JP2750122B2 - Engine intake system - Google Patents

Engine intake system

Info

Publication number
JP2750122B2
JP2750122B2 JP63092791A JP9279188A JP2750122B2 JP 2750122 B2 JP2750122 B2 JP 2750122B2 JP 63092791 A JP63092791 A JP 63092791A JP 9279188 A JP9279188 A JP 9279188A JP 2750122 B2 JP2750122 B2 JP 2750122B2
Authority
JP
Japan
Prior art keywords
intake
passage
pressure wave
resonance
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63092791A
Other languages
Japanese (ja)
Other versions
JPS6429613A (en
Inventor
光夫 人見
昭則 山下
敏彦 服部
泰浩 楪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP63092791A priority Critical patent/JP2750122B2/en
Publication of JPS6429613A publication Critical patent/JPS6429613A/en
Application granted granted Critical
Publication of JP2750122B2 publication Critical patent/JP2750122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は共鳴効果によって吸気の充填効率を高めるよ
うにしたエンジンの吸気装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake device for an engine in which intake efficiency is improved by a resonance effect.

〔従来の技術〕[Conventional technology]

従来から、吸気の動的効果によって充填効率を高める
ようにしたエンジンの吸気装置は種々知られている。例
えば、特公昭60−14169号公報に示された装置では、多
気筒エンジンにおいて、吸気順序が連続しない気筒を同
一グループとする2グループの気筒群にそれぞれ接続さ
れた2つの吸気通路を設け、この各吸気通路をそれぞ
れ、吸気マニホールドブランチの上流端が接続された拡
大室(容積大の集合室)と、この拡大室から上流に延び
る共鳴通路とを備えて構成するとともに、上記拡大室等
に、上記各吸気通路相互を連通遮断可能とする切替装置
を設け、各吸気通路の上流端を上流側集合室に接続して
いる。この装置によると、上記切替装置が上記各吸気通
路相互を遮断した状態にあるときは、上流側集合室で反
転して反射される吸気圧力波により、エンジン回転数が
比較的低い領域で慣性過給効果が得られ、上記切替装置
が上記各吸気通路を連通する状態となったときは、圧力
波の反転反射位置が吸気ポートに近づけられることによ
り、エンジン回転数が比較的高い領域で慣性過給効果が
得られる。
2. Description of the Related Art Conventionally, various intake devices for an engine in which charging efficiency is increased by a dynamic effect of intake air have been known. For example, in an apparatus disclosed in Japanese Patent Publication No. 60-14169, in a multi-cylinder engine, two intake passages respectively connected to two groups of cylinders in which cylinders whose intake order is not continuous are set to be the same group are provided. Each of the intake passages is provided with an enlarged chamber (a large volume collecting chamber) to which the upstream end of the intake manifold branch is connected, and a resonance passage extending upstream from the enlarged chamber. A switching device is provided for disconnecting the intake passages from each other, and an upstream end of each intake passage is connected to an upstream collecting chamber. According to this device, when the switching device is in a state where the intake passages are shut off from each other, the intake pressure wave that is inverted and reflected in the upstream collecting chamber causes excessive inertia in a region where the engine speed is relatively low. When the supply effect is obtained and the switching device communicates with each of the intake passages, the reverse reflection position of the pressure wave is brought closer to the intake port, so that inertia over a region where the engine speed is relatively high is obtained. The salary effect is obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上記吸気装置によると、吸気マニホールド
ブランチ部が集合する部分に大きな容積の拡大室が設け
られているため、吸気系が大型化し、自動車に搭載する
場合に大きな設置スペースが必要となる等の不都合があ
る。
However, according to the above-mentioned intake device, since a large-volume expansion chamber is provided in a portion where the intake manifold branch portions are gathered, the intake system becomes large, and a large installation space is required when the intake system is mounted on an automobile. There are inconveniences.

なお、V型エンジンにおいては、例えば特開昭59−56
5号公報に見られるように、両バンク間の空間に、ブラ
ンチ部に相当する湾曲した個々の吸気通路と、この個々
の吸気通路に連通した拡大室に相当する空間とを有する
吸気マニホールドを配置することにより、慣性過給効果
をもたせつつ、全体の小型化を図るようにしたものがあ
る。しかしこの構造によっても、両バンク間に配置され
た吸気マニホールドに、ブランチ部に通じる拡大室が設
けられているため、吸気マニホールドがバンク上端より
上方に相当量突出することは避けられず、このため全体
の高さが大きくなり、自動車に搭載する場合、ボンネッ
ト高さを低く抑えることが困難となる。
Incidentally, in the case of the V-type engine, for example,
As seen in Japanese Patent Publication No. 5 (1993), an intake manifold having curved individual intake passages corresponding to branch portions and a space corresponding to an enlarged chamber communicating with the individual intake passages is arranged in a space between both banks. In some cases, the overall size is reduced while providing an inertial supercharging effect. However, even with this structure, since the intake manifold disposed between the two banks is provided with an enlarged chamber that communicates with the branch portion, it is unavoidable that the intake manifold projects considerably above the upper end of the bank. The overall height becomes large, and it is difficult to keep the bonnet height low when mounted on an automobile.

つまり、これら従来装置のように吸気マニホールドブ
ランチ部を拡大室に接続する構造では、エンジンに対す
る吸気系のレイアウトの自由度やコンパクト化(特に高
さの低減)には限界がある。このため、上記拡大室を廃
止し、例えば、吸気順序が連続しない気筒を同一グルー
プとする2つの気筒グループの各吸気ポートにそれぞ
れ、拡大室を有しない2つのパイプ状の吸気通路を、短
い枝管を介して接続し、この両吸気通路を上流側適宜箇
所で集合させてこの部分で圧力波を反転反射させるよう
にすることが考えられる。しかしこの場合、吸気ポート
と圧力波反転反射部との間の圧力波伝播経路の長さに気
筒毎の較差が生じ、とくに高速域での過給効果を期待し
て上記吸気通路を短くすると、相対的に上記較差が大き
くなって、各気筒に対する圧力波の作用にアンバランス
が生じるため、各気筒に充分な過給効果を及ぼすことが
困難になる。
That is, in the structure in which the intake manifold branch section is connected to the expansion chamber as in these conventional devices, there is a limit in the degree of freedom of the layout of the intake system with respect to the engine and the compactness (in particular, the reduction in height). For this reason, the expansion chamber is abolished. For example, two pipe-shaped intake passages having no expansion chamber are connected to the respective intake ports of the two cylinder groups in which cylinders in which the intake order is not continuous are grouped into short branches. It is conceivable that the two intake passages are connected via a pipe, and the two intake passages are gathered at an appropriate position on the upstream side so that the pressure wave is reflected back at this portion. However, in this case, a difference occurs in the length of the pressure wave propagation path between the intake port and the pressure wave reversing reflector for each cylinder, and if the above-described intake passage is shortened in expectation of a supercharging effect particularly in a high-speed region, Since the above-mentioned difference becomes relatively large and the action of the pressure wave on each cylinder becomes unbalanced, it becomes difficult to exert a sufficient supercharging effect on each cylinder.

本発明は上記の事情に鑑み、共鳴用の環状通路を用い
て、吸気系のレイアウトやコンパクト化に有利な構造と
しつつ、とくに高速域で、気筒毎のアンバランスを生じ
ることなく動的効果を有効に各気筒に及ぼして充填効率
を高めることができ、かつ、高速域と低速域でそれぞれ
動的効果をもたせることができるエンジンの吸気装置を
提供するものである。
In view of the above-described circumstances, the present invention uses the annular passage for resonance to provide a structure advantageous to the layout and compactness of the intake system, and particularly to achieve a dynamic effect without causing imbalance for each cylinder, particularly in a high-speed range. It is an object of the present invention to provide an intake device for an engine that can effectively increase the charging efficiency by affecting each cylinder and have a dynamic effect in a high speed range and a low speed range.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の吸気装置は、各気筒の吸気ポートに通じる吸
気通路に、各吸気ポートから伝播する圧力波を周回させ
るように環状をなし、かつ、高速域で圧力波の共振状態
が得られる所定の通路長さを有する共鳴用環状通路を設
けるとともに、高速域及び低速域でそれぞれエンジン回
転数と吸気通路の固有振動数とを同調させて略吸気弁閉
時期で吸気弁直前の吸気通路圧力の正方向振幅が大きく
なるような吸気の動的効果を得るべく、高速域では上記
共鳴用環状通路を圧力波が伝播する一方、低速域では上
記共鳴用環状通路とは別の経路を圧力波が伝播するよう
に圧力波伝播経路を切替える切替手段を設け、上記別の
経路の通路形状及び寸法を、低速域で圧力波の共振状態
が得られて吸気の動的効果が生じるように設定したこと
を特徴とするものである。
The intake device of the present invention has an annular shape in an intake passage communicating with an intake port of each cylinder so as to circulate a pressure wave propagating from each intake port, and a predetermined state in which a resonance state of the pressure wave is obtained in a high speed region. A resonance annular passage having a passage length is provided, and the engine speed and the natural frequency of the intake passage are tuned in a high-speed region and a low-speed region, respectively. In order to obtain the dynamic effect of the intake air in which the directional amplitude increases, the pressure wave propagates through the resonance annular passage in the high speed region, while the pressure wave propagates in a different path from the resonance annular passage in the low speed region. Switching means for switching the pressure wave propagation path so that the path shape and dimensions of the another path are set so that a resonance state of the pressure wave is obtained in a low speed region and a dynamic effect of intake air is generated. What is characteristic That.

〔作用〕[Action]

上記構成によると、高速域では、上記共鳴用環状通路
を通って伝播する圧力波により各気筒間で共鳴効果が得
られ、また、上記切替手段によって圧力伝播経路が切替
えられることにより、低速域では別の経路において圧力
波による動的効果が得られる。
According to the above configuration, in the high-speed range, the resonance effect is obtained between the cylinders by the pressure wave propagating through the resonance annular passage, and the pressure propagation path is switched by the switching means, so that in the low-speed range. In another path, a dynamic effect due to the pressure wave is obtained.

〔実施例〕〔Example〕

第1図は本発明の装置を3気筒エンジンに適用した場
合の一実施例を示しており、この図において、エンジン
本体1には1番、2番、3番の各気筒2a,2b,2cが設けら
れ、各気筒2a〜2cにはそれぞれ吸気ポート3a〜3cおよび
排気ポート4a〜4cが配設されている。これら吸気ポート
3a〜3cおよび排気ポート4a〜4cは、図外の吸気弁および
排気弁によってそれぞれ所定のタイミングで開閉され
る。
FIG. 1 shows an embodiment in which the apparatus of the present invention is applied to a three-cylinder engine. In this figure, the engine body 1 has first, second, and third cylinders 2a, 2b, 2c. The cylinders 2a to 2c are provided with intake ports 3a to 3c and exhaust ports 4a to 4c, respectively. These intake ports
The intake ports 3a to 3c and the exhaust ports 4a to 4c are opened and closed at predetermined timings by intake valves and exhaust valves (not shown).

上記各吸気ポート3a〜3cに通じる吸気通路には、各吸
気ポート3a〜3cとの間に拡大室を有しない共鳴用環状通
路5が設けられている。この共鳴用環状通路5は、各吸
気ポートから伝播する圧力波を周回させるように環状を
なし、かつ、高速域で後に詳述するような圧力波の共振
状態が得られる所定の通路長さに形成されている。そし
てこの共鳴用環状通路5に、短い独立吸気通路6a〜6cを
介して上記各吸気ポート3a〜3cが接続されるとともに、
これら吸気ポートが接続された部分の側方部等の適宜箇
所において、吸気導入通路7が共鳴用環状通路5に接続
されている。上記各独立吸気通路6a〜6cは、その長さが
充分に短く形成されることにより、後に詳述するように
独立吸気通路6a〜6cによる慣性同調回転数がエンジンの
許容最高回転数(エンジンの信頼性等の面から許容され
る最高回転数)よりも高くなるように設定されている。
In the intake passage communicating with each of the intake ports 3a to 3c, there is provided a resonance annular passage 5 having no expansion chamber between each of the intake ports 3a to 3c. The resonance annular passage 5 is formed in an annular shape so as to circulate the pressure wave propagating from each intake port, and has a predetermined passage length at which a resonance state of the pressure wave as described in detail later is obtained in a high speed region. Is formed. Each of the intake ports 3a to 3c is connected to the resonance annular passage 5 via short independent intake passages 6a to 6c.
The intake passage 7 is connected to the resonance annular passage 5 at an appropriate position such as a side portion of a portion to which the intake port is connected. Each of the independent intake passages 6a to 6c is formed to have a sufficiently short length, so that the inertial tuning rotational speed by the independent intake passages 6a to 6c is set to the maximum allowable rotational speed of the engine (engine It is set to be higher than the maximum number of rotations permitted from the viewpoint of reliability and the like.

上記共鳴用環状通路5には、圧力波伝播経路を切替え
る切替手段としての開閉弁8が設けられている。この開
閉弁8は、低速域では共鳴用環状通路5を遮蔽し、高速
域では共鳴用環状通路5を関連するように、図外の制御
回路およびアクチュエータによりエンジン回転数に応じ
て開閉作動される。また、上記吸気導入通路7には、吸
気量を検出するエアフローメータ9、アクセル操作に応
じて吸気量を調整するスロットル弁10等が配設されてお
り、吸気導入通路7の上流端はエアクリーナ11に接続さ
れている。なお、上記吸気導入通路7の途中には二点鎖
線で示すように容積部12を設けておいてもよい。
The resonance annular passage 5 is provided with an on-off valve 8 as switching means for switching the pressure wave propagation path. The on-off valve 8 is opened and closed according to the engine speed by a control circuit and an actuator (not shown) so as to block the resonance annular passage 5 in a low speed range and to associate the resonance annular passage 5 in a high speed range. . An air flow meter 9 for detecting the amount of intake air, a throttle valve 10 for adjusting the amount of intake air in accordance with an accelerator operation, and the like are disposed in the intake passage 7. An upstream end of the intake passage 7 is provided with an air cleaner 11. It is connected to the. A volume section 12 may be provided in the intake passage 7 as shown by a two-dot chain line.

そして、当実施例においては、低速域では開閉弁8が
共鳴用環状通路5を遮蔽することによりこれとは別の経
路である吸気導入通路7を圧力波が伝播する。この吸気
導入通路7による圧力波伝播経路の形状及び長さ等の寸
法が、低速域で圧力波の共振状態が得られて吸気の動的
効果が生じるように設定されている。
In the present embodiment, in the low-speed range, the on-off valve 8 blocks the resonance annular passage 5 so that the pressure wave propagates through the intake introduction passage 7 which is another path. The dimensions, such as the shape and the length, of the pressure wave propagation path formed by the intake introduction passage 7 are set so that a resonance state of the pressure wave is obtained in a low-speed region, and a dynamic effect of the intake occurs.

この実施例の装置によると、高速域では上記共鳴用環
状通路5により、また低速域では上記吸気導入通路7で
構成される圧力波伝播経路により、それぞれ、エンジン
回転数と吸気通路の固有振動数とを同調させて略吸気弁
閉時期で吸気弁直前の吸気通路圧力の正方向振幅が大き
くなるような吸気の動的効果が得られる。その具体的な
作用を第1図および第2図を参照して説明する。
According to the apparatus of this embodiment, the engine speed and the natural frequency of the intake passage are respectively defined by the resonance annular passage 5 in the high speed region and by the pressure wave propagation path constituted by the intake passage 7 in the low speed region. And a dynamic effect of intake such that the positive amplitude of the intake passage pressure immediately before the intake valve becomes large at substantially the intake valve closing time is obtained. The specific operation will be described with reference to FIG. 1 and FIG.

各気筒2a〜2cの吸気ポート3a〜3c付近には、各気筒の
作動によりそれぞれの吸気行程途中で負圧となって吸気
行程終期に正圧となる基本的圧力振動(第2図の線A)
が生じる。そして、上記開閉弁8が閉じられている低速
域では、圧力波が第1図に破線矢印で示すように吸気導
入通路7に伝播されて、この吸気導入通路7の上流側開
口端もしくは容積部12で負圧と正圧が反転して反射さ
れ、吸気ポートと上記上流側開口端もしくは容積部12と
の間を圧力波が往復伝播する。この場合、吸気行程途中
に生じた負圧が反転して反射された正圧波が、自気筒の
吸気ポートに吸気行程終期に作用する状態(第2図の二
点鎖線矢印)となったとき、慣性過給効果が得られる。
従って、低速域でこのような過給効果が得られるよう
に、予め吸気ポートと上記上流側開口端もしくは容積部
12との間の通路長さを設定しておけばよい。
In the vicinity of the intake ports 3a to 3c of the cylinders 2a to 2c, there is a basic pressure oscillation (line A in FIG. 2) in which the operation of each cylinder causes a negative pressure during the intake stroke and a positive pressure at the end of the intake stroke. )
Occurs. In the low-speed range where the on-off valve 8 is closed, the pressure wave is propagated to the intake passage 7 as shown by a broken line arrow in FIG. At 12, the negative pressure and the positive pressure are inverted and reflected, and the pressure wave reciprocates between the intake port and the upstream opening end or the volume 12. In this case, when the positive pressure wave generated by reversing the negative pressure generated in the middle of the intake stroke acts on the intake port of the own cylinder at the end of the intake stroke (two-dot chain line arrow in FIG. 2), An inertial supercharging effect is obtained.
Therefore, in order to obtain such a supercharging effect in a low speed range, the intake port and the upstream open end or the volume
The length of the passage between 12 and may be set.

一方、上記開閉弁8が開かれる高速域では、吸気ポー
ト付近に生じた圧力波が、第1図に実線矢印で示す(1
番気筒2aからの圧力伝播を例示する)ように、上流側と
下流側の二方向に分かれてそれぞれ共鳴用環状通路5を
周回するように伝播し、共鳴用環状通路5をほぼ一周し
て他の気筒の吸気ポートに作用する。この場合、共鳴用
環状通路5による圧力伝播経路には圧力反転部がないの
で、反転することなく伝播された圧力波が吸気ポートに
作用する。
On the other hand, in a high-speed region where the on-off valve 8 is opened, a pressure wave generated near the intake port is indicated by a solid line arrow in FIG.
As shown in the example of pressure propagation from the cylinder 2a), the pressure is divided into two directions, the upstream side and the downstream side, and propagates so as to go around the resonance annular passage 5, respectively. Act on the intake port of the cylinder. In this case, since there is no pressure inverting portion in the pressure propagation path by the resonance annular passage 5, the pressure wave propagated without inversion acts on the intake port.

そして、圧力波が共鳴用環状通路5をほぼ一周する時
間と上記の基本的圧力振動の周期τとが一致する状態と
なったとき、すなわち共鳴用環状通路6全体の長さL
(独立吸気通路の容積等の影響も考慮した等価管長)と
上記周期τとの関係が τ=L/a …… a:音速 となったときは、第2図に実線矢印で示すように1番気
筒2aに生じて共鳴用環状通路6を伝播した圧力波が2番
気筒2bに生じた圧力波と重なり、同様にして2番気筒2b
から伝播した圧力波が3番気筒2cに生じる圧力波と重な
り、3番気筒2cから伝播した圧力波が1番気筒2aに生じ
る圧力波と重なる。こうして、気筒相互間で圧力波が共
振する共鳴効果により、第2図に線Bで示すように圧力
振動が強められ、各気筒の充填効率が高められることと
なる。
Then, when the time when the pressure wave substantially makes a round in the annular passage for resonance 5 coincides with the cycle τ of the basic pressure oscillation, that is, the length L of the entire annular passage for resonance 6
When the relationship between (equivalent pipe length taking into account the influence of the volume of the independent intake passage, etc.) and the above-mentioned period τ is τ = L / a a: sound velocity, as shown by a solid arrow in FIG. The pressure wave generated in the second cylinder 2a and transmitted through the resonance annular passage 6 overlaps the pressure wave generated in the second cylinder 2b, and similarly, the second cylinder 2b
The pressure wave propagated from the third cylinder 2c overlaps with the pressure wave generated in the third cylinder 2c, and the pressure wave propagated from the third cylinder 2c overlaps with the pressure wave generated in the first cylinder 2a. In this way, due to the resonance effect in which the pressure wave resonates between the cylinders, the pressure oscillation is strengthened as shown by the line B in FIG. 2, and the charging efficiency of each cylinder is increased.

とくに、上記共鳴用環状通路5を通して圧力波を伝播
させることにより高速域での過給効果を持たせるように
しておくと、この共鳴用環状通路を設けずに、吸気ポー
トと独立吸気通路よりも上流の吸気通路に設けた容積部
等の圧力反転部との間での圧力波の往復伝播による慣性
効果で過給作用を持たせようとした場合と比べ、各気筒
に作用する圧力波のアンバランスが小さくなり、高速域
での動的効果が有効に発揮される。
In particular, if a pressure wave is propagated through the resonance annular passage 5 so as to have a supercharging effect in a high-speed region, the resonance annular passage is not provided, and the intake port and the independent intake passage are arranged at a higher speed. As compared with the case where the supercharging effect is provided by the inertial effect due to the reciprocating propagation of the pressure wave between the pressure reversing portion such as the volume portion provided in the upstream intake passage, the pressure wave acting on each cylinder is amplified. The balance is reduced, and dynamic effects in the high-speed range are effectively exhibited.

つまり、吸気ポートと圧力反転部との間の経路を往復
伝播する圧力波によって慣性過給効果を持たせようとす
る場合は、第2図に示した基本圧力振動の周期τの1/2
に相当する時間に上記経路を圧力波が往復伝播する必要
があるので、このときの圧力振動の周期τと吸気ポート
から圧力反転部までの通路長さL′(等価管長)との関
係は τ/2=2L′/a …… となる。そして、上記圧力振動の周期τはエンジン回転
数が高くなるにつれて短くなるので、高速域で過給効果
を持たせるには、低速域で過給効果を持たせる場合より
も上記通路長さL′を短く設定する必要がある。ところ
が、独立吸気通路とその上流の吸気通路の圧力反転部ま
でにわたる範囲の通路によって慣性効果を持たせる場合
に、各気筒の吸気ポートから圧力反転部までの通路長さ
には、気筒相互の吸気ポート間長さ分の較差があり、上
記通路長さL′を短くする程、相対的に上記較差が大き
くなり、各気筒に作用する圧力波のアンバランスが大き
くなるため、高速域で全体的な充填効率を高めることは
困難となる。
In other words, when an inertial supercharging effect is to be exerted by a pressure wave reciprocatingly propagating in the path between the intake port and the pressure reversing section, one half of the period τ of the basic pressure oscillation shown in FIG.
Since the pressure wave needs to reciprocate along the path at a time corresponding to the following equation, the relationship between the cycle τ of the pressure oscillation and the length L ′ (equivalent pipe length) of the passage from the intake port to the pressure inversion section is τ / 2 = 2L '/ a ... Since the cycle τ of the pressure oscillation becomes shorter as the engine speed becomes higher, the supercharging effect in the high-speed region is required to be longer than that in the low-speed region. Needs to be set short. However, when an inertia effect is provided by a passage extending from the independent intake passage to the pressure reversal portion of the upstream intake passage, the length of the passage from the intake port of each cylinder to the pressure reversal portion includes the mutual intake of the cylinders. There is a difference corresponding to the length between the ports, and the shorter the passage length L 'is, the larger the difference becomes, and the unbalance of the pressure waves acting on each cylinder becomes large. It is difficult to increase the filling efficiency.

これに対し、当実施例の装置によると、前記式が成
立するときに共鳴効果が得られ、この式と式とを比
べると、圧力振動の周期τが同じであれば、共鳴用環状
通路6全体の等価管長Lは前記式による場合の等価管
長L′の4倍となり、高速域でも、気筒毎の圧力波伝播
経路の較差が相対的に小さいので、各気筒に作用する圧
力波のアンバランスが小さくなる。従って、高速域で
も、各気筒にほぼ均等に圧力波を作用させて、有効に各
気筒の充填効率を高めることができることとなる。な
お、第2図では、同一気筒グループにおいて生じる圧力
振動の1つの圧力波が次の圧力波に重なるように伝播す
る基本的共振状態を示したが、圧力波が1つおきや2つ
おきの圧力波に重なるように伝播するときにも共振状態
が得られ、従って、上記の基本的共振状態が得られるエ
ンジン回転数の整数倍のエンジン回転数でも共振状態が
得られる。
On the other hand, according to the apparatus of the present embodiment, a resonance effect is obtained when the above equation is satisfied. Comparing this equation with the equation, if the period τ of the pressure oscillation is the same, the resonance annular passage 6 The total equivalent pipe length L is four times the equivalent pipe length L 'in the case of the above equation, and even in a high-speed region, since the pressure wave propagation path for each cylinder is relatively small, the imbalance of pressure waves acting on each cylinder is relatively small. Becomes smaller. Therefore, even in a high-speed range, the pressure wave is applied almost uniformly to each cylinder, and the charging efficiency of each cylinder can be effectively increased. FIG. 2 shows a basic resonance state in which one pressure wave of pressure oscillation generated in the same cylinder group propagates so as to overlap with the next pressure wave. A resonance state is also obtained when the pressure wave propagates so as to overlap with the pressure wave. Therefore, a resonance state is obtained even at an engine speed that is an integral multiple of the engine speed at which the above-described basic resonance state is obtained.

また、前述の特公昭60−14169号公報等に示された装
置のように気筒別の独立吸気通路の上流端を拡大室に接
続して、実用回転数域内の特定回転数では各気筒の吸気
ポートと拡大室との間の独立吸気通路(吸気マニホール
ドブランチ)により慣性効果を持たせるようにしたもの
と比較すると、当実施例の装置では独立吸気通路の長さ
は充分に短くすることができる。つまり、各独立吸気通
路による慣性効果を利用するものでは、この独立吸気通
路による慣性同調回転数がエンジンの許容最高回転数よ
りは低くなるように、各独立吸気通路をある程度長くす
る必要があるのに対し、当実施例の装置では、独立吸気
通路6a〜6cでの慣性効果には頼らないので、上記独立吸
気通路6a〜6cによる慣性同調回転数がエンジンの許容最
高回転数より高くなるように独立吸気通路6a〜6cを充分
に短くしておけばよい。具体的にいえば、独立吸気通路
6a〜6cの長さをl、この通路の断面積をf、シリンダ容
積をVm、音速をaとすると、独立吸気通路6a〜6cと燃焼
室とによる固有振動数νは となり、またクランク角で表わした開弁期間をθとする
と、独立吸気通路6a〜6cによる慣性同調回転数Niは、同
調条件が (60/Ni)・(θ/360)=1/ν となることから、 Ni=θ・ν/6 となる。従って、エンジンの許容最高回転数をNmaxとす
ると、 Ni>Nmax Ni=θ・ν/6 となるように、独立吸気通路6a〜6cの長さを充分に短く
しておけばよい。そして、各気筒に共通の共鳴用環状通
路5はその全長が比較的長くても適宜屈曲させて比較的
コンパクトにレイアウトできるので、上記のように気筒
毎にそれぞれ設けられる独立吸気通路6a〜6cの長さlを
短くすれば、吸気系全体としてのコンパクト化に有利と
なる。
Also, the upstream end of the independent intake passage for each cylinder is connected to the expansion chamber as in the device shown in the above-mentioned Japanese Patent Publication No. 60-14169, etc., and the intake of each cylinder is performed at a specific rotational speed within the practical rotational speed range. In comparison with the configuration in which the inertial effect is provided by the independent intake passage (intake manifold branch) between the port and the expansion chamber, the length of the independent intake passage can be sufficiently reduced in the device of the present embodiment. . In other words, in the case of using the inertial effect of each independent intake passage, it is necessary to lengthen each independent intake passage to some extent so that the inertial tuning rotation speed by this independent intake passage is lower than the maximum allowable rotation speed of the engine. On the other hand, in the device of the present embodiment, since the inertial effect in the independent intake passages 6a to 6c is not relied on, the inertial tuning rotational speed by the independent intake passages 6a to 6c is set to be higher than the maximum allowable rotational speed of the engine. What is necessary is just to make the independent intake passages 6a to 6c sufficiently short. Specifically, the independent intake passage
Assuming that the length of 6a to 6c is l, the cross-sectional area of this passage is f, the cylinder volume is Vm, and the sound speed is a, the natural frequency ν by the independent intake passages 6a to 6c and the combustion chamber is When the valve opening period represented by the crank angle is θ, the inertia tuning rotation speed Ni by the independent intake passages 6a to 6c is (60 / Ni) · (θ / 360) = 1 / ν. Therefore, Ni = θ · ν / 6. Therefore, assuming that the maximum allowable engine speed is Nmax, Ni> Nmax Ni = θ · ν / 6 In this case, the lengths of the independent intake passages 6a to 6c may be sufficiently reduced. Since the resonance annular passage 5 common to each cylinder can be appropriately bent and relatively laid out even if the overall length is relatively long, the independent intake passages 6a to 6c provided for each cylinder as described above are provided. Reducing the length l is advantageous for making the entire intake system compact.

本発明の装置の具体的構造は、上記実施例に限定され
ず種々変更可能であり、その数例を第3図乃至第5図に
示す。
The specific structure of the device of the present invention is not limited to the above-described embodiment, but can be variously changed. Some examples are shown in FIGS.

第3図に示す実施例では、各吸気ポート3a〜3cに連な
る比較的短い独立吸気通路12a〜12cを集合させて、その
集合部分が共鳴用環状通路5に接続している。この場合
も、共鳴用環状通路5と各吸気ポート3a〜3cとの間の上
記集合部分には拡大部が設けられておらず、共鳴用環状
通路5中には圧力波伝播経路切替手段としての開閉弁8
が設けられている。また、上記共鳴用環状通路5のうち
で、吸気導入通路7から各気筒に送られる吸気の流通経
路とならない部分の通路面線S1は、吸気流通経路となる
部分の通路面積S2と比べて小さくされることにより、共
鳴用環状通路5を通って伝播する圧力波をできるだけ強
めるようにしている。この構造による場合も、第1の実
施例とほぼ同様の作用が得られる。
In the embodiment shown in FIG. 3, relatively short independent intake passages 12a to 12c connected to the respective intake ports 3a to 3c are gathered, and the gathered portion is connected to the resonance annular passage 5. In this case as well, no enlarged portion is provided in the above-mentioned gathering portion between the resonance annular passage 5 and each of the intake ports 3a to 3c, and the resonance annular passage 5 has a pressure wave propagation path switching unit. On-off valve 8
Is provided. In the annular passage for resonance 5, a passage surface line S 1 of a portion not serving as a flow passage of intake air sent from the intake introduction passage 7 to each cylinder is compared with a passage area S 2 of a portion serving as an intake flow passage. The pressure wave propagating through the resonance annular passage 5 is strengthened as much as possible. With this structure, substantially the same operation as in the first embodiment can be obtained.

第4図は4気筒エンジンに適用した場合の実施例を示
し、この場合も各気筒2a〜2dの吸気ポート3a〜3dが共鳴
用環状通路5に接続されている。
FIG. 4 shows an embodiment in which the invention is applied to a four-cylinder engine. In this case as well, the intake ports 3a to 3d of the cylinders 2a to 2d are connected to the resonance annular passage 5.

第5図に示す実施例では、吸気ポート3a〜3dが接続さ
れた共鳴用環状通路5に、その一部の通路部5aを迂回し
た延長通路部5bが連成され、上記通路部5aと延長通路部
5bとの分岐箇所に、通路部5aを開いて延長通路部5bを閉
じる状態と延長通路部5bを開いて通路部5aを閉じる状態
とに切替える切替弁13が設けられている。この実施例に
よると、エンジン回転数に応じて上記切替弁が開閉作動
されることにより、圧力波伝播経路が、上記通路部5aを
通る所定長さの環状経路と、上記延長通路部5bを通る長
い環状経路とに切替えられ、異なる回転数域でそれぞ
れ、環状の経路を通る圧力波による共鳴効果が得られ
る。つまり、高速域では上記通路部5aを通る所定長さの
環状経路によって共鳴効果が得られ、低速域では上記延
長通路部5bを通る長い環状経路によって共鳴効果が得ら
れる。
In the embodiment shown in FIG. 5, an extended passage portion 5b bypassing a part of the passage portion 5a is connected to the resonance annular passage 5 to which the intake ports 3a to 3d are connected, and extends with the passage portion 5a. Passage
A switching valve 13 that switches between a state in which the passage portion 5a is opened and the extension passage portion 5b is closed and a state in which the extension passage portion 5b is opened and the passage portion 5a is closed is provided at a branch point with the passage portion 5b. According to this embodiment, when the switching valve is opened and closed according to the engine speed, the pressure wave propagation path passes through the annular path having a predetermined length passing through the passage section 5a and the extension path section 5b. It is switched to a long annular path, and a resonance effect by a pressure wave passing through the annular path is obtained in each of different rotational speed ranges. That is, the resonance effect is obtained by the annular path of a predetermined length passing through the passage portion 5a in the high speed region, and the resonance effect is obtained by the long annular path passing through the extension passage portion 5b in the low speed region.

これら第3図乃至第5図に示した各実施例において
も、気筒別の独立吸気通路は、独立吸気通路による慣性
同調回転数がエンジンの許容回転数よりも高くなるよう
に、その長さが充分に短く形成されている。
Also in each of the embodiments shown in FIGS. 3 to 5, the length of the independent intake passage for each cylinder is set such that the inertia-tuned rotation speed of the independent intake passage is higher than the allowable rotation speed of the engine. It is formed short enough.

〔発明の効果〕〔The invention's effect〕

以上のように本発明は、各気筒の吸気ポートに通じる
吸気通路に、各吸気ポートから伝播する圧力波を周回さ
せる共鳴用環状通路が設けられ、高速域で圧力波の共振
状態が得られるように上記共鳴用環状通路が形成される
とともに、上記共鳴用環状通路と別の経路とに圧力波伝
播経路を切替える切替手段を設け、上記別の経路の通路
形状及び寸法を、低速域で圧力波の共振状態が得られて
吸気の動的効果が生じるように設定しているため、高速
域と低速域とにおいてそれぞれ動的効果により充填効率
を高めることができ、とくに高速域では、各吸気ポート
から伝播して共鳴用環状通路をほぼ一周する圧力波によ
り、気筒後に大きなアンバランスを生じることなく各気
筒に動的効果を及ぼし、有効に充填効率を高めることが
できる。
As described above, according to the present invention, in the intake passage communicating with the intake port of each cylinder, the resonance annular passage for circulating the pressure wave propagating from each intake port is provided, so that the resonance state of the pressure wave can be obtained in a high speed region. The resonance annular passage is formed in the resonance annular passage, and a switching means for switching a pressure wave propagation path between the resonance annular passage and another path is provided. Is set so that a dynamic effect of the intake air is generated by obtaining the resonance state of the intake port, so that the charging efficiency can be increased by the dynamic effect in the high-speed range and the low-speed range, respectively. The pressure wave propagating from the cylinder and substantially circling around the resonance annular passage exerts a dynamic effect on each cylinder without causing a large imbalance after the cylinder, thereby effectively increasing the charging efficiency.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す吸気装置概略図、第2
図は吸気ポート付近の圧力振動を示す図、第3図乃至第
5図は各々別の実施例を示す吸気装置概略図である。 2a〜2c,2a〜2d……気筒、3a〜4c,3a〜3d……吸気ポー
ト、5……共鳴用環状通路、8……開閉弁(圧力伝播経
路の切替手段)、13……切替弁(圧力伝播経路の切替手
段)。
FIG. 1 is a schematic view of an intake device showing one embodiment of the present invention, and FIG.
The drawings show pressure oscillations near the intake port, and FIGS. 3 to 5 are schematic views of an intake device showing another embodiment. 2a to 2c, 2a to 2d: cylinder, 3a to 4c, 3a to 3d: intake port, 5: annular passage for resonance, 8: on-off valve (switching means for pressure propagation path), 13: switching valve (Pressure propagation path switching means).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楪 泰浩 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 昭56−52522(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasuhiro Yuzuriha 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Inside Mazda Corporation (56) References JP-A-56-52522 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】各気筒の吸気ポートに通じる吸気通路に、
各吸気ポートから伝播する圧力波を周回させるように環
状をなし、かつ、高速域で圧力波の共振状態が得られる
所定の通路長さを有する共鳴用環状通路を設けるととも
に、高速域及び低速域でそれぞれエンジン回転数と吸気
通路の固有振動数とを同調させて略吸気弁閉時期で吸気
弁直前の吸気通路圧力の正方向振幅が大きくなるような
吸気の動的効果を得るべく、高速域では上記共鳴用環状
通路を圧力波が伝播する一方、低速域では上記共鳴用環
状通路とは別の経路を圧力波が伝播するように圧力波伝
播経路を切替える切替手段を設け、上記別の経路の通路
形状及び寸法を、低速域で圧力波の共振状態が得られて
吸気の動的効果が生じるように設定したことを特徴とす
るエンジンの吸気装置。
1. An intake passage communicating with an intake port of each cylinder,
An annular annular passage is formed so as to circulate the pressure wave propagating from each intake port, and has a predetermined annular length for obtaining a resonance state of the pressure wave in a high-speed region. The engine speed and the natural frequency of the intake passage are synchronized in order to obtain the dynamic effect of the intake air in which the positive direction amplitude of the intake passage pressure immediately before the intake valve becomes large when the intake valve closes. In the above, the pressure wave propagates in the resonance annular passage, and in the low-speed region, a switching means for switching the pressure wave propagation path is provided so that the pressure wave propagates in a path different from the resonance annular path. Characterized in that the shape and size of the passage are set such that a resonance state of the pressure wave is obtained in a low-speed range and a dynamic effect of the intake occurs.
JP63092791A 1987-04-21 1988-04-14 Engine intake system Expired - Fee Related JP2750122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092791A JP2750122B2 (en) 1987-04-21 1988-04-14 Engine intake system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-99473 1987-04-21
JP9947387 1987-04-21
JP63092791A JP2750122B2 (en) 1987-04-21 1988-04-14 Engine intake system

Publications (2)

Publication Number Publication Date
JPS6429613A JPS6429613A (en) 1989-01-31
JP2750122B2 true JP2750122B2 (en) 1998-05-13

Family

ID=26434170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092791A Expired - Fee Related JP2750122B2 (en) 1987-04-21 1988-04-14 Engine intake system

Country Status (1)

Country Link
JP (1) JP2750122B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652522A (en) * 1979-10-06 1981-05-11 Nissan Diesel Motor Co Ltd Air suction device for internal combustion engine
JPS6454775A (en) * 1987-08-26 1989-03-02 Nippon Sheet Glass Co Ltd Manufacture of thin film element
JPH02271979A (en) * 1989-04-11 1990-11-06 Takekazu Ishida Method for raising superconductivity transition temperature of oxide superconductor

Also Published As

Publication number Publication date
JPS6429613A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
JP2543537B2 (en) Intake device for V-type multi-cylinder engine
JPS6014169B2 (en) Intake system for multi-cylinder engines
JPS61116021A (en) Engine intake-air device
KR930007605B1 (en) Intake system for multiple cylinder engine
JP2750122B2 (en) Engine intake system
JPH01106922A (en) Intake apparatus of v-shaped engine
JPH0392534A (en) Intake device for multi-cylinder engine
JP2583528B2 (en) Engine intake system
JPH0353453B2 (en)
JP2771176B2 (en) Engine intake system
JPH02115524A (en) Air intake device of engine
JPH0823294B2 (en) Engine intake system
JPS6241922A (en) Intake-air device for v-type engine
JPS6030419Y2 (en) Resonant supercharging intake system for multi-cylinder engines
JPH02108816A (en) Air intake device for v type engine
JP2583529B2 (en) Engine intake system
JPH0823293B2 (en) Engine intake system
JPS63268922A (en) Intake device of engine
JPH0192519A (en) Engine intake-air device
JPH0192517A (en) Engine intake-air device
JPH0733773B2 (en) Engine intake system
JPS60222524A (en) Suction device of engine
JPH02201016A (en) Intake device for engine
JPH03286132A (en) Air intake device for multiple cylinder engine
JPH01190917A (en) Intake device for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees