15.
上記各分岐通路121〜124は、長さが略等しくなる
ように屈曲されて上流部が一体的に束ねられており、そ
の上流開口端12a・・・12aが互いに近接した状態
で上記集合室13の下流側の端面13aに開口されてい
る。また、この集合室13は、上記各分岐通路121〜
124の開口端12a・・・12aにおける軸線方向と
略同一方向の軸線を有すると共に、上記上流通路14の
下流端が接続された上流側端面13bがら上記下流側端
面13aにかけて断面槓が滑らがに変化する形状とされ
ている。The above-mentioned branch passages 121 to 124 are bent so that the lengths are approximately equal, and the upstream parts are integrally bundled, and the upstream opening ends 12a...12a are close to each other and the above-mentioned collective chamber 1 It is opened at the end face 13a on the downstream side. In addition, this gathering room 13 includes each of the branch passages 121 to
124, and has an axis in substantially the same direction as the axial direction of the opening ends 12a...12a of the upstream passage 14, and has a cross-sectional ram that is smooth from the upstream end surface 13b to which the downstream end of the upstream passage 14 is connected to the downstream end surface 13a. It is said that the shape changes.
また、この集合室13と,上流側通路14の中間部まで
の部分の内部には、これらの軸線に沿って延びる隔壁1
7が設けられ、該隔壁17により、集合室13が第1、
第2集合室13+,132に、また上流通路17の下流
部が第1、第2上流通路14+ ,142に分割されて
いる。その場合に、上記隔壁17は、第2、第3気筒の
分岐通路122,123を第1集合室13+ないし第1
上流通路14、に連通させ、第1、第4気筒の分岐通路
12+,124を第2集合室132ないし第2上流通路
142に連通させるように、つまり、各気筒の吸気順序
が#1−#3→#4−#2である場合に、吸気行程の間
隔が等間隔となる2つの気筒毎にグループ分けされて、
第1、第2集合室1.31,132ないし第1、第2上
流通路141 ,142にそれぞれ連通するように設け
られている.
そして、第2図に拡大して示すように、上記隔壁17に
おける集合室13の下流側端面13aの近傍位置には、
第1、第2集合室131,132を連通させる連通孔1
7aが設けられていると共に、該連通孔17aを開閉す
る開閉弁18が備えられている。Furthermore, inside the collection chamber 13 and the upstream passage 14, there is a partition wall 1 extending along the axis thereof.
7 is provided, and the partition wall 17 separates the gathering room 13 from the first,
The downstream portion of the upstream passage 17 is divided into second gathering chambers 13+, 132, and into first and second upstream passages 14+, 142. In that case, the partition wall 17 separates the branch passages 122, 123 of the second and third cylinders from the first gathering chamber 13+ to the first
The branch passages 12+ and 124 of the first and fourth cylinders are communicated with the second collecting chamber 132 and the second upstream passage 142, that is, the intake order of each cylinder is #1. -#3→#4-#2, the cylinders are grouped into two cylinders whose intake strokes are equally spaced,
They are provided so as to communicate with the first and second gathering chambers 1.31 and 132 and the first and second upstream passages 141 and 142, respectively. As shown in an enlarged view in FIG.
Communication hole 1 that communicates the first and second gathering chambers 131 and 132
7a, and an on-off valve 18 for opening and closing the communication hole 17a.
この開閉弁18には上記隔壁17内を貫通して外部に突
出する回動軸18aが設けられ、該軸18aを回動させ
ることによって上記連通孔17aを開閉するようになっ
ていると共に、レバー19及びロッド20を介してこの
回動軸18aを回動させる負圧ダイアフラム式のアクチ
ュエータ21が備えられている。また、該アクチュエー
タ21に三方電磁弁22を介して作動負圧を供給する真
空タンク23と、上記三方電磁弁22を開閉制御するコ
ントローラ24とが備えられ、該コントローラ24にエ
ンジン回転数を検出するエンジン回転センサ25からの
信号S1が入力されるようになっている。そして、コン
トローラ24は、上記信号S1が示すエンジン回転数が
所定値以下の低回転領域では、上記アクチュエータ21
を介して開閉弁18が連通孔17aを閉じるように、ま
た所定回転数以上の高回転領域では、該開閉弁1?が連
通孔17aを開くように、上記三方電磁弁22に制御信
号S2を出力する。This opening/closing valve 18 is provided with a rotating shaft 18a that penetrates inside the partition wall 17 and projects to the outside, and by rotating the shaft 18a, the communicating hole 17a is opened and closed. A negative pressure diaphragm type actuator 21 is provided which rotates this rotation shaft 18a via a rod 20 and a negative pressure diaphragm actuator 21. Further, the actuator 21 is provided with a vacuum tank 23 that supplies operating negative pressure via a three-way solenoid valve 22, and a controller 24 that controls opening and closing of the three-way solenoid valve 22. The controller 24 detects the engine rotation speed. A signal S1 from an engine rotation sensor 25 is input. Then, the controller 24 controls the actuator 21 in a low rotation range where the engine rotation speed indicated by the signal S1 is below a predetermined value.
so that the on-off valve 18 closes the communication hole 17a through the on-off valve 1? A control signal S2 is output to the three-way solenoid valve 22 so as to open the communication hole 17a.
次に、この実施例の作用を説明する。Next, the operation of this embodiment will be explained.
まず、エンジン回転数が所定値以下の低回転領域では、
コントローラ24及びアクチュエータ21の作動により
、開閉弁18が集合室13及び上流通路14の下流部を
分割する隔壁17に設けられた連通孔17aを閉じるの
で、該集合室13及び上流通路14が第1、第2集合室
131,132及び第■、第2上流通路14+ ,14
2に完全に分割されることになる。その場合に、第1集
合室13+ないし第l上流通路141は、吸気行程が等
間隔となる第2、第3気筒の分岐通路122123に連
通し、また第2集合室132ないし第2上流通路142
は、同じく吸気行程が等間隔となる第1、第4気筒の分
岐通1i’812+,124に連通ずることにより、こ
れらの2つのグループのそれぞれにおいて、分割された
集合室131,132及び上流通路141 .14■で
なる各共鳴空間1,II内で、各気筒の吸気行程時に発
生する負圧波を起振力とするエンジン回転数に比例する
周波数の圧力振動が発生する。そして、低エンジン回転
領域の所定回転数で、この圧力振動が上記の共鳴空間■
,■の固有振動数に一致することにより、そのエンジン
回転数の周辺で上記空間■,■内に共鳴現象による大き
な圧力振動が発生し、この圧力振動が燃焼室に吸気を過
給する作用を行うことにより吸気充填量が増大する。そ
の結果、第3図に破線で示すように、所定の低エンジン
回転数N1で高いピークを有するエンジン出力特性が得
られることになる。First, in the low engine speed range where the engine speed is below a predetermined value,
Due to the operation of the controller 24 and the actuator 21, the on-off valve 18 closes the communication hole 17a provided in the partition wall 17 that divides the downstream part of the gathering chamber 13 and the upstream passage 14, so that the gathering chamber 13 and the upstream passage 14 are closed. The first and second gathering chambers 131, 132 and the second upstream passages 14+ and 14
It will be completely divided into two. In that case, the first gathering chamber 13+ or the first upstream passage 141 communicates with the branch passage 122123 of the second and third cylinders whose intake strokes are equally spaced, and the second gathering chamber 132 or the second upstream passage Road 142
By communicating with the branch passages 1i'812+, 124 of the first and fourth cylinders whose intake strokes are equally spaced, the divided collecting chambers 131, 132 and the upper passages are connected in each of these two groups. Road 141. In each of the resonance spaces 1 and 14, pressure oscillations occur at a frequency proportional to the engine rotational speed using the negative pressure waves generated during the intake stroke of each cylinder as an excitation force. Then, at a predetermined speed in the low engine speed range, this pressure oscillation causes the above-mentioned resonance space ■
By matching the natural frequencies of , ■, large pressure vibrations occur in the above spaces ■ and ■ around the engine rotational speed due to a resonance phenomenon, and this pressure vibration has the effect of supercharging the intake air into the combustion chamber. By doing so, the intake air filling amount increases. As a result, as shown by the broken line in FIG. 3, an engine output characteristic having a high peak at a predetermined low engine speed N1 is obtained.
一方、エンジンの高回転領域では、上記開閉弁18が隔
壁17に設けられた連通孔17aを開くので、集合室1
3の全体が所要の容積を有する比較的大きな空間となり
、各分岐通路12+〜124に対する大気解放部として
作用するようになる。そのため、各気筒の吸気弁の開時
に分岐通路121〜124の下流端部に発生する負圧波
が該分岐通路12、〜12,を上流側に伝播して集合室
l3に到達したときに、該集合室13の下流側端面13
aで確実に正圧波に反転されることになる.従って、上
記各分岐通路12.〜124の長さを適切に設定してお
くことにより、高エンジン回転領域の所定の回転数で上
記の正圧波が吸気弁の閉弁直前に分岐通路12.〜12
,の下流端部に到達して燃焼室内への吸気の過給作用が
得られ、この慣性効果により、第3図に鎖線で示すよう
に、所定の高エンジン回転数N2で高いピークを有する
エンジン出力特性が得られることになる,
従って、上記の所定エンジン回転数N I + N 2
の中間の回転数N3で開閉弁18を開動もしくは閉動さ
せることにより、第3図に実線で示すように、共鳴効果
及び慣性効果が共に利用されて、広いエンジン回転領域
で出力が向上された特性が得られることになるのである
.
そして、特に上記集合室13は、上記各分岐通路121
〜124の上流端の開口部における軸線と略同一方向の
軸線を有し、且つ上流通路14が開口する上流側端面1
3bから各分岐通路121〜l24が開口する上記上流
側端面13bより断面積が大きい下流側端面13aにか
けて断面積が滑らかに変化する形状とされているので、
吸気の流動経路の屈曲が少なくなって吸気抵抗が低減さ
れ、しかも各気筒への吸気の分配性が均一化されて、上
記の共鳴効果及び慣性効果と相俟ってエンジン出力が効
果的に向上することになる。また、各分岐通路121〜
124の上流端12a・・・12aが互いに近接した状
態で集合室13の下流側端面13aに開口しているので
、慣性効果に関して、各分岐通路121〜124が互い
に他の分岐通路に対する大気解放空間として作用するこ
とになり、従って集合室13自体の容積が比較的少なく
て済むことになる。On the other hand, in the high rotation range of the engine, the on-off valve 18 opens the communication hole 17a provided in the partition wall 17, so that the gathering chamber 1
3 is a relatively large space having a required volume, and acts as an atmosphere release section for each of the branch passages 12+ to 124. Therefore, when the negative pressure waves generated at the downstream ends of the branch passages 121 to 124 when the intake valves of each cylinder are opened propagate upstream through the branch passages 12, to 12, and reach the gathering chamber l3, Downstream end surface 13 of gathering room 13
It will definitely be reversed into a positive pressure wave at point a. Therefore, each branch passage 12. By appropriately setting the length of 124 to 124, the positive pressure wave described above is caused to flow into the branch passage 12. ~12
, and a supercharging effect of the intake air into the combustion chamber is obtained, and due to this inertial effect, the engine has a high peak at a predetermined high engine speed N2, as shown by the chain line in FIG. Therefore, the above predetermined engine speed N I + N 2
By opening or closing the on-off valve 18 at an intermediate rotational speed N3, as shown by the solid line in Fig. 3, both the resonance effect and the inertia effect are utilized, and the output is improved over a wide engine rotation range. This means that the characteristics can be obtained. In particular, the gathering room 13 is connected to each of the branch passages 121
An upstream end surface 1 having an axis in substantially the same direction as the axis at the opening at the upstream end of ~124, and in which the upstream passage 14 opens.
