JPH08218879A - Intake structure of four-cycle engine - Google Patents

Intake structure of four-cycle engine

Info

Publication number
JPH08218879A
JPH08218879A JP4499795A JP4499795A JPH08218879A JP H08218879 A JPH08218879 A JP H08218879A JP 4499795 A JP4499795 A JP 4499795A JP 4499795 A JP4499795 A JP 4499795A JP H08218879 A JPH08218879 A JP H08218879A
Authority
JP
Japan
Prior art keywords
intake
valve
exhaust
recirculation
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4499795A
Other languages
Japanese (ja)
Inventor
Fumitoshi Sugiyama
文敏 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP4499795A priority Critical patent/JPH08218879A/en
Publication of JPH08218879A publication Critical patent/JPH08218879A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE: To further effectively improve fuel consumption and to reduce exhaust gas by a method wherein an intake air return valve and an exhaust valve are driven through a common cam shaft and a cam phase angle varying device is arranged on the common cam shaft. CONSTITUTION: During partial load running at a low and middle speed rotation, the opening closing timing of an intake air return valve 19 is delayed togetherwith the opening closing timing of an exhaust valve 10 by a cam phase angle varying device 13 and even after an intake valve 8 is closed, the intake air return valve 19 is opened. Thus, an engine is reversed at an intake delay close mirror cycle and fuel consumption is improved through reduction of an intake pumping loss. Besides, since the opening closing timing of the exhaust valve 10 is simultaneously delayed, an overlap between the opening states of the intake valve 8 and the exhaust valve 10 is increased. Thereby, a part of burnt exhaust gas is returned to the cylinder again and internal partial EGR (exhaust gas recirculation) is effected, fuel consumption is further improved, and the generation of exhaust gas is also reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、4サイクルエンジンの
吸気構造に関し、特に、圧縮工程時にシリンダ内に吸入
した吸気の一部を吸気通路に還流させる吸気還流通路を
設けて、エンジンの運転領域に応じてオットーサイクル
(ノーマルサイクル)とミラーサイクルの運転変更を可
能とした4サイクルエンジンの吸気構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake structure for a four-cycle engine, and more particularly, to an engine operating range provided with an intake recirculation passage for returning a part of the intake air sucked into a cylinder during a compression process to the intake passage. It relates to an intake structure of a four-cycle engine capable of changing the operation between the Otto cycle (normal cycle) and the Miller cycle according to.

【0002】[0002]

【従来の技術】エンジンの運転において、吸気バルブの
閉タイミングを通常よりも早くしたりあるいは遅らせた
りすることにより、膨張比を圧縮比よりも大きくして、
燃焼ガスの持つエネルギーを十分に膨張させて取り出
し、熱効率を改善して燃費の向上を図る、所謂ミラーサ
イクルという技術が従来から一般的に知られており、そ
のようなミラーサイクルにより運転されるエンジンとし
て、吸気バルブの閉タイミングを遅らせると共に、リシ
ョルムコンプレッサーを使用した高効率のスーパーチャ
ージャーにより過給するというものが従来から知られて
いる。
2. Description of the Related Art In engine operation, the expansion timing is made larger than the compression ratio by making the intake valve closing timing earlier or later than usual.
The so-called Miller cycle technology, which expands the energy of combustion gas sufficiently and takes it out to improve the thermal efficiency to improve the fuel consumption, has been generally known, and an engine operated by such a Miller cycle has been generally known. As a conventional method, it is known that the closing timing of the intake valve is delayed and supercharging is performed by a highly efficient supercharger using a Lisholm compressor.

【0003】ところが、そのようなミラーサイクル・エ
ンジンでは、スロットルが中間開度となる部分負荷時に
は、リショルムコンプレッサーの駆動ロスによりさほど
燃費が向上せず、しかも、リショルムコンプレッサー,
インタークーラー,その他の装備が必要となるため、構
成上非常に高価なものとなってしまうという問題があ
る。
However, in such a Miller cycle engine, at the time of partial load when the throttle is at an intermediate opening degree, the fuel consumption is not so much improved due to the drive loss of the Lisholm compressor, and the Lisholm compressor,
Since an intercooler and other equipment are required, there is a problem that the structure becomes very expensive.

【0004】そこで、スーパーチャージャーなどを必要
とすることなく、スロットル開度が中間開度である部分
負荷時の燃費の向上と、スロットル開度が全開である高
負荷時の出力性能を両立させるために、通常の吸気通路
から分岐させて、圧縮工程時にシリンダ内の吸気の一部
を吸気通路に還流させる吸気還流通路を設け、該吸気還
流通路の開閉タイミングを変えることにより、部分負荷
時にはミラーサイクルとなり、高負荷時にはオットーサ
イクル(ノーマルサイクル)となるように切り換え可能
とした3バルブの4サイクルエンジンが従来公知となっ
ている。(特開昭52−139819号公報,特開昭5
8−122317号公報など参照)
Therefore, in order to achieve both the improvement of the fuel consumption at the time of partial load where the throttle opening is an intermediate opening and the output performance at the time of a high load when the throttle opening is fully opened, without requiring a supercharger or the like. Is provided with an intake air recirculation passage branched from a normal intake air passage to recirculate a part of the intake air in the cylinder to the intake air passage during the compression process, and by changing the opening / closing timing of the intake air recirculation passage, the mirror cycle during partial load Therefore, a three-valve four-cycle engine, which can be switched so as to be an Otto cycle (normal cycle) under high load, has been conventionally known. (JP-A-52-139819, JP-A-5-5
(See, for example, 8-122317)

