JPS5893929A - Suction device for diesel engine - Google Patents

Suction device for diesel engine

Info

Publication number
JPS5893929A
JPS5893929A JP56192467A JP19246781A JPS5893929A JP S5893929 A JPS5893929 A JP S5893929A JP 56192467 A JP56192467 A JP 56192467A JP 19246781 A JP19246781 A JP 19246781A JP S5893929 A JPS5893929 A JP S5893929A
Authority
JP
Japan
Prior art keywords
engine
passage
intake
resonant
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56192467A
Other languages
Japanese (ja)
Inventor
Nobuji Eguchi
江口 展司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Hino Jidosha Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Hino Jidosha Kogyo KK filed Critical Hino Motors Ltd
Priority to JP56192467A priority Critical patent/JPS5893929A/en
Publication of JPS5893929A publication Critical patent/JPS5893929A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0278Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:In a device for supercharging the inertia while utilizing the gas pole vibration in a resonant path provided in a suction system, to enable the inertia supercharge in the low speed region by constructing the resonace path with main and sub resonance paths and using each path while switching in accordance with the operating condition. CONSTITUTION:In the high and middle operating region of an engine 1, exchange valves 8a-8c are held at the position shown by the solid line by means of a controller. Consequently the air is supplied from an air cleaner 3 through a suction path 4 and main resonance paths 5a, 5b to each suction manifold 2a, 2b. While in the low speed operating region, said valves 8a-8c are exchanged to the position shown by the dashed line to flow the air into sub resonance paths 7a, 7b. since the resonant frequency of sub-resonance paths 7a, 7b is matched with the suction pulse frequency at the start of the engine in the cranking and idle circuit region, the start performance and the warming performance can be improved while increasing the suction volume efficiency and sesuring the output and torque of the engine.

Description

【発明の詳細な説明】 本発明は、ディーゼル機関の吸気装置に係り、詳しくは
、高速回転域での吸気体積効率を損なうことなく始動時
又はアイドリンク時の吸気体積効率をも高くできるよう
に慣性過給を行なわせることができる吸気装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for a diesel engine, and more specifically, the present invention relates to an intake system for a diesel engine, and more specifically, it is capable of increasing the intake volumetric efficiency at the time of starting or idling without impairing the intake volumetric efficiency in the high-speed rotation range. The present invention relates to an intake device that can perform inertial supercharging.

ディーゼル機関から排出されるスモークヲ減少させると
同時に出力及びトルクを向上させるには、機関の吸気体
積効率を向上させることが有効である。
In order to reduce smoke emitted from a diesel engine and at the same time increase output and torque, it is effective to improve the intake volumetric efficiency of the engine.

このように機関の吸気体積効率を向上させる過給手段と
しては、排気ターボ過給機環で代表される過給機及び、
吸気マニフォールドに共鳴通路を接続した慣性過給装置
が良く知られている。
As a supercharging means for improving the intake volume efficiency of an engine, there are a supercharger represented by an exhaust turbo supercharger ring,
Inertial supercharging devices in which a resonance passage is connected to an intake manifold are well known.

ところが、前者のように過給機で過給を行なわせるよう
にした場合は、吸気系の構造が複雑化すると同時にコス
ト及び重量が増加するという欠点がある。又、後者のよ
うに慣性過給を行なわせる場合は、吸気系を簡略化でき
ると共にコスト及び重量の増加を最小限に抑制できる利
点があるにも拘らず、共鳴通路の長さ及び断面積等に応
じて慣性効果のマツチング回転数が決定されてし捷うの
で、マツチング回転数を高速回転域に設定して機関の出
力、トルク等を向上させようとすると低速域、殊に、マ
ツチング回転数から大きく離れた機関始動時のクランキ
ング回転域又はアイドル回転域での吸気体積効率が極度
に悪化して機関の始動性及びアイドル運転性等が悪化す
るおそれがあった。
However, when supercharging is performed using a supercharger as in the former case, there are disadvantages in that the structure of the intake system becomes complicated, and at the same time, cost and weight increase. In addition, in the latter case where inertial supercharging is performed, although it has the advantage of simplifying the intake system and minimizing increases in cost and weight, the length and cross-sectional area of the resonance passage, etc. Since the matching rotation speed of the inertia effect is determined and changed depending on the There is a risk that the intake volumetric efficiency in the cranking rotation range or idling rotation range at the time of engine startup, which is far away from the above, will be extremely deteriorated, resulting in deterioration of engine startability, idling performance, etc.

本発明は上記に鑑みてなされたものであって高速回転域
での吸気体積効率を高く保持させつつ、機関始動時のク
ランキング回転域又はアイドル回転域での吸気体積効率
をも高くして機関の出力性能、始動性等を向上させるこ
とを目的とし、その要旨とするところは、主共鳴通路と
該通路に並列に接続された副共鳴通路とで共鳴通路を構
成し、主共鳴通路の共鳴周波数を機関高速回転域での吸
気脈動周波数と一致させると共に、副共鳴通路の共鳴周
波数を機関始動時のクランキング回転域又はアイドル回
転域での吸気脈動周波数と一致せしめ、かつ、機関の運
転状態に基づいて前記主副共鳴通路のいずれか一方のみ
を無効通路として切換閉鎖させる切換弁を設けたことを
特徴とするディーゼル機関の吸気装置にある。
The present invention has been made in view of the above, and while maintaining high intake volume efficiency in the high speed rotation range, it also increases the intake volume efficiency in the cranking rotation range or idling rotation range when starting the engine. The purpose is to improve the output performance, startability, etc. of The frequency is made to match the intake pulsation frequency in the engine high speed rotation range, and the resonance frequency of the sub-resonance passage is made to match the intake pulsation frequency in the cranking rotation range or idling rotation range at engine startup, and the engine operating condition is There is provided an intake system for a diesel engine, characterized in that a switching valve is provided for switching and closing only one of the main and sub-resonant passages as an ineffective passage based on the above.

以下に本発明を図示された一実施例に基づいて詳細に説
明する。
The present invention will be explained in detail below based on an illustrated embodiment.

図において、直列6気筒のディーゼル機関1のシリンダ
ヘッドには、第1気筒から第8気筒までに対応する第1
の吸気マニフォールド2aと、第4気筒から第6気筒ま
でに対応する第2の吸気マニフォールド2bとを設ける
ことにょシ、少なくとも同一の吸気マニフォールドに含
まれる気筒の牧人行程が重なシ合わ々いようにしている
。尚、直列6気筒デイ一ゼル機関の燃料噴射順序は、一
般には、1−4−2−6−1−5に設定されるが、1−
5−8−6−2−4の順序であってもよい。
In the figure, the cylinder head of an in-line six-cylinder diesel engine 1 has first cylinders corresponding to the first to eighth cylinders.
By providing the intake manifold 2a and the second intake manifold 2b corresponding to the fourth to sixth cylinders, at least the cylinder strokes of the cylinders included in the same intake manifold will not overlap. I have to. The fuel injection order for an in-line six-cylinder diesel engine is generally set to 1-4-2-6-1-5, but 1-4-2-6-1-5.
The order may be 5-8-6-2-4.

又、エアクリーナ3の二次側から延設された吸気通路4
と前記各吸気マニフォールド2a。
In addition, an intake passage 4 extending from the secondary side of the air cleaner 3
and each of the intake manifolds 2a.

2bとをそれぞれ第1.第2の主共鳴通路5a。2b and 1.2b, respectively. Second main resonance passage 5a.

5bを介して接続すると共に、前記吸気通路4から分岐
した分岐通路6と各吸気マニフォールド2a、2bとを
第1.第2の副共鳴通路7a。
5b, and a branch passage 6 branched from the intake passage 4 and each intake manifold 2a, 2b. Second sub-resonant passage 7a.

7bを介して接続したうえで、吸気通路4と分岐通路6
との分岐点部分及び各共鳴通路と吸気マニフォールドと
の合流点部分にそれぞれ切換弁8a、8b、8cを設け
ている。9は排気マニフォールドである。
7b, and then connect the intake passage 4 and the branch passage 6.
Switching valves 8a, 8b, and 8c are provided at the branch points between the resonant passages and the intake manifolds, respectively. 9 is an exhaust manifold.

ここに、前記主共鳴通路5a、5bの長さ及び断面積は
、これらの諸元によって定捷る主共鳴通路5a、5bで
の気柱の共振周波数が機関1の高速回転域に吸気マニフ
ォールド2a、2bに発生する吸気脈動の周波数と一致
するように設置されている。そして、他方の共鳴通路、
つまり、副共鳴通路7a、7bの長さ及び断面積を、こ
れらの諸元によって定まる副共鳴通路7a、?b内での
気柱の共鳴周波数が機関1の始動時のクランキング回転
域又は、アイドル回転域で吸気マーフォールド2a、2
b内ニ発生する吸気脈動の周波数と一致するように設定
している。又、前記各切換弁8a、8b、8cは、5− 通常の回転域では第1図に実線で示すように分岐通路6
の上流端及び各副共鳴通路7a、7bの下流端を閉じる
ようにしておシ、例えば、機関の回転数がアイドル回転
数より僅かに鳥い設定値より低い時は、図示し々いコン
トローラからの指令で第1図に二点鎖線で示すように切
換作動して主共鳴通路5a、5b側を閉鎖するようにな
っている。
Here, the length and cross-sectional area of the main resonance passages 5a, 5b are determined depending on these specifications. , 2b so as to match the frequency of the intake pulsation occurring in the air. And the other resonance passage,
In other words, the length and cross-sectional area of the sub-resonant passages 7a, 7b are determined by these specifications. When the resonance frequency of the air column in b is in the cranking rotation range at the time of starting the engine 1 or in the idling rotation range, the intake marfold 2a, 2
The frequency is set to match the frequency of the intake pulsation that occurs within b. In addition, each of the switching valves 8a, 8b, and 8c is connected to a branch passage 6 in a normal rotation range as shown by a solid line in FIG.
For example, when the engine speed is slightly lower than the idle speed, the controller as shown in the figure In response to this command, switching is performed as shown by the two-dot chain line in FIG. 1 to close the main resonance passages 5a and 5b.

上記の構成において、機関1が運転されると、この運転
情報が図示しないコントローラに供給される。そして、
機関1が中高速域で運転されている場合は、コントロー
ラが切換弁8a、8b、8cをそれぞれ実線で示す位置
に保持させるので、主共鳴通路5a、5))を介してエ
アクリーナ8と吸気マニフォールド2a、2bが接続さ
れる。又、この主共鳴通路5a、5bの共鳴周波数は、
高速回転域での吸気脈動周波数と一致しているので従来
同様に高速回転域での吸気体積効率が高くなり、スモー
クの排出及び排気有害成分の排出が抑制されると共に、
出カ及6一 びトルクが向上する。
In the above configuration, when the engine 1 is operated, this operating information is supplied to a controller (not shown). and,
When the engine 1 is operated in a medium-high speed range, the controller holds the switching valves 8a, 8b, and 8c in the positions shown by the solid lines, so that the air cleaner 8 and the intake manifold are connected to each other via the main resonance passages 5a, 5)). 2a and 2b are connected. Moreover, the resonance frequency of the main resonance passages 5a and 5b is
Since it matches the intake pulsation frequency in the high-speed rotation range, the intake volume efficiency in the high-speed rotation range is high as before, suppressing the emission of smoke and harmful exhaust components, and
Output power and torque are improved.

又、機関1が設定回転数より低い領域で運転されている
時は、コントローラからの指令で各切換弁8a、8b、
8cがそれぞれ二点鎖線で示すように作動して主共鳴通
路5a、5bを閉鎖し、削共鳴通路7a、7bを介して
エアクリーナ3と吸気マニフォールド2a、2bとを連
通させる。このとき、副共鳴通路7a、7bの共鳴周波
数を機関始動時のクランキング回転域又はアイドル回転
域での吸気脈動周波数と一致させているので、少なくと
も設定回転数以下の低回転域では主共鳴通路5a、5b
を利用した場合に対比して吸気体積効率を向上できる。
Also, when the engine 1 is operating in a region lower than the set rotation speed, each switching valve 8a, 8b,
8c operate as indicated by two-dot chain lines to close the main resonance passages 5a, 5b, and communicate the air cleaner 3 with the intake manifolds 2a, 2b via the cut resonance passages 7a, 7b. At this time, since the resonance frequency of the sub-resonant passages 7a and 7b is made to match the intake pulsation frequency in the cranking rotation range or idling rotation range when starting the engine, the main resonance passage is at least in the low rotation range below the set rotation speed. 5a, 5b
The intake volumetric efficiency can be improved compared to the case where the

従って、このような低回転域においても排気中のIC,
Co等を低減できることになる。
Therefore, even in such a low rotation range, the IC in the exhaust gas,
This means that Co and the like can be reduced.

同様にして、機関1の始動時及びアイドル時の吸気体積
効率も向上するので、機関lの始動性及び暖機運転性が
向上する。殊に、副共鳴通路7a、7bの共鳴周波数を
機関始動時のクランキング回転域での吸気脈動周波数と
一致させた場合け゛、クランキング時の吸気体積効率を
大幅に向上させて実圧縮比を大きくできるため、機関の
低温始動性が改善される。一方、同様にして副共鳴通路
7a、7bをアイドル回転域にマツチングさせた場合は
、アイドル時の燃焼室温度を高くできるので暖機中に見
られる白煙及びHC,Co等を大幅に低減できる。尚、
副共鳴通路7a、7bのマツチング回転数をクランキン
グ回転域又はアイドル回転域のいずれに設定しようとも
、他方の領域での吸気体積効率をも上昇させることがで
きるので、機関の特性にあわせて副共鳴通路のマツチン
グ回転数をいずれか一方に、又は、両者の中間点に設定
すれば良い。
Similarly, the intake air volume efficiency at the time of starting and idling the engine 1 is also improved, so that the startability and warm-up performance of the engine 1 are improved. In particular, if the resonance frequency of the auxiliary resonance passages 7a and 7b is made to match the intake pulsation frequency in the cranking rotation range when starting the engine, the intake volume efficiency during cranking can be greatly improved and the actual compression ratio can be increased. Since it can be made larger, the cold startability of the engine is improved. On the other hand, if the sub-resonant passages 7a and 7b are similarly matched to the idle rotation range, the temperature of the combustion chamber during idle can be increased, so white smoke, HC, Co, etc. that are observed during warm-up can be significantly reduced. . still,
Regardless of whether the matching rotation speed of the sub resonance passages 7a, 7b is set in the cranking rotation range or the idling rotation range, the intake volume efficiency in the other region can also be increased, so the sub resonance passages 7a and 7b can be set in accordance with the characteristics of the engine. The matching rotational speed of the resonant passage may be set to either one or to a midpoint between the two.

即ち、主共鳴通路5a、5bのみを設けた場合は、第2
図に二点鎖線で示すように低速領域での吸気体積効率が
態化するが、同図に一点鎖線で示すようにクランキング
(ロ)転載又はアイドル回転域あるいはその近傍にマツ
チング回転数を設定した副共鳴通路7a、7bと、主副
共鳴通路を切換使用させる切換弁を設けているので通常
は第2図に実線で示すようにいかなる回転域でも吸気体
積効率を向上させることができる。
That is, when only the main resonance passages 5a and 5b are provided, the second
As shown by the two-dot chain line in the figure, the intake volumetric efficiency takes effect in the low-speed range, but as shown by the one-dot chain line in the figure, cranking (B) is reproduced or the matching rotation speed is set in or near the idle rotation range. Since a switching valve is provided to switch between the main and sub-resonant passages 7a and 7b and the main and sub-resonant passages, the intake volumetric efficiency can normally be improved in any rotational range as shown by the solid line in FIG.

尚、実施例では、機関の回転数のみに応答して切換弁を
切換作動させるように[7ているが、機関の温度、外気
温及び、負葡等で代表される他の要素をも切換弁の制御
費累として利用して機関の運転状態に最適の吸気体積効
率を得ることもできる。又、実施例では、各通路の分岐
部及び合流部に切換弁を設けているが、いずれか一方を
省略しても良く、かつ、切換弁の具体構造は任意である
In the embodiment, the switching valve is operated to switch only in response to the engine speed, but other factors such as engine temperature, outside air temperature, and temperature can also be switched. It can also be used as a cumulative control cost for the valves to obtain the optimal intake volume efficiency for the operating conditions of the engine. Further, in the embodiment, a switching valve is provided at the branching part and the merging part of each passage, but either one may be omitted, and the specific structure of the switching valve is arbitrary.

以上説明したように本発明によれば、出力が重視される
高速回転域ではもとより、クランキング回転域及びアイ
ドル回転域でも所期の慣性過給を行々わせるようにした
ものであるから、楼門の最高出力及びトルク等を確保し
つつ始動性及び暖機運転性を向上させることができる。
As explained above, according to the present invention, the desired inertial supercharging is performed not only in the high-speed rotation range where output is important, but also in the cranking rotation range and the idling rotation range. It is possible to improve starting performance and warm-up performance while ensuring the maximum output and torque of the tower gate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図9− は機関運転数と吸気体積効率との関係図である。 1・・・ディーゼル機関      2a、2b・・・
吸気マニフォールド3・・・エアクリーナ      
 4・・・吸気通路5a、5b・・・主共鳴通路   
6・・・分岐通路7a、7b・・副共鳴通路   8a
、8b、8c・・・切換弁0許出願人 日野自動車工業株式会社 1n−
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2-9 is a diagram showing the relationship between the number of engine operations and the intake volumetric efficiency. 1...Diesel engine 2a, 2b...
Intake manifold 3...air cleaner
4...Intake passages 5a, 5b...Main resonance passages
6... Branch passages 7a, 7b... Sub-resonance passage 8a
, 8b, 8c...Switching valve 0 Applicant Hino Motors Co., Ltd. 1n-

Claims (1)

【特許請求の範囲】[Claims] 吸気系に共鳴通路を設け、該通路内に発生する気柱の振
動を利用して慣性過給を行なわせるようにしたディーゼ
ル機関において、前記共鳴通路を主共鳴通路と該通路に
並列に接続された副共鳴通路とで構成し、主共鳴通路の
共振周波数を機関高速回転域での吸気脈動周波数と一致
させると共に、副共鳴通路の共振周波数を機関始動時の
クランキング回転域又はアイドル回転域での吸気脈動周
波数と一致せしめ、かつ、機関の運転状態に基づいて前
記主副共鳴通路のいずれか一方のみを無効通路として切
換閉鎖させる切換弁を設けたことを特徴とするディーゼ
ル機関の吸気装置。
In a diesel engine in which a resonant passage is provided in the intake system and inertial supercharging is performed using the vibration of an air column generated within the passage, the resonant passage is connected in parallel to the main resonant passage and the passage. The resonant frequency of the main resonant passage is made to match the intake pulsation frequency in the high-speed engine rotation range, and the resonant frequency of the sub-resonance passage is matched in the cranking rotation range or idling rotation range when starting the engine. An intake system for a diesel engine, characterized in that it is provided with a switching valve that matches the intake pulsation frequency of the engine and switches and closes only one of the main and sub-resonant passages as an invalid passage based on the operating state of the engine.
JP56192467A 1981-11-30 1981-11-30 Suction device for diesel engine Pending JPS5893929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192467A JPS5893929A (en) 1981-11-30 1981-11-30 Suction device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192467A JPS5893929A (en) 1981-11-30 1981-11-30 Suction device for diesel engine

Publications (1)

Publication Number Publication Date
JPS5893929A true JPS5893929A (en) 1983-06-03

Family

ID=16291774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192467A Pending JPS5893929A (en) 1981-11-30 1981-11-30 Suction device for diesel engine

Country Status (1)

Country Link
JP (1) JPS5893929A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198325A (en) * 1984-03-02 1985-10-07 Mazda Motor Corp Intake device for engine
FR2577646A1 (en) * 1985-02-14 1986-08-22 Peugeot Rotary valve for connecting two circular ducts, especially in an inlet or exhaust device of an internal combustion engine
US4763612A (en) * 1986-03-10 1988-08-16 Yamaha Hatsudoki Kabushiki Kaisha Intake system for internal combustion engine
EP0337816A2 (en) * 1988-04-14 1989-10-18 Honda Giken Kogyo Kabushiki Kaisha Intake manifold for an internal combustion engine
DE4032380A1 (en) * 1990-10-12 1992-04-16 Daimler Benz Ag IC engine intake system - has second valve in smaller resonance pipe shut at medium and high speed
WO2001027460A1 (en) * 1999-10-12 2001-04-19 Siemens Canada Limited Expansion reservoir of variable volume for engine air induction system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198325A (en) * 1984-03-02 1985-10-07 Mazda Motor Corp Intake device for engine
JPH0440534B2 (en) * 1984-03-02 1992-07-03 Mazda Motor
FR2577646A1 (en) * 1985-02-14 1986-08-22 Peugeot Rotary valve for connecting two circular ducts, especially in an inlet or exhaust device of an internal combustion engine
US4763612A (en) * 1986-03-10 1988-08-16 Yamaha Hatsudoki Kabushiki Kaisha Intake system for internal combustion engine
EP0337816A2 (en) * 1988-04-14 1989-10-18 Honda Giken Kogyo Kabushiki Kaisha Intake manifold for an internal combustion engine
DE4032380A1 (en) * 1990-10-12 1992-04-16 Daimler Benz Ag IC engine intake system - has second valve in smaller resonance pipe shut at medium and high speed
WO2001027460A1 (en) * 1999-10-12 2001-04-19 Siemens Canada Limited Expansion reservoir of variable volume for engine air induction system
US6422192B1 (en) 1999-10-12 2002-07-23 Siemens Vdo Automotive, Inc. Expansion reservoir of variable volume for engine air induction system

Similar Documents

Publication Publication Date Title
EP0360408B1 (en) Engine induction system and method
JPS5893929A (en) Suction device for diesel engine
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JPH07259655A (en) Exhaust gas circulating device
JP2662799B2 (en) Engine intake control device
JP3257374B2 (en) Sub-chamber engine with exhaust gas recirculation system
JPH07224669A (en) V-type multicylinder two-cycle engine
JP2005344638A (en) Control device of internal combustion engine
JPH08218879A (en) Intake structure of four-cycle engine
JPH07279698A (en) Internal combustion engine
JPS5941290Y2 (en) 2 cycle engine exhaust system
JPH10110619A (en) Intake device for engine
JPS6121556Y2 (en)
JP2858707B2 (en) Engine control device
JPS5924822Y2 (en) Internal combustion engine intake system
JPH0355786Y2 (en)
JPH0717787Y2 (en) Supercharged engine
JP3280757B2 (en) Intake device for engine with mechanical supercharger
JPH0619807Y2 (en) Engine scavenger
JPH0241309Y2 (en)
JP2647131B2 (en) Intake device for turbocharged diesel engine
JP2001355458A (en) Engine with intake control valve for automobile
JPH04194318A (en) Suction device for engine
JPH02123232A (en) Intake device of engine
JPS63227934A (en) High compression ratio internal combustion engine