The cross-sectional area changes smoothly from 3b to the downstream end face 13a, which has a larger cross-sectional area than the upstream end face 13b, where each of the branch passages 121 to 124 opens.
The curvature of the intake air flow path is reduced, reducing intake resistance, and the distribution of intake air to each cylinder is made more uniform, which, together with the resonance effect and inertia effect mentioned above, effectively improves engine output. I will do it. In addition, each branch passage 121~
Since the upstream ends 12a...12a of 124 are close to each other and open to the downstream end surface 13a of the gathering chamber 13, each branch passage 121 to 124 is an atmosphere open space with respect to the other branch passages due to the inertial effect. Therefore, the volume of the collection chamber 13 itself can be relatively small.
次に、第4図に示す本発明の第2実施例について説明す
る。Next, a second embodiment of the present invention shown in FIG. 4 will be described.
この実施例は、本発明を直列6気筒エンジンに適用した
場合のものであって、前記第1実施例と同様に、吸気マ
ニホルド30は、フランジ部31に一端が接続され且つ
長さが略等しくなるように?曲された6つの分岐通路3
2.〜326と、これらの分岐通路321〜326の上
流部が一体的に束ねられた状態で集合する集合室33と
、該集合室33から上流側に延びる上流通路34とで構
戒されている.また、上記集合室33は、各分岐通路3
21〜326の上流開口端32a・・・32aにおける
軸線と略同一方向の軸線を有すると共に、上流通路34
が接続された上流側端面33bから各分岐通路321〜
326が接続された上記上流側端面33bより断面積が
大きい下流側端面33aにかけて断面積が滑らかに変化
する形状とされている。In this embodiment, the present invention is applied to an in-line six-cylinder engine, and similarly to the first embodiment, the intake manifold 30 has one end connected to the flange portion 31 and has approximately equal lengths. So that it becomes? Six curved branch passages 3
2. ~ 326, a collection chamber 33 where the upstream parts of these branch passages 321 to 326 gather in an integrally bundled state, and an upstream passage 34 extending upstream from the collection chamber 33. .. In addition, the gathering room 33 includes each branch passage 3.
The upstream passage 34 has an axis in substantially the same direction as the axis at the upstream opening ends 32a...32a of 21 to 326.
From the upstream end surface 33b connected to each branch passage 321~
326 is connected to the downstream end surface 33a, which has a larger cross-sectional area than the upstream end surface 33b.
そして、上記集合室33及び上流通路34は、これらの
軸線に沿って延びる隔壁37により、吸気行程が等間隔
となる第l〜第3気筒の分岐通路321〜323に連通
ずる第1集合室331及び第1上流通路34sと、同じ
く吸気行程が等間隔となる第4〜第6気筒の分岐通路3
24〜326に連通ずる第2集合室33■及び第2上流
通路342とに分割されていると共に、該隔壁37にお
ける集合室33の下流側端面33aの近傍位置には第1
、第2集合室33+ ,33xを連通させる連通孔37
aが設けられ、且つ該連通孔37aを開閉する開閉弁3
8が備えられている。The gathering chamber 33 and the upstream passage 34 are connected to the branch passages 321 to 323 of the first to third cylinders whose intake strokes are equally spaced through a partition wall 37 extending along these axes. 331 and the first upstream passage 34s, and the branch passage 3 of the fourth to sixth cylinders whose intake strokes are equally spaced.
The partition wall 37 is divided into a second collecting chamber 33 and a second upstream passage 342 communicating with the collecting chambers 24 to 326, and a first
, a communication hole 37 that communicates the second gathering chambers 33+ and 33x.
an opening/closing valve 3 that is provided with a opening and closing valve 3 that opens and closes the communication hole 37a;
8 is provided.
この開閉弁38は、前記第1実施例と同様に、図示しな
いコントローラ及びアクチュエー夕の作動により、所定
回転数以下の低エンジン回転領域で連通孔37aを閉じ
、所定回転数以上の高エンジン回転領域で該連通孔37
aを開くようになっている。Similar to the first embodiment, this opening/closing valve 38 closes the communication hole 37a in a low engine rotation range below a predetermined rotation speed and closes the communication hole 37a in a high engine rotation range above a predetermined rotation speed by the operation of a controller and an actuator (not shown). The communication hole 37
It is designed to open a.
従って、この実施例においても、前記第1実施例と同様
に、エンジンの低回転領域で共鳴効果が、高回転領域で
慣性効果がそれぞれ得られると共に、吸気抵抗が小さく
なり、且つ各気筒への吸気の分配性や上記共鳴効果及び
慣性効果の各気筒に対する作用が均一化されて、吸気充
填量が増大し、ひいては広い回転領域でエンジン出力が
向上することになる。また、各分岐通路32.〜326
の上流端部32a・・・32aが互いに近接した状態で
集合室33の下流側端面33aに開口してい?ので、各
分岐通路321〜326が互いに他の分岐通路に対する
大気解放空間として作用して、集合室33がコンパクト
に楕戒されることになる.
さらに、第5,6図に示す第3実施例は、直列状に並ぶ
3つの気筒をそれぞれ有する2つのバンクをV型に配置
してなるV型エンジンに本発明を適用したものであって
、この実施例に係る吸気マニホルド40は、第1、第2
バンクA,Bのシリンダヘッドにそれぞれ接続される2
つのフランジ部411 .41■と、これらのフランジ
部41+412に一端が接続された各3つ、合計6つの
分岐通路421〜426と、これらの分岐通路421〜
426の上流部が一体的に束ねられた状態で集合する集
合室43と、該集合室43から上流側に延びる上流側通
路44とで横成されている。Therefore, in this embodiment as well, similar to the first embodiment, a resonance effect is obtained in the low engine speed region and an inertial effect is obtained in the high engine speed region, the intake resistance is reduced, and the air flow to each cylinder is reduced. The distribution of intake air and the effects of the resonance effect and inertia effect on each cylinder are made uniform, increasing the amount of intake air filling and, in turn, improving the engine output over a wide rotational range. In addition, each branch passage 32. ~326
The upstream end portions 32a...32a of the upstream end portions 32a are close to each other and open to the downstream end surface 33a of the gathering chamber 33? Therefore, each of the branch passages 321 to 326 acts as an air release space for the other branch passages, and the gathering room 33 is formed into a compact ellipse. Furthermore, the third embodiment shown in FIGS. 5 and 6 is an example in which the present invention is applied to a V-type engine in which two banks each having three cylinders arranged in series are arranged in a V-shape. The intake manifold 40 according to this embodiment has first and second
2 connected to the cylinder heads of banks A and B, respectively.
Two flange portions 411. 41■, three branch passages each having one end connected to these flange parts 41+412, a total of six branch passages 421-426, and these branch passages 421-426.
The upstream portions of the tubes 426 are horizontally constituted by a gathering chamber 43 where they gather in an integrally bundled state, and an upstream passage 44 extending upstream from the gathering chamber 43.
また、上記集合室43は各分岐通路42r〜426の上
流開口端における軸線と略同一方向の軸線を有すると共
に、上流通路44が接続された上流側端面43bから各
分岐通路421〜426が接?された上記上流側端面4
3bより断面積が大きい下流側端面43aにかけて断面
積が滑らかに変化する形状とされている。Further, the gathering chamber 43 has an axis in substantially the same direction as the axis at the upstream opening end of each of the branch passages 42r to 426, and the branch passages 421 to 426 are connected to each other from the upstream end surface 43b to which the upstream passage 44 is connected. ? The upstream end surface 4
The cross-sectional area smoothly changes toward the downstream end face 43a, which has a larger cross-sectional area than that of the downstream end face 3b.