【0005】一方、上記のような技術とは別に、ツイン
カム(DOHC)型式のバルブシステムを有する4サイ
クルエンジンにおいて、タイミングチェーンに噛合する
カムスプロケットの位相とカム軸自体の位相をエンジン
の運転領域に応じて油圧等の手段により変化させ、排気
バルブの開閉タイミングをエンジンの運転領域に対応さ
せるようにしたカム位相角度可変装置(VVT)という
ものは従来から公知となっている。(例えば、実公平6
−12240号公報等参照)
On the other hand, in addition to the above technique, in a four-cycle engine having a twin cam (DOHC) type valve system, the phase of the cam sprocket meshing with the timing chain and the phase of the cam shaft itself are set in the operating range of the engine. A cam phase angle varying device (VVT) has been conventionally known in which the opening / closing timing of the exhaust valve is made to correspond to the operating region of the engine by changing it by means such as hydraulic pressure. (For example, actual fairness 6
(See No. 12240, etc.)

【0006】[0006]

【発明が解決しようとする課題】ところで、上記のよう
な3バルブでミラーサイクルとオットーサイクルの切り
換えが可能な従来の4サイクルエンジンについては、そ
の何れのものについても、そのサイクル切り換えのため
に、吸気還流通路中に設けた開閉弁の開閉タイミングを
可変なものとしたり、吸気還流バルブの開閉を運転領域
に応じて停止させたりするような、従来のエンジンには
設置されていない制御機構を何らかの形で新たに付加し
なければならないという問題がある。
By the way, regarding the conventional four-cycle engine capable of switching between the Miller cycle and the Otto cycle with the above-mentioned three valves, any one of them is required to switch its cycle. A control mechanism that is not installed in a conventional engine, such as changing the opening / closing timing of the on-off valve provided in the intake air recirculation passage or stopping the opening / closing of the intake air recirculation valve in accordance with the operating region, is required. There is a problem that it must be newly added in the form.

【0007】本発明は、上記のような従来の4サイクル
エンジンの吸気構造における不都合を解消することを目
的としたもので、具体的には、部分負荷時にはミラーサ
イクルで運転でき、高負荷時にはノーマルサイクルで運
転できると共に、その切り換えのために従来からエンジ
ンに設置されている装置を有効に利用して、一層効率的
に燃費の改善や排ガスの低減を図ることができる4サイ
クルエンジンの吸気構造を提供することを目的としてい
る。
The present invention is intended to eliminate the above-mentioned inconvenience in the intake structure of a conventional four-cycle engine. Specifically, it can be operated in a mirror cycle at a partial load, and can be operated normally at a high load. The intake structure of a 4-cycle engine that can be operated in a cycle and effectively uses the device that has been conventionally installed in the engine to switch between the cycles to improve fuel efficiency and reduce exhaust gas more efficiently. It is intended to be provided.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の課題を
解決しかつ目的を達成するために、上記の請求項1に記
載したように、吸気通路に連通する吸気ポートに吸気バ
ルブが配設され、排気通路に連通する排気ポートに排気
バルブが配設されていて、吸気バルブと排気バルブが別
のカム軸によってそれぞれ駆動されていると共に、吸気
通路から分岐して吸気還流通路が設けられ、該吸気還流
通路に連通する吸気還流ポートに吸気還流バルブが配設
されている4サイクルエンジンにおいて、吸気還流バル
ブと排気バルブが共通のカム軸によって駆動されるよう
に、吸気還流ポートが排気ポートの側に配置されてお
り、該共通のカム軸に対してカム位相角度可変装置が設
置されていることを特徴とするものである。
According to the present invention, in order to solve the above-mentioned problems and to achieve the object, an intake valve is arranged in an intake port communicating with an intake passage as described in claim 1. An exhaust valve is provided in an exhaust port communicating with the exhaust passage, the intake valve and the exhaust valve are driven by different cam shafts, respectively, and an intake recirculation passage is provided branching from the intake passage. In a four-cycle engine in which an intake recirculation valve is provided in an intake recirculation port communicating with the intake recirculation passage, the intake recirculation port and the exhaust recirculation valve are driven by a common camshaft. Is arranged on the side of, and a cam phase angle varying device is installed with respect to the common cam shaft.

【0009】また、そのような4サイクルエンジンの吸
気構造において、上記の請求項2に記載したように、吸
気還流通路の途中に開閉弁が設置されていることを特徴
とするものである。
Further, in the intake structure of such a four-cycle engine, as described in claim 2, an on-off valve is installed in the middle of the intake gas recirculation passage.

【0010】[0010]

【作 用】上記のような構成により、低・中速回転で部
分負荷(低負荷)の時には、カム位相角度可変装置(V
VT)により、排気バルブの開閉タイミングと共に、吸
気還流バルブの開閉タイミングが遅らされて、メインの
吸気バルブが閉じた後も吸気還流バルブが開いているた
め、エンジンは吸気遅閉じミラーサイクルで運転され、
吸気ポンピングロスの減少による燃費の向上が図られ
る。
[Operation] With the above-mentioned configuration, the cam phase angle varying device (V
VT) delays the opening / closing timing of the exhaust valve and the opening / closing timing of the intake recirculation valve, and the intake recirculation valve is open even after the main intake valve is closed. Therefore, the engine operates in the delayed intake closed mirror cycle. Is
Fuel consumption is improved by reducing intake pumping loss.

【0011】しかも、同時に排気バルブの開閉タイミン
グが遅らされているため、吸気バルブと排気バルブの開
状態のオーバーラップが拡大することとなり、そのた
め、燃焼された排気ガスの一部が再びシリンダ内に戻っ
て内部的なEGR(排気再循環)が得られ、燃費が更に
向上して、排ガスも低減する。
Moreover, since the opening / closing timing of the exhaust valve is delayed at the same time, the overlap of the open state of the intake valve and the exhaust valve is expanded, and therefore, a part of the combusted exhaust gas is again in the cylinder. Then, internal EGR (exhaust gas recirculation) is obtained, fuel efficiency is further improved, and exhaust gas is reduced.

【0012】一方、高速回転で高負荷の時には、カム位
相角度可変装置により、排気バルブの開閉タイミングと
共に、吸気還流バルブの開閉タイミングがノーマルな状
態に戻って、メインの吸気バルブが閉じると同時に吸気
還流バルブも閉じるため、エンジンはオットーサイクル
で運転され、高効率スーパーチャージャーなどを必要と
することなく、高速性能が確保される。
On the other hand, when the rotation speed is high and the load is high, the opening / closing timing of the exhaust valve and the opening / closing timing of the intake recirculation valve are returned to the normal state by the cam phase angle varying device so that the main intake valve is closed and the intake air is closed. Since the recirculation valve is also closed, the engine operates in the Otto cycle, ensuring high-speed performance without the need for a highly efficient supercharger.

【0013】なお、カム位相角度可変装置(VVT)
を、部分負荷(低負荷)時には各バルブの開閉タイミン
グが遅れるが、アイドル運転のような極低負荷の時には
各バルブの開閉タイミングがノーマルな状態に戻るよう
に設定しておくことによって、極低負荷時における吸気
バルブと排気バルブの開状態のオーバーラップの拡大に
よる燃焼の悪化を避けることができる。
A cam phase angle varying device (VVT)
The opening and closing timing of each valve will be delayed under partial load (low load), but by setting so that the opening and closing timing of each valve will return to the normal state under extremely low load such as idle operation. It is possible to avoid deterioration of combustion due to expansion of overlap between the open state of the intake valve and the exhaust valve at the time of load.

【0014】さらに、上記の請求項2に記載したような
構成によれば、高負荷時や極低負荷時には開閉弁によっ
て吸気還流通路を閉鎖することにより、高負荷時には、
吸気通路から一旦シリンダ内に流入した吸気が、吸気工
程中に吸気還流通路から戻るようなことがなく、吸気の
戻りによるエンジン性能の悪化が防止されると共に、極
低負荷時には、吸気通路内をシリンダに向かって流れる
吸気の流れが吸気還流通路によって途中で分散されるよ
うなことがなく、吸気の流れが更に弱くなることにより
霧化が悪化して燃焼効率が悪くなるというようなことが
防止される。
Further, according to the structure described in claim 2, when the load is high or when the load is extremely low, the intake recirculation passage is closed by the opening / closing valve.
The intake air that has once flown into the cylinder from the intake passage does not return from the intake recirculation passage during the intake stroke, preventing the engine performance from deteriorating due to the return of the intake air. Prevents the flow of intake air flowing toward the cylinder from being dispersed in the middle by the intake air recirculation passage, and prevents the atomization from worsening and combustion efficiency to worsen due to further weakening of the intake air flow. To be done.

【0015】[0015]

【実施例】以下、本発明の4サイクルエンジンの吸気構
造の実施例について図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the intake structure for a 4-cycle engine of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明の吸気構造が適用される4
サイクルエンジンの一例について、その制御系統を含め
た全体の概略を示すもので、大気中からエアクリーナー
を通して吸入した空気をエンジン本体1の燃焼室2に送
給する吸気通路3中には、エアフローメーター4,スロ
ットルバルブ5に続いて、燃料を噴射するためのインジ
ェクター6が設置されていて、各種のセンサーからの入
力信号に基づく制御ユニット(ECU)からのインジェ
クター駆動信号により、エンジンの特性に合わせて設定
した空燃比となるようにインジェクター6から燃料が噴
射されて、その混合気が燃焼室2内に供給されることと
なる。
FIG. 1 shows a structure to which the intake structure of the present invention is applied.
1 shows an overall outline of an example of a cycle engine including a control system thereof. An air flow meter is provided in an intake passage 3 for supplying air sucked from the atmosphere through an air cleaner to a combustion chamber 2 of an engine body 1. 4, following the throttle valve 5, an injector 6 for injecting fuel is installed, and an injector drive signal from a control unit (ECU) based on input signals from various sensors is used to match the characteristics of the engine. Fuel is injected from the injector 6 so that the set air-fuel ratio is obtained, and the air-fuel mixture is supplied into the combustion chamber 2.

【0017】このような燃料噴射式の4サイクルエンジ
ンにおいて、その吸気ポート7に配設される吸気バルブ
8と排気ポート9に配設される排気バルブ10の駆動型
式は、吸気バルブ8と排気バルブ10が別のカム軸1
1,12によってそれぞれ駆動されるツインカム(DO
HC)型式となっている。
In such a fuel injection type four-cycle engine, the drive type of the intake valve 8 arranged in the intake port 7 and the exhaust valve 10 arranged in the exhaust port 9 is the intake valve 8 and the exhaust valve. 10 is another camshaft 1
Twin cams (DO
HC) type.

【0018】そして、排気バルブ10側のカム軸12の
端部には、排気バルブ10の開閉タイミングをエンジン
の運転領域に合わせて自動的に調整するために、クラン
ク軸の回転により各カム軸11,12を駆動するための
タイミングチェーンに噛合するカムスプロケット(何れ
も図示せず)の位相に対して、カム軸12自体の位相を
エンジンの運転領域に応じて相対的に変化させる、従来
から公知の構造のカム位相角度可変装置(VVT)13
が配設されている。
At the end of the camshaft 12 on the exhaust valve 10 side, each camshaft 11 is rotated by rotating the crankshaft in order to automatically adjust the opening / closing timing of the exhaust valve 10 in accordance with the operating region of the engine. Known from the related art, the phase of the cam shaft 12 itself is relatively changed according to the operating region of the engine with respect to the phase of a cam sprocket (neither is shown) meshing with a timing chain for driving the motors 12, 12. Cam phase angle varying device (VVT) 13 having the structure
Is provided.

【0019】図2および図3は、上記のような4サイク
ルエンジンに対して適用されている本発明の吸気構造の
一実施例についてその概略を示すもので、図2に示すよ
うに、吸気通路3は、スロットルバルブ5の下流でメイ
ンの吸気通路3aと吸気還流通路3bとに分岐してい
て、メインの吸気通路3aに続くシリンダヘッドの吸気
ポート7には、その燃焼室開口部に、カム軸11上に設
けられたカム11aによって一定の開閉タイミングで開
閉される吸気バルブ8が配設されている。
2 and 3 show the outline of an embodiment of the intake structure of the present invention applied to the above-described four-cycle engine. As shown in FIG. 3 is branched downstream of the throttle valve 5 into a main intake passage 3a and an intake recirculation passage 3b, and an intake port 7 of the cylinder head following the main intake passage 3a is provided with a cam at its combustion chamber opening. An intake valve 8 that is opened / closed at a constant opening / closing timing by a cam 11a provided on the shaft 11 is provided.

【0020】また、シリンダヘッドには、燃焼室の略中
央に配置された点火プラグ14を間に挟んで、吸気ポー
ト7とは反対の側に、排気通路15と連通する排気ポー
ト9が形成され、排気ポート9の燃焼室開口部には、カ
ム軸12上に設けられたカム12aによって一定の開閉
タイミングで開閉される排気バルブ10が配設されてい
る。
An exhaust port 9 communicating with an exhaust passage 15 is formed in the cylinder head on the side opposite to the intake port 7 with an ignition plug 14 disposed substantially in the center of the combustion chamber interposed therebetween. An exhaust valve 10 that is opened / closed at a constant opening / closing timing by a cam 12a provided on a cam shaft 12 is provided at the combustion chamber opening of the exhaust port 9.

【0021】そして、スロットルバルブ5の下流で吸気
通路3から分岐した吸気還流通路3bについては、該通
路の途中に該通路を開閉するための開閉弁17が設けら
れており、吸気還流通路3bに続く吸気還流ポート18
が、点火プラグ14を間に挟んで吸気ポート7の側とは
反対側で、排気ポート9の側方に位置して、シリンダヘ
ッドに形成されていて、吸気還流ポート18の燃焼室開
口部には、該開口部を一定の開閉タイミングで開閉する
ための吸気還流バルブ19が、排気バルブ10のカム軸
12上に設けられたカム12aとは別のカム12bによ
って駆動されるように配設されている。
As for the intake recirculation passage 3b branched from the intake passage 3 downstream of the throttle valve 5, an opening / closing valve 17 for opening and closing the passage is provided in the middle of the intake recirculation passage 3b. Continued intake recirculation port 18
However, it is formed on the cylinder head at the side opposite to the exhaust port 9 on the side opposite to the intake port 7 side with the spark plug 14 interposed therebetween, and at the combustion chamber opening of the intake recirculation port 18. Is arranged so that an intake air recirculation valve 19 for opening and closing the opening at a constant opening / closing timing is driven by a cam 12b different from the cam 12a provided on the cam shaft 12 of the exhaust valve 10. ing.

【0022】なお、本実施例では、図3に示すように、
吸気ポート7と排気ポート9は、燃焼室の天壁部にそれ
ぞれ2箇所ずつ開口されており、各燃焼室開口部にそれ
ぞれ吸気バルブ8あるいは排気バルブ10が配設されて
いることから、吸気還流ポート18の吸気還流バルブ1
9と合わせて、一気筒について5個のバルブが配設され
ていることとなる。
In this embodiment, as shown in FIG.
The intake port 7 and the exhaust port 9 are each opened at two places on the top wall portion of the combustion chamber, and the intake valve 8 or the exhaust valve 10 is provided at each combustion chamber opening portion. Intake recirculation valve 1 of port 18
Together with 9, five valves are provided for each cylinder.

【0023】上記の各吸気バルブ8,排気バルブ10お
よび吸気還流バルブ19のそれぞれの基本的なバルブ開
閉タイミングについては、図4に示すように、排気バル
ブ10の閉時期がピストン上死点の位置からあまり遅れ
ないように設定され、吸気還流バルブは、その開口範囲
が吸気バルブ8の開口範囲内にあって、その閉時期が吸
気バルブ8の閉時期と一致するように設定されている。
Regarding the basic valve opening / closing timing of each of the intake valve 8, the exhaust valve 10 and the intake recirculation valve 19, as shown in FIG. 4, the closing timing of the exhaust valve 10 is at the piston top dead center position. The intake recirculation valve is set such that its opening range is within the opening range of the intake valve 8 and its closing timing coincides with the closing timing of the intake valve 8.

【0024】また、吸気還流通路3bの途中に設けられ
ている開閉弁17については、極低負荷時と高負荷時に
は閉じられ、部分負荷時には開かれるように、例えばス
ロットルバルブ5などの作動に関連して自動的に開閉す
るように制御されている。
Further, the on-off valve 17 provided in the middle of the intake air recirculation passage 3b is closed at the time of extremely low load and high load, and opened at the time of partial load, for example, related to the operation of the throttle valve 5 and the like. It is controlled to open and close automatically.

【0025】上記のような構成を有する本実施例の4サ
イクルエンジンの吸気構造の作用について以下に説明す
る。
The operation of the intake structure of the four-cycle engine of the present embodiment having the above structure will be described below.

【0026】高速回転で高負荷時およびアイドル運転の
ような極低負荷時には、吸気バルブ8,排気バルブ1
0,吸気還流バルブ19は、それぞれ図4に示すような
パターンの基本的なバルブ開閉タイミングで開閉すると
共に、吸気還流通路3bは開閉弁17によって閉鎖され
る。
The intake valve 8 and the exhaust valve 1 are operated at a high load at a high speed and at an extremely low load such as an idle operation.
0 and the intake air recirculation valve 19 are opened and closed at the basic valve opening and closing timings of the pattern shown in FIG. 4, and the intake air recirculation passage 3b is closed by the on-off valve 17.

【0027】そのため、吸気バルブ8と吸気還流バルブ
19は同時に閉じられて、エンジンはオットーサイクル
(ノーマルサイクル)で運転されるが、その際、吸気還
流通路3bは開閉弁17によって閉鎖されているため、
高負荷時に、メインの吸気通路3aから一旦燃焼室2内
に流入した吸気が吸気工程中に吸気還流通路3bから戻
るようなことがなく、また、極低負荷時に、吸気通路3
内の吸気の流れがメインの吸気通路3aと吸気還流通路
3bに分散することにより、インジェクター6付近での
吸気の流れが更に弱くなるようなことはない。
Therefore, the intake valve 8 and the intake recirculation valve 19 are closed at the same time, and the engine is operated in the Otto cycle (normal cycle). At this time, the intake recirculation passage 3b is closed by the opening / closing valve 17. ,
The intake air, which once flows into the combustion chamber 2 from the main intake passage 3a at the time of high load, does not return from the intake recirculation passage 3b during the intake stroke, and at the time of extremely low load, the intake passage 3
The flow of intake air inside is dispersed in the main intake passage 3a and the intake air recirculation passage 3b, so that the flow of intake air in the vicinity of the injector 6 does not become weaker.

【0028】そして、低・中速回転で部分負荷(低負
荷)時には、カム軸12の端部に設置されたカム位相角
度可変装置(VVT)13によってカム軸12の位相角
度が変えられ、カム軸12上のそれぞれのカム12a,
12bによって駆動される排気バルブ10と吸気還流バ
ルブ19のそれぞれの開閉タイミングが、図5に示すよ
うに、同時に遅らされると共に、吸気還流通路3bの開
閉弁17が開かれて、吸気還流ポート18が吸気通路3
に連通される。
At low / medium speed rotation and under partial load (low load), the phase angle of the cam shaft 12 is changed by the cam phase angle varying device (VVT) 13 installed at the end of the cam shaft 12, and the cam is rotated. Each cam 12a on the shaft 12,
As shown in FIG. 5, the opening / closing timings of the exhaust valve 10 and the intake recirculation valve 19 driven by 12b are simultaneously delayed, and the opening / closing valve 17 of the intake recirculation passage 3b is opened so that the intake recirculation port 3b is opened. 18 is the intake passage 3
Be communicated to.

【0029】そのため、吸気バルブ8が閉じた後も吸気
還流バルブ19が開いていて、吸気後の圧縮工程の初期
に、燃焼室2内の吸気の一部が吸気還流通路3bに戻
り、エンジンは吸気遅閉じのミラーサイクルで運転され
ると共に、排気バルブ10の閉時期が遅らされて、排気
バルブ10と吸気バルブ8の開状態のオーバーラップ領
域が拡大するため、吸気工程で排気ガスの一部が燃焼室
2内に再び戻される。
Therefore, even after the intake valve 8 is closed, the intake recirculation valve 19 is open, and at the beginning of the compression process after intake, a part of the intake air in the combustion chamber 2 returns to the intake recirculation passage 3b, and the engine is The operation is performed in the mirror cycle of late intake closing, the closing timing of the exhaust valve 10 is delayed, and the overlap region of the open state of the exhaust valve 10 and the intake valve 8 is expanded. The part is returned to the combustion chamber 2.

【0030】上記のような作用を奏する本実施例の4サ
イクルエンジンの吸気構造によれば、部分負荷(低負
荷)時には、エンジンが吸気遅閉じミラーサイクルで運
転されるため、吸気ポンピングロスの減少により燃費の
向上を図ることができると共に、排気バルブ10の開閉
タイミングも遅らされて、吸気バルブ8と排気バルブ1
0の開状態のオーバーラップが拡大されるため、燃焼さ
れた排気ガスの一部を再び燃焼室内に戻して内部的なE
GR(排気再循環)を得ることができ、燃費を更に向上
させることができて、排ガスを低減させることもでき
る。
According to the intake structure of the four-cycle engine of the present embodiment having the above-described operation, the engine is operated in the late intake closing mirror cycle at the partial load (low load), so that the intake pumping loss is reduced. As a result, the fuel efficiency can be improved, and the opening / closing timing of the exhaust valve 10 is delayed so that the intake valve 8 and the exhaust valve 1
Since the overlap of the open state of 0 is expanded, a part of the combusted exhaust gas is returned to the combustion chamber and the internal E
GR (exhaust gas recirculation) can be obtained, fuel efficiency can be further improved, and exhaust gas can be reduced.

【0031】一方、高負荷時には、エンジンがオットー
サイクルで運転されるため、高効率スーパーチャージャ
ーなどを必要とすることなく高速性能を確保することが
できると共に、吸気還流通路3bが開閉弁17によって
閉じられるため、吸気工程中にメインの吸気通路3aか
ら一旦燃焼室2内に流入した吸気が吸気還流通路3bか
ら戻るようなことがなく、吸気の戻りによるエンジンの
性能の悪化を防止することができる。
On the other hand, when the load is high, the engine is operated in the Otto cycle, so high-speed performance can be ensured without the need for a high-efficiency supercharger, and the intake recirculation passage 3b is closed by the opening / closing valve 17. Therefore, the intake air that once flows into the combustion chamber 2 from the main intake passage 3a does not return from the intake recirculation passage 3b during the intake stroke, and deterioration of the engine performance due to the return of the intake air can be prevented. .

【0032】また、極低負荷時には、排気バルブ10の
開閉タイミングが遅れていないため、吸気バルブ8と排
気バルブ10の開状態のオーバーラップ領域の拡大によ
る燃焼の悪化を避けることができると共に、吸気還流通
路3bが開閉弁17によって閉じられるため、吸気の流
れが更に弱くなって霧化が悪化し燃焼効率が悪くなると
いうようなことが防止される。
Further, when the load is extremely low, the opening / closing timing of the exhaust valve 10 is not delayed, so that deterioration of combustion due to expansion of the overlap region of the open state of the intake valve 8 and the exhaust valve 10 can be avoided, and intake air can be avoided. Since the recirculation passage 3b is closed by the opening / closing valve 17, it is prevented that the flow of intake air is further weakened, atomization is deteriorated, and combustion efficiency is deteriorated.

【0033】ところで、本実施例のように、一気筒5バ
ルブのエンジンで、吸気通路3がメイン吸気通路3aと
吸気還流通路3bに分岐していて、吸気還流通路3bの
途中に開閉弁17を設けた構造のものでは、吸気還流通
路を設けた従来の3バルブエンジンの場合と比べて、吸
気ポート7全体の開口面積を大きることができ、点火プ
ラグ14を燃焼室2の中央に配置することが可能とな
る。
By the way, in the one-cylinder five-valve engine as in this embodiment, the intake passage 3 branches into the main intake passage 3a and the intake recirculation passage 3b, and the opening / closing valve 17 is provided in the middle of the intake recirculation passage 3b. With the structure provided, the opening area of the entire intake port 7 can be made larger than in the case of the conventional three-valve engine provided with the intake gas recirculation passage, and the spark plug 14 is arranged in the center of the combustion chamber 2. It becomes possible.

【0034】そのため、例えば、カム位相角度可変装置
(VVT)13を設けることなく、排気バルブの開閉タ
イミングを図4のように設定し、吸気バルブと吸気還流
バルブの開閉タイミングを図5のように設定して、それ
らのバルブタイミングを変えることなく、吸気還流通路
3b中の開閉弁17を、部分負荷時には開きそれ以外の
時には閉じるように作動させることによっても、オット
ーサイクルとミラーサイクルの切り換え運転を3バルブ
エンジンの場合よりも高い性能で実施することができ
る。
Therefore, for example, the opening / closing timing of the exhaust valve is set as shown in FIG. 4 without providing the cam phase angle varying device (VVT) 13, and the opening / closing timing of the intake valve and the intake recirculation valve is set as shown in FIG. By setting and operating the opening / closing valve 17 in the intake air recirculation passage 3b so as to open at partial load and close at other times without changing the valve timings thereof, switching operation between the Otto cycle and the Miller cycle is performed. It can be performed with higher performance than in the case of a 3-valve engine.

【0035】これに対して、本実施例の吸気構造によれ
ば、従来から排気バルブの開閉タイミングを可変なもの
とするために使用されているカム位相角度可変装置(V
VT)13を単にそのまま利用することにより、排気バ
ルブ10の開閉タイミングの制御と同時に吸気還流バル
ブ19の開閉タイミングの制御を行うことができるた
め、新たな制御,駆動機構の開発や付加を行うことな
く、更に高い性能でオットーサイクルとミラーサイクル
の切り換え運転を実施することが可能となる。
On the other hand, according to the intake structure of the present embodiment, the cam phase angle varying device (V which is conventionally used to make the opening / closing timing of the exhaust valve variable).
By simply using the VT) 13 as it is, it is possible to control the opening / closing timing of the exhaust valve 10 and the opening / closing timing of the intake air recirculation valve 19 at the same time. It becomes possible to carry out the switching operation between the Otto cycle and the Miller cycle with higher performance.

【0036】以上、本発明の4サイクルエンジンの吸気
構造の一実施例について説明したが、本発明は上記の実
施例に示したような具体的な構造にのみ限定されるもの
ではなく、例えば、燃料噴射式エンジンだけでなくキャ
ブレターを用いたエンジンにも適用可能であり、また、
5バルブエンジンだけでなく3バルブ(吸気バルブ1,
排気バルブ1,吸気還流バルブ1)あるいはそれ以外の
バルブ数のエンジンにも適用可能である等、適宜設計変
更可能なものであることはいうまでもない。
Although one embodiment of the intake structure for the four-cycle engine of the present invention has been described above, the present invention is not limited to the specific structure shown in the above embodiment, and for example, It is applicable not only to fuel injection type engines but also to engines using carburetors.
Not only 5 valve engine but 3 valve (intake valve 1,
It goes without saying that the design can be changed as appropriate, such as being applicable to an engine having an exhaust valve 1, an intake air recirculation valve 1) or other number of valves.

【0037】[0037]

【発明の効果】以上説明したような本発明の4サイクル
エンジンの吸気構造によれば、高負荷時にはオットーサ
イクルで運転することができ、部分負荷時にはミラーサ
イクルで運転することができて、高速運転時の性能を悪
化させることなく、ポンピングロスを低減させて燃費の
向上を図ることができると共に、オットーサイクルとミ
ラーサイクルの切り換えのために、新たな装置を必要と
することなく、従来からエンジンに設置されている装置
を有効に利用して、一層効率的に燃費の改善や排ガスの
低減を図ることができる。
According to the intake structure of the four-cycle engine of the present invention as described above, it is possible to operate in the Otto cycle when the load is high and to operate in the Miller cycle when the load is high, and to operate at high speed. It is possible to reduce pumping loss and improve fuel efficiency without deteriorating the performance at the time, and to switch from the Otto cycle to the Miller cycle, a new device is not required and the engine has been changed from before. By effectively utilizing the installed device, it is possible to more efficiently improve fuel efficiency and reduce exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸気構造が適用される4サイクルエン
ジンの一例について、その全体の概略を示す説明図。
FIG. 1 is an explanatory view showing an overall outline of an example of a four-cycle engine to which an intake structure of the present invention is applied.

【図2】図1に示した4サイクルエンジンに適用されて
いる本発明の吸気構造の一実施例について、その概略を
示す側面視説明図。
FIG. 2 is a side view explanatory view showing the outline of an embodiment of the intake structure of the present invention applied to the 4-cycle engine shown in FIG.

【図3】図2に示した実施例の平面視説明図。3 is an explanatory plan view of the embodiment shown in FIG.

【図4】図2に示した実施例の4サイクルエンジンにお
けるオットーサイクル時の各バルブの開閉タイミングを
示すグラフ。
4 is a graph showing the opening / closing timing of each valve during the Otto cycle in the four-cycle engine of the embodiment shown in FIG.

【図5】図2に示した実施例の4サイクルエンジンにお
けるミラーサイクル時の各バルブの開閉タイミングを示
すグラフ。
5 is a graph showing the opening / closing timing of each valve during a Miller cycle in the four-cycle engine of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

3 吸気通路 3b 吸気還流通路 7 吸気ポート 8 吸気バルブ 9 排気ポート 10 排気バルブ 11 カム軸(吸気側) 12 カム軸(排気側) 13 カム位相角度可変装置 15 排気通路 17 吸気還流通路の開閉弁 18 吸気還流ポート 19 吸気還流バルブ 3 intake passage 3b intake recirculation passage 7 intake port 8 intake valve 9 exhaust port 10 exhaust valve 11 cam shaft (intake side) 12 cam shaft (exhaust side) 13 cam phase angle varying device 15 exhaust passage 17 intake recirculation passage opening / closing valve 18 Intake recirculation port 19 Intake recirculation valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 29/08 F02B 29/08 F F02D 13/02 F02D 13/02 L H K F02M 25/07 520 F02M 25/07 520A 580 580A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display area F02B 29/08 F02B 29/08 FF02D 13/02 F02D 13/02 L H K F02M 25/07 520 F02M 25/07 520A 580 580A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸気通路に連通する吸気ポートに吸気バ
ルブが配設され、排気通路に連通する排気ポートに排気
バルブが配設されていて、吸気バルブと排気バルブが別
のカム軸によってそれぞれ駆動されていると共に、吸気
通路から分岐して吸気還流通路が設けられ、該吸気還流
通路に連通する吸気還流ポートに吸気還流バルブが配設
されている4サイクルエンジンにおいて、吸気還流バル
ブと排気バルブが共通のカム軸によって駆動されるよう
に、吸気還流ポートが排気ポートの側に配置されてお
り、該共通のカム軸に対してカム位相角度可変装置が設
置されていることを特徴とする4サイクルエンジンの吸
気構造。
1. An intake valve is provided in an intake port communicating with the intake passage, an exhaust valve is provided in an exhaust port communicating with the exhaust passage, and the intake valve and the exhaust valve are respectively driven by different camshafts. In addition, the intake recirculation valve is provided with an intake recirculation passage branching from the intake passage, and the intake recirculation valve is disposed in the intake recirculation port communicating with the intake recirculation passage. An intake recirculation port is arranged on the exhaust port side so as to be driven by a common cam shaft, and a cam phase angle varying device is installed with respect to the common cam shaft. Engine intake structure.
【請求項2】 吸気還流通路の途中に開閉弁が設置され
ていることを特徴とする請求項1に記載の4サイクルエ
ンジンの吸気構造。
2. The intake structure for a four-cycle engine according to claim 1, wherein an on-off valve is installed midway in the intake air recirculation passage.
JP4499795A 1995-02-10 1995-02-10 Intake structure of four-cycle engine Pending JPH08218879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4499795A JPH08218879A (en) 1995-02-10 1995-02-10 Intake structure of four-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4499795A JPH08218879A (en) 1995-02-10 1995-02-10 Intake structure of four-cycle engine

Publications (1)

Publication Number Publication Date
JPH08218879A true JPH08218879A (en) 1996-08-27

Family

ID=12707074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4499795A Pending JPH08218879A (en) 1995-02-10 1995-02-10 Intake structure of four-cycle engine

Country Status (1)

Country Link
JP (1) JPH08218879A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159358A (en) * 1997-11-27 1999-06-15 Osamu Nakada Method for taking real expansion ratio larger than real compression ratio in four-cycle engine
JPH11182272A (en) * 1997-12-24 1999-07-06 Osamu Nakada Method of taking real expansion ratio larger than real compression ratio at the time of using piston valve and rotary valve for four-cycle engine, six-cycle engine, eight-cycle engine, or ten or more cycle engine
EP1596051A1 (en) 2004-05-11 2005-11-16 Barnett J. Robinson Internal combustion engine with elevated expansion ratio
JP2008031948A (en) * 2006-07-31 2008-02-14 Honda Motor Co Ltd Method for controlling internal combustion engine
US7823550B2 (en) 2007-07-30 2010-11-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine equipped with adjustable valve timing mechanism
US7918090B2 (en) * 2007-06-26 2011-04-05 Hitachi, Ltd. Method and apparatus for controlling an internal combustion engine
CN107435595A (en) * 2016-05-26 2017-12-05 长城汽车股份有限公司 Engine system and vehicle
CN108730014A (en) * 2017-04-21 2018-11-02 北京汽车动力总成有限公司 A kind of engine and automobile

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159358A (en) * 1997-11-27 1999-06-15 Osamu Nakada Method for taking real expansion ratio larger than real compression ratio in four-cycle engine
JPH11182272A (en) * 1997-12-24 1999-07-06 Osamu Nakada Method of taking real expansion ratio larger than real compression ratio at the time of using piston valve and rotary valve for four-cycle engine, six-cycle engine, eight-cycle engine, or ten or more cycle engine
EP1596051A1 (en) 2004-05-11 2005-11-16 Barnett J. Robinson Internal combustion engine with elevated expansion ratio
JP2008031948A (en) * 2006-07-31 2008-02-14 Honda Motor Co Ltd Method for controlling internal combustion engine
US7918090B2 (en) * 2007-06-26 2011-04-05 Hitachi, Ltd. Method and apparatus for controlling an internal combustion engine
US7823550B2 (en) 2007-07-30 2010-11-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine equipped with adjustable valve timing mechanism
KR101235518B1 (en) * 2007-07-30 2013-02-20 미쯔비시 지도샤 고교 가부시끼가이샤 Engine with variable valve driving mechanism
CN107435595A (en) * 2016-05-26 2017-12-05 长城汽车股份有限公司 Engine system and vehicle
CN108730014A (en) * 2017-04-21 2018-11-02 北京汽车动力总成有限公司 A kind of engine and automobile
CN108730014B (en) * 2017-04-21 2020-03-06 北京汽车动力总成有限公司 Engine and automobile

Similar Documents

Publication Publication Date Title
US5224460A (en) Method of operating an automotive type internal combustion engine
KR0152101B1 (en) Supercharged engine
US5950582A (en) Internal combustion engine with variable camshaft timing and intake valve masking
US5190006A (en) Injection arrangement for improving fuel consumption
US5913298A (en) Valve timing system for engine
JP3678861B2 (en) Engine operation control device
JPH08218879A (en) Intake structure of four-cycle engine
JPH05157008A (en) Engine
JP2994112B2 (en) Engine intake system
EP1291507B1 (en) Two-cycle self-ignition gasoline engine
JP3214720B2 (en) Exhaust gas recirculation system for internal combustion engine
JP3183560B2 (en) Control device for supercharged engine
JP3916313B2 (en) 4-cycle multi-cylinder engine
JPH0968060A (en) Valve system of internal combustion engine
JPH077551Y2 (en) Multi-cylinder diesel engine
JPS60150406A (en) Cylinder number controlling engine
JP3885702B2 (en) Control device for spark ignition engine
JPH0324835Y2 (en)
JPH10238334A (en) Four-cycle engine
JPH0642410A (en) Internal combustion engine provided with exhaust gas reflux device
JPH0717787Y2 (en) Supercharged engine
JPH06330776A (en) Intake device for engine with mechanical supercharger
JPH084599A (en) Combustion control method for engine
EP1472445B1 (en) Dual mode engine with controlled auto-ignition
JP4635397B2 (en) Inter-cylinder EGR operation method of multi-cylinder internal combustion engine