そして、この実施例においても、上記集合室43及び上
流通路44は、これらの軸線に沿って延びる隔壁47に
より、吸気行程が等間隔となる第1〜第3気筒の分岐通
路421〜423に連通ずる第1集合室43+及び第1
上流通路44■と、同じく吸気行程が等間隔となる第4
〜第6気筒の分岐通路424〜426に連通ずる第2集
合室432及び第2上流通路44■とに分割されている
と共に、該隔壁47における集合室43の下流側端面4
3aの近傍位置には第1、第2集合室4343■を連通
させる連通孔47aが設けられ、且つ該連通孔47aを
開閉する開閉弁48が備えられている。そして、この開
閉弁48も、前記第1、第2実施例と同様に、所定回転
数以下の低エンジン回転領域で連通孔47aを閉じ、所
定回転数以上の高エンジン回転領域で該連通孔47aを
開くようになっている。Also in this embodiment, the gathering chamber 43 and the upstream passage 44 are separated into branch passages 421 to 423 of the first to third cylinders whose intake strokes are equally spaced by a partition wall 47 extending along these axes. The first gathering room 43+ and the first
The upstream passage 44■ and the fourth passage whose intake strokes are equally spaced
~ It is divided into a second gathering chamber 432 and a second upstream passage 44 which communicate with the branch passages 424 to 426 of the sixth cylinder, and the downstream end surface 4 of the gathering chamber 43 at the partition wall 47.
A communication hole 47a that communicates the first and second gathering chambers 4343 is provided in the vicinity of 3a, and an on-off valve 48 that opens and closes the communication hole 47a is provided. Similarly to the first and second embodiments, this on-off valve 48 also closes the communication hole 47a in a low engine rotation range below a predetermined rotation speed, and closes the communication hole 47a in a high engine rotation range above a predetermined rotation speed. It is designed to open.
従って、この実施例においても、エンジンの低回転領域
で共鳴効果が、高回転領域で慣性効果がそれぞれ得られ
ると共に、吸気抵抗が小さくなり、且つ各気筒への吸気
の分配性や各気筒に対する上記−Il:鳴効果及び慣性
効果の作用等が均一化されて、吸気充填効率ないしエン
ジン出力性能が向上し、また集合室43がコンパクトに
構戒されることになる。Therefore, in this embodiment as well, a resonance effect can be obtained in the low rotation range of the engine, and an inertia effect can be obtained in the high rotation range of the engine, the intake resistance is reduced, and the distribution of intake air to each cylinder is improved. -Il: The effects of the noise effect and the inertial effect are made uniform, and the intake air filling efficiency or engine output performance is improved, and the gathering chamber 43 is arranged in a compact manner.
なお、この実施例においては、各分岐通路421〜42
6が、長さが略等しくなるように屈曲されて第2バンク
B側に導かれていると共に、該第2バンクBの上方で集
合されている。これは、第6図に示すように、当該エン
ジンを車両のエンジンルームXにクランクシャフトの軸
線を横方向に向けて搭載したときに、後方に位置する第
2バンクBとエンジンルームXの上方を覆うボンネット
Yとの間に生じるスペースを有効利用して、該エンジン
を収納するためである。In addition, in this embodiment, each branch passage 421 to 42
6 are bent so that their lengths are approximately equal and guided toward the second bank B, and are gathered above the second bank B. As shown in Fig. 6, when the engine is mounted in the engine room X of a vehicle with the axis of the crankshaft oriented laterally, the second bank B located at the rear and the upper part of the engine room This is to store the engine by effectively utilizing the space created between the bonnet Y and the covering bonnet Y.
(発明の効果)
以上のように本発明によれば、各気筒に接続される気筒
数と同数の分岐通路と、これらの分岐通路の上流端部が
集合する集合室と、該集合室から上流側に延びる上流通
路とを有する多気筒エンジンの吸気装置において、吸気
抵抗が低減され、且つ各気筒に対する吸気の分配性が向
上すると共に、低エンジン回転領域では吸気の共鳴効果
が、高エンジン回転領域では吸気の慣性効果がそれぞれ
得られることになる.その結果、エンジンの広い回転領
域で、吸気充填量が増大されてエンジン出力性能が効果
的に向上されることになる。また、上記集合室、ひいて
は当該吸気装置がコンパクトに構成されることになる。(Effects of the Invention) As described above, according to the present invention, there are branch passages of the same number as the number of cylinders connected to each cylinder, a gathering chamber where the upstream ends of these branch passages gather, and a passageway upstream from the gathering chamber. In an intake system for a multi-cylinder engine having an upstream passage extending to the side, intake resistance is reduced and the distribution of intake air to each cylinder is improved. In each region, the inertial effect of intake air is obtained. As a result, the intake air filling amount is increased over a wide rotational range of the engine, and the engine output performance is effectively improved. Further, the gathering room and, by extension, the intake device can be configured compactly.
第1〜6図は本発明の実施例を示すもので、第1図は第
1実施例に係る吸気マニホルドの斜視図、第2図はその
要部拡大断面図、第3図は該実施例によるエンジン出力
特性図、第4図は第2実施例に係る吸気マニホルドの斜
視図、第5図は第3実施例に係る吸気マニホルド及びそ
の周辺の平面図、第6図は第5図VI−Vl線で切断し
た断面図である.また、第7図は本発明の従来技術を示
す吸気マニホルドの平面図である.
10,30.40・・・吸気マニホルド、121〜12
4.321〜32a ,42+〜426・・分岐通路、
13,33.43・・・集合室、14,34.44・・
・上流通路、17,37.47・・・隔壁、17a,3
7a,47a・・・連通孔、18,38.48・・・開
閉弁。
ヂ零
31
7
図
笛5
図
笛
6図1 to 6 show embodiments of the present invention, in which FIG. 1 is a perspective view of an intake manifold according to the first embodiment, FIG. 2 is an enlarged sectional view of the main part thereof, and FIG. 3 is the embodiment. FIG. 4 is a perspective view of the intake manifold according to the second embodiment, FIG. 5 is a plan view of the intake manifold and its surroundings according to the third embodiment, and FIG. 6 is a diagram of FIG. It is a sectional view taken along the Vl line. Furthermore, FIG. 7 is a plan view of an intake manifold showing the prior art of the present invention. 10,30.40...Intake manifold, 121-12
4.321~32a, 42+~426...branch passage,
13, 33.43... Meeting room, 14, 34.44...
・Upstream passage, 17, 37.47... Bulkhead, 17a, 3
7a, 47a...Communication hole, 18,38.48...Opening/closing valve. Jirei 31 7 Zubue 5 Zubue 6
Claims (1)
分け可能な4気筒以上の気筒を有し、且つ各気筒にそれ
ぞれ接続される気筒数と同数の分岐通路と、これらの分
岐通路の上流端部が集合する集合室と、該集合室の上流
側に連設される上流通路とを有すると共に、上記集合室
が、上記各分岐通路上流端の開口部における軸線と略同
一方向の軸線を有し且つ上流通路が開口する上流側端面
から各分岐通路が開口する上記上流側端面より大きい断
面積を有する下流側端面にかけて断面積が滑らかに変化
する形状とされた多気筒エンジンの吸気装置であつて、
上記集合室及び上流通路を、これらの軸線に沿って延び
る隔壁により、上記気筒グループ毎に複数の集合室及び
上流通路に分割すると共に、該隔壁における集合室下流
側端面の近傍位置に分割された各集合室を互いに連通さ
せる連通孔を設け、且つ該連通孔にエンジンの低回転領
域で閉じ、高回転領域で開く開閉弁を備えたことを特徴
とする多気筒エンジンの吸気装置。(1) It has four or more cylinders that can be grouped into multiple cylinders whose intake strokes are equally spaced, and the same number of branch passages as the number of cylinders connected to each cylinder, and the number of branch passages connected to these branch passages. It has a gathering chamber in which the upstream ends gather together, and an upstream passage connected to the upstream side of the gathering chamber, and the gathering chamber is arranged in substantially the same direction as the axis of the opening at the upstream end of each of the branch passages. A multi-cylinder engine having an axis and having a shape in which the cross-sectional area smoothly changes from an upstream end face where an upstream passage opens to a downstream end face having a larger cross-sectional area than the upstream end face where each branch passage opens. An intake device,
The gathering chamber and upstream passage are divided into a plurality of gathering chambers and upstream passages for each cylinder group by a partition wall extending along the axis thereof, and divided into positions near the downstream end face of the gathering chamber on the partition wall. An intake system for a multi-cylinder engine, characterized in that a communication hole is provided for communicating the collecting chambers with each other, and the communication hole is provided with an on-off valve that closes in a low rotation range of the engine and opens in a high rotation range of the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23061289A JP2782604B2 (en) | 1989-09-05 | 1989-09-05 | Multi-cylinder engine intake system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23061289A JP2782604B2 (en) | 1989-09-05 | 1989-09-05 | Multi-cylinder engine intake system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0392534A true JPH0392534A (en) | 1991-04-17 |
JP2782604B2 JP2782604B2 (en) | 1998-08-06 |
Family
ID=16910492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23061289A Expired - Fee Related JP2782604B2 (en) | 1989-09-05 | 1989-09-05 | Multi-cylinder engine intake system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2782604B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008265A (en) * | 2006-06-30 | 2008-01-17 | Yanmar Co Ltd | Drive transmission mechanism for engine |
JP2009156102A (en) * | 2007-12-25 | 2009-07-16 | Toyota Motor Corp | Intake device for multiple cylinder engine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013172192A1 (en) * | 2012-05-18 | 2013-11-21 | 日産自動車株式会社 | Air intake device for internal combustion engine |
-
1989
- 1989-09-05 JP JP23061289A patent/JP2782604B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008265A (en) * | 2006-06-30 | 2008-01-17 | Yanmar Co Ltd | Drive transmission mechanism for engine |
JP2009156102A (en) * | 2007-12-25 | 2009-07-16 | Toyota Motor Corp | Intake device for multiple cylinder engine |
Also Published As
Publication number | Publication date |
---|---|
JP2782604B2 (en) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0192518A (en) | Engine intake-air device | |
JP2742809B2 (en) | Multi-cylinder engine intake system | |
US5080051A (en) | Intake system for engine | |
US5161492A (en) | Intake system for multi-cylinder engine | |
JPH03286129A (en) | Air intake device for multiple cylinder engine | |
KR100250050B1 (en) | Variable intake system for v-typed engines | |
JPH0392534A (en) | Intake device for multi-cylinder engine | |
JPH03168325A (en) | Suction device of multiple cylinder engine | |
JP2820411B2 (en) | Engine intake system | |
JP2771176B2 (en) | Engine intake system | |
JPS61116022A (en) | Engine intake-air device | |
JP2779253B2 (en) | Multi-cylinder engine intake system | |
JP2583529B2 (en) | Engine intake system | |
JP2750122B2 (en) | Engine intake system | |
JP2583526B2 (en) | Engine intake system | |
JP2771175B2 (en) | Engine intake system | |
JP2543906B2 (en) | Engine intake system | |
JP2583527B2 (en) | Engine intake system | |
JPH02136510A (en) | Intake air system for engine | |
JPH0354318A (en) | Intake device of multiple cylinder engine | |
JPS63106324A (en) | Exhauster for v-type multicylinder engine | |
JPH01314A (en) | engine intake system | |
JPH03115732A (en) | Intake device for multiple cylinder engine | |
JPH01232109A (en) | Air inlet device of engine | |
JPS60222524A (en) | Suction device of engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |