JPH05157008A - Engine - Google Patents

Engine

Info

Publication number
JPH05157008A
JPH05157008A JP3340419A JP34041991A JPH05157008A JP H05157008 A JPH05157008 A JP H05157008A JP 3340419 A JP3340419 A JP 3340419A JP 34041991 A JP34041991 A JP 34041991A JP H05157008 A JPH05157008 A JP H05157008A
Authority
JP
Japan
Prior art keywords
storage chamber
valve
engine
stroke
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3340419A
Other languages
Japanese (ja)
Inventor
Mitsuo Hitomi
光夫 人見
Toshiharu Masuda
俊治 益田
Tatsuya Uesugi
達也 上杉
Junzo Sasaki
潤三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP3340419A priority Critical patent/JPH05157008A/en
Publication of JPH05157008A publication Critical patent/JPH05157008A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To provide an engine to carry out cooled EGR inside of the engine without using an external EGR (exhaust gas recirculation) conduit. CONSTITUTION:In addition to an air intake port 6 and an air exhaust port 8, a reservoir chamber port 15a opened/closed by means of a reservoir chamber valve 16 is opened in a combustion chamber 4 of an engine 1, so that the combustion chamber and a reservoir chamber 15 can be communicated with each other. Burnt gas in the combustion chamber is taken in the reservoir chamber, and the burnt gas being taken in is discharged to the combustion chamber in an air intake stroke and in a compression stroke or from the air intake stroke to the compression stroke. As for an opening/ closing timing of the reservoir chamber valve 16, an opening/closing operation is carried out twice per cycle. The first opening/closing operation is carried out in an expansion stroke, and a part of the high pressure burnt gas in the combustion chamber is taken in the reservoir chamber. The second opening/closing operation is carried out in a compression stroke after an air intake valve 7 is closed, and the high pressure burnt gas in the reservoir chamber is discharged to the combustion chamber. When the burnt gas is taken in, or when it is reserved in the reservoir chamber, and further when it is discharged to the combustion chamber, the burnt gas is cooled. Thereby, the cooled EGR gas is inputted to the combustion chamber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine.

【0002】[0002]

【従来技術】エンジンの排気ガスを吸気系に還流する、
いわゆるEGRは、排気系と吸気系とに連通する外部E
GR導管を開いて行われ、主に、軽負荷領域でのNOX
対策(排気ガス中の有害成分であるNOX 低減策)とし
て活用されている(特開昭59−160052号公報参
照)。
2. Description of the Related Art Engine exhaust gas is recirculated to an intake system,
The so-called EGR is an external E that communicates with the exhaust system and the intake system.
Opening the GR conduit, mainly NO X in the light load region
Measures have been used as (NO X reduction measures are harmful components in the exhaust gas) (see JP-A-59-160052).

【0003】ところで、エンジンの熱効率を向上させる
ために高圧縮比化した場合あるいはエンジン出力を向上
させるために高過給圧化した場合に、エンジン内部温度
が上昇し、あるいは排気ガス温度が上昇してエンジン
(排気系を含む)の信頼性を損なうという問題が発生す
るが、この問題に対して、冷えたEGRガスを燃焼室に
投入することが効果的であると考えられる。
By the way, when the compression ratio is increased to improve the thermal efficiency of the engine or when the supercharging pressure is increased to improve the engine output, the internal temperature of the engine or the exhaust gas temperature increases. However, there is a problem that the reliability of the engine (including the exhaust system) is impaired, but it is considered effective to feed cold EGR gas into the combustion chamber for this problem.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高負荷
領域において吸気系に排気ガスを還流したときには、こ
のEGRガスによって、新気の充填量が減少し、充分な
新気の充填量が確保しにくくなるという問題がある。
However, when exhaust gas is recirculated to the intake system in the high load region, the EGR gas reduces the amount of fresh air to be filled, and it is difficult to ensure a sufficient amount of fresh air to be filled. There is a problem of becoming.

【0005】また、エンジン出力によって駆動される機
械式過給機を備えたエンジンにあっては、過給領域にお
いて、過給圧(吸気管内圧)の方が排圧よりも高くなる
ため、過給機の下流側にEGRガスを導くことが困難で
あり、過給機の上流側にEGRガスを導いてEGRガス
を過給機に吸い込ませることが必要となる。
Further, in an engine equipped with a mechanical supercharger driven by engine output, the supercharging pressure (intake pipe internal pressure) becomes higher than the exhaust pressure in the supercharging region. It is difficult to guide the EGR gas to the downstream side of the feeder, and it is necessary to guide the EGR gas to the upstream side of the supercharger so that the EGR gas is sucked into the supercharger.

【0006】しかしながら、過給機にEGRガスを吸い
込ませたときには、EGRガスによる過給機の汚染等の
問題から過給機の信頼性を損なうという問題が生じる。
また、過給機はEGRガスに対しても圧縮仕事を行うこ
とになるため、過給機の負担が増大するという問題が生
じる。
However, when the EGR gas is sucked into the supercharger, there arises a problem that the reliability of the supercharger is impaired due to a problem such as contamination of the supercharger by the EGR gas.
Further, since the supercharger also performs the compression work on the EGR gas, there is a problem that the load on the supercharger increases.

【0007】そこで、本発明の目的は、外部EGR導管
によることなく、エンジン内部で冷えたEGRを行うよ
うにしたエンジンを提供することにある。
Therefore, an object of the present invention is to provide an engine that performs cold EGR inside the engine without using an external EGR conduit.

【0008】[0008]

【課題を解決するための手段】かかる技術的課題を達成
すべく、本発明にあっては、以下の構成を採用してあ
る。すなわち、エンジン本体に形成された貯留室と、該
貯留室と燃焼室とを連通させる貯留室ポ−トと、該貯留
室ポ−トを開閉する貯留室バルブと、を備え、前記貯留
室バルブを開閉させて、燃焼後の既燃ガスを前記貯留室
に取込んだ後、該貯留室内の既燃ガスを吸気行程、圧縮
行程あるいは吸気行程から圧縮行程にかけて燃焼室に吐
出させる、構成としてある。
In order to achieve the technical problem, the present invention adopts the following constitution. That is, the storage chamber valve is provided with a storage chamber formed in the engine body, a storage chamber port that connects the storage chamber and the combustion chamber, and a storage chamber valve that opens and closes the storage chamber port. Is opened and closed to take the burnt gas after combustion into the storage chamber, and then the burnt gas in the storage chamber is discharged to the combustion chamber during the intake stroke, the compression stroke, or the intake stroke to the compression stroke. ..

【0009】[0009]

【作用】燃焼室の高温高圧の既燃ガスが貯留室ポ−トを
通って貯留室内に高速で流入するとき、この貯留室内に
封入されている間、及び貯留室と燃焼室との間の圧力差
によって貯留室内の既燃ガスが燃焼室に吐出されるとき
に既燃ガスは冷やされ(放熱され)、この冷えた既燃ガ
スが燃焼室に充填されることになる。
When the high-temperature and high-pressure burnt gas in the combustion chamber flows into the storage chamber at a high speed through the storage chamber port, it is sealed in the storage chamber and between the storage chamber and the combustion chamber. When the burned gas in the storage chamber is discharged into the combustion chamber due to the pressure difference, the burned gas is cooled (heat is released), and the cooled burned gas is filled in the combustion chamber.

【0010】[0010]

【実施例】以下、本発明の実施例を添付した図面に基づ
いて説明する。図1において、符号1はエンジンで、エ
ンジン1はシリンダボア2内に嵌挿されたピストン3に
よって燃焼室4が画成される。この燃焼室4はペントル
−フ型とされて、その頂部に点火プラグ5が配設され、
また燃焼室4に臨んで開口する吸気ポ−ト6には吸気弁
7が配設され、排気ポ−ト8には排気弁9が配設されて
いる。そして、上記吸気ポ−ト6に連なる吸気通路10
には、スロットル弁11が配設され、また吸気ポ−ト6
に臨ませて燃料噴射弁12が配設されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, reference numeral 1 is an engine, and a combustion chamber 4 of the engine 1 is defined by a piston 3 inserted in a cylinder bore 2. The combustion chamber 4 is of a pentorf type, and a spark plug 5 is arranged on the top thereof.
An intake valve 7 is provided in an intake port 6 that opens toward the combustion chamber 4, and an exhaust valve 9 is provided in an exhaust port 8. Then, the intake passage 10 connected to the intake port 6 is connected.
Is provided with a throttle valve 11 and an intake port 6
The fuel injection valve 12 is disposed so as to face the above.

【0011】また、上記エンジン1は貯留室15を有し
ている。貯留室15はその貯留室ポ−ト15aが燃焼室
4に開口され、貯留室ポ−ト15aには貯留室バルブ1
6が配設されて、この貯留室バルブ16によって貯留室
ポ−ト15aが開閉されるようになっている。
The engine 1 also has a storage chamber 15. The storage chamber 15 has a storage chamber port 15a opened to the combustion chamber 4, and the storage chamber port 15a has a storage chamber valve 1
6 is provided, and the storage chamber valve 15 opens and closes the storage chamber port 15a.

【0012】上記貯留室バルブ16の開閉時期の一例を
図2に示す。図2において、破線は排気弁9のバルブタ
イミングを示すものである。また、1点鎖線は吸気弁7
のバルブタイミングを示すものである。また実線は貯留
室バルブ16のバルブタイミングを示すものである。
An example of the opening / closing timing of the storage chamber valve 16 is shown in FIG. In FIG. 2, the broken line shows the valve timing of the exhaust valve 9. The one-dot chain line indicates the intake valve 7
It shows the valve timing of. The solid line indicates the valve timing of the storage chamber valve 16.

【0013】図2から明らかなように、貯留室バルブ1
6は、1サイクル当り、2回の開閉動作が行われるよう
になっている。すなわち、第1回目の開閉動作は、膨張
行程で行われ、第2回目の開閉動作は圧縮行程で行われ
る。より詳しくは、第1回目の開閉動作は膨張行程(圧
縮上死点後)で開かれ、排気弁9が開かれた後に閉じら
れるようになっている。これにより燃焼室4の高温高圧
の既燃ガスが貯留室ポ−ト15aを通って貯留室15に
流入し、この貯留室15に封入されることになる。そし
て、既燃ガスは貯留室ポ−ト15aを高速で通過する過
程で放熱され、また貯留室15に貯められている間にお
いても放熱されることになる。
As is apparent from FIG. 2, the storage chamber valve 1
In No. 6, the opening / closing operation is performed twice per cycle. That is, the first opening / closing operation is performed in the expansion stroke, and the second opening / closing operation is performed in the compression stroke. More specifically, the first opening / closing operation is opened in the expansion stroke (after the compression top dead center), and is closed after the exhaust valve 9 is opened. As a result, the high-temperature and high-pressure burnt gas in the combustion chamber 4 flows into the storage chamber 15 through the storage chamber port 15a and is enclosed in the storage chamber 15. Then, the burned gas is radiated in the process of passing through the storage chamber port 15a at a high speed, and is also radiated while being stored in the storage chamber 15.

【0014】他方、貯留室バルブ16の第2回目の開閉
動作は吸気弁7が閉じた後の圧縮行程で行われる。これ
により、上記貯留室15に封入されている高圧の既燃ガ
スは、貯留室ポ−ト15aを通って燃焼室4に放出され
ることになる。そして、既燃ガスは貯留室ポ−ト15a
を高速で通過する過程において放熱されることになる。
On the other hand, the second opening / closing operation of the storage chamber valve 16 is performed in the compression stroke after the intake valve 7 is closed. As a result, the high-pressure burnt gas sealed in the storage chamber 15 is discharged to the combustion chamber 4 through the storage chamber port 15a. The burnt gas is stored in the storage chamber port 15a.
Heat will be dissipated in the process of passing through at high speed.

【0015】以上により、燃焼室4には冷えたEGRガ
スが投入されることになる。そして、このEGRガスの
投入は圧縮行程において行われるため、換言すれば吸気
行程が完了した後に行われるため、新気の充填量に何ら
の影響を及ぼすことはない。
As described above, the cooled EGR gas is introduced into the combustion chamber 4. Since the injection of the EGR gas is performed in the compression stroke, in other words, after the intake stroke is completed, it has no influence on the fresh air filling amount.

【0016】図3〜図5は貯留室バルブ16バルブタイ
ミングの変形例を示すものである。図3に示すバルブタ
イミングにおいては、貯留室バルブ16の第1回目の開
閉動作が、膨張行程で行われ(排気弁9が開かれる前に
貯留室バルブ16が閉じられる)、第2回目の開閉動作
は圧縮行程で行われるようになっている。
3 to 5 show modifications of the valve timing of the storage chamber valve 16. At the valve timing shown in FIG. 3, the first opening / closing operation of the storage chamber valve 16 is performed in the expansion stroke (the storage chamber valve 16 is closed before the exhaust valve 9 is opened) and the second opening / closing operation. The operation is performed in the compression stroke.

【0017】図4に示すバルブタイミングにおいては、
貯留室バルブ16の第1回目の開閉動作が、膨張行程に
開かれ、排気行程の初期に閉じられるようになってい
る。貯留室バルブの第2回目の開閉動作は、吸気行程の
後半に行われるようになっている。
At the valve timing shown in FIG. 4,
The first opening / closing operation of the storage chamber valve 16 is opened during the expansion stroke and closed at the beginning of the exhaust stroke. The second opening / closing operation of the storage chamber valve is performed in the latter half of the intake stroke.

【0018】図5に示すバルブタイミングにおいては、
貯留室バルブ16の第1回目の開閉動作は、排気上死点
を跨いで行われるようになっている。第2回目の開閉動
作は吸気行程の後半に行われる。
At the valve timing shown in FIG. 5,
The first opening / closing operation of the storage chamber valve 16 is performed across the exhaust top dead center. The second opening / closing operation is performed in the latter half of the intake stroke.

【0019】図5に示すバルブタイミングでは、圧縮上
死点を跨いで行われるため、貯留室15に高圧の残留ガ
スを取込めるという利点がある。すなわち、排気上死点
近傍では、排気弁9及び/又は吸気弁7が開いていると
してもそのリフト量は小さく、燃焼室4は実質的に閉鎖
された状態にある。このため、燃焼室4の残留ガス内
は、排気行程の中期よりも高圧状態となる。尚、図5
は、排気弁9と吸気弁7とが共に開弁状態となる、いわ
ゆるバルブオ−バラップのないものとしてあるが、この
オ−バラップが存在するものにあっても同様の効果を得
ることができる。
Since the valve timing shown in FIG. 5 is performed across the compression top dead center, there is an advantage that high-pressure residual gas can be taken into the storage chamber 15. That is, near the exhaust top dead center, even if the exhaust valve 9 and / or the intake valve 7 are open, the lift amount thereof is small, and the combustion chamber 4 is substantially closed. Therefore, the inside of the residual gas in the combustion chamber 4 has a higher pressure than in the middle of the exhaust stroke. Incidentally, FIG.
Has no so-called valve overlap in which both the exhaust valve 9 and the intake valve 7 are open, but the same effect can be obtained even in the case where this overlap exists.

【0020】以上、貯留室バルブ16の第1回目の開閉
動作と第2回目の開閉動作との例を示したが、これら第
1回目の開閉動作と第2回目の開閉動作との組合せは任
意である。
Although the example of the first opening / closing operation and the second opening / closing operation of the storage chamber valve 16 has been described above, the combination of the first opening / closing operation and the second opening / closing operation is arbitrary. Is.

【0021】貯留室バルブ16の作動領域としては、低
速低負荷領域では貯留室バルブ16の作動を停止してア
イドル運転時の燃焼安定性を確保するのが望ましい。
As an operating region of the storage chamber valve 16, it is desirable to stop the operation of the storage chamber valve 16 in a low speed and low load region to ensure combustion stability during idle operation.

【0022】図6〜図8は貯留室バルブ16の作動停止
機構19の一例を示すものである。図6に示すエンジン
は、1つの気筒に2つの吸気弁7、7と2つの排気弁
9、9を備え、これら吸気弁7と排気弁9とは、個々独
立したカムシャフト20、21によって駆動されるダブ
ルオ−バヘッドカム式のエンジン(DOHC方エンジ
ン)とされている。すなわち、一のカムシャフト20は
吸気弁用とされ、他のカムシャフト21は排気弁用とさ
れて、これらカムシャフト20、21は、既知のよう
に、エンジン出力軸に連係されて、エンジン出力軸に同
期して回転するようになっている。
6 to 8 show an example of the operation stopping mechanism 19 of the storage chamber valve 16. The engine shown in FIG. 6 is provided with two intake valves 7, 7 and two exhaust valves 9, 9 in one cylinder, and these intake valve 7 and exhaust valve 9 are driven by independent camshafts 20, 21. It is said to be a double over head cam type engine (DOHC type engine). That is, one camshaft 20 is used for the intake valve, the other camshaft 21 is used for the exhaust valve, and these camshafts 20 and 21 are linked to the engine output shaft as is known, and the engine output is It is designed to rotate in synchronization with the axis.

【0023】貯留室バルブ16用のカム22は、ここで
は、吸気弁用カムシャフト20に配設され、貯留室バル
ブ用カム22と貯留室バルブ16との間には、貯留室バ
ルブ16と当接する第1のロッカ23と、カム22と当
接する第2のロッカ24と、が並んで配設されている。
これら第1、第2のロッカ23、24は中空軸25回り
に揺動可能とされ、第2のロッカ24はスプリング26
(図7参照)によってカム22と当接する方向に付勢さ
れている。
The cam 22 for the storage chamber valve 16 is disposed on the intake valve camshaft 20 in this case, and the storage chamber valve 16 and the storage chamber valve 16 are provided between the storage chamber valve cam 22 and the storage chamber valve 16. A first rocker 23 that contacts the cam 22 and a second rocker 24 that contacts the cam 22 are arranged side by side.
The first and second rockers 23 and 24 are swingable around a hollow shaft 25, and the second rocker 24 is a spring 26.
(See FIG. 7), the cam 22 is urged in the direction of abutting.

【0024】上記第1、第2のロッカ23、24には、
図7、図8に示すように、互いに対向して開口する第1
の穴23aと第2の穴24aとが、各々、形成されてい
る。これら第1、第2の穴23a,24aには、連結ピ
ン27が摺動可能に嵌挿され、この連結ピン27は圧縮
バネ28によって第2ロッカ24側に付勢されて、圧力
室24bに油圧が供給されたときには、連結ピン27が
第1ロッカ23に侵入して、この連結ピン27によって
第1、第2のロッカ23、24が一体化され(図8参
照)、貯留室バルブ16はカム22によって開閉駆動さ
れる。
The first and second rockers 23 and 24 are
As shown in FIGS. 7 and 8, the first opening facing each other
Hole 23a and second hole 24a are formed respectively. A connecting pin 27 is slidably fitted into the first and second holes 23a and 24a, and the connecting pin 27 is urged toward the second rocker 24 by a compression spring 28 so that the pressure chamber 24b is exposed. When hydraulic pressure is supplied, the connecting pin 27 enters the first rocker 23, the connecting pin 27 integrates the first and second rockers 23, 24 (see FIG. 8), and the storage chamber valve 16 It is opened and closed by the cam 22.

【0025】他方、圧力室24bの油圧がドレンされた
ときには、図7に示すように、連結ピン27は圧縮バネ
力によって第2のロッカ24側に押し戻されて、連結ピ
ン27による第1、第2のロッカ23と24との結合が
解除され、これにより貯留室バルブ16の作動が停止さ
れる。尚、貯留室バルブ16は、後述するように、閉弁
方向にバネ付勢されており、したがって貯留室バルブ1
6の作動が停止されたときには、貯留室バルブ16は閉
じ状態が維持される。また、上記圧力室24bに対する
油圧の供給あるいは解放は、中空軸25内の油通路25
a(図7、図8参照)を利用して行われるようになって
いる。
On the other hand, when the hydraulic pressure in the pressure chamber 24b is drained, the connecting pin 27 is pushed back toward the second rocker 24 by the compression spring force as shown in FIG. The connection between the second rockers 23 and 24 is released, and the operation of the storage chamber valve 16 is stopped. The storage chamber valve 16 is spring-biased in the valve closing direction, as will be described later, and therefore the storage chamber valve 1
When the operation of 6 is stopped, the storage chamber valve 16 is maintained in the closed state. Further, the oil pressure to the pressure chamber 24b is supplied or released by the oil passage 25 in the hollow shaft 25.
a (see FIGS. 7 and 8).

【0026】貯留室バルブ16の作動領域として、高負
荷領域で貯留室バルブ16を作動させ、それ以外の領域
では貯留室バルブ16の作動を停止させるようにしても
よい。これによれば、貯留室15を利用した低温のEG
Rにより高負荷領域でのノッキング低減、エンジン内部
の熱負荷の低減、燃焼音の低減、排気ガス温度の低減に
よる排気系部品の保護を図ることができる。
As an operating region of the storage chamber valve 16, the storage chamber valve 16 may be operated in a high load region, and the storage chamber valve 16 may be stopped in other regions. According to this, the low temperature EG utilizing the storage chamber 15
R can reduce knocking in a high load region, reduce heat load inside the engine, reduce combustion noise, and protect exhaust system components by reducing exhaust gas temperature.

【0027】貯留室バルブ16の作動領域として、軽負
荷領域で貯留室バルブ16を作動させ、それ以外の領域
では貯留室バルブ16の作動を停止させるようにしても
よい。これによれば、軽負荷運転時の排気ガス中のNO
X を低減することができる。
As an operating region of the storage chamber valve 16, the storage chamber valve 16 may be operated in a light load region, and the storage chamber valve 16 may be stopped in other regions. According to this, NO in the exhaust gas during light load operation
X can be reduced.

【0028】貯留室バルブ16の作動領域として、高回
転領域で作動させ、低回転領域では貯留室バルブ16の
作動を停止させるようにしてもよい。これによれば、高
回転領域でのエンジン内部の熱負荷の低減、燃焼音の低
減、排気ガス温度の低減を図ることができる。
As an operating region of the storage chamber valve 16, the storage chamber valve 16 may be operated in a high rotation region, and the storage chamber valve 16 may be stopped in a low rotation region. According to this, it is possible to reduce the heat load inside the engine, the combustion noise, and the exhaust gas temperature in the high rotation region.

【0029】貯留室バルブ16の作動領域として、低回
転領域で貯留室バルブ16を作動させ、高回転領域では
貯留室バルブ16の作動を停止させるようにしてもよ
い。これによれば、低回転領域でのノッキング低減、N
X 低減を図ることができる。
As an operating region of the storage chamber valve 16, the storage chamber valve 16 may be operated in a low rotation region and the operation of the storage chamber valve 16 may be stopped in a high rotation region. According to this, knocking reduction in the low rotation region, N
O X reduction can be achieved.

【0030】勿論、貯留室バルブ16の作動領域とし
て、アイドル領域を除く全ての領域で貯留室バルブ16
を作動させるようにしてもよい。
Of course, as the operating region of the storage chamber valve 16, the storage chamber valve 16 is used in all regions except the idle region.
May be activated.

【0031】貯留室15を利用したEGRにおいて、そ
のEGR量の調整は、貯留室バルブ16のバルブタイミ
ングを変更することにより行うことができる。あるいは
EGR量の調整方法として、貯留室バルブ16のバルブ
リフト量を変更することにより行うことができる。これ
ら、バルブタイミングあるいはバルブリフト量の変更
は、従来から既知の吸気弁7あるいは排気弁9の可変バ
ルブタイミング機構を流用すればよい。
In the EGR using the storage chamber 15, the EGR amount can be adjusted by changing the valve timing of the storage chamber valve 16. Alternatively, the EGR amount can be adjusted by changing the valve lift amount of the storage chamber valve 16. To change the valve timing or the valve lift amount, a conventionally known variable valve timing mechanism of the intake valve 7 or the exhaust valve 9 may be used.

【0032】図9〜図12は前記貯留室15の具体例を
示すものであり、このうち図9、図10は一例を示し、
図12は他の例を示すものである。尚、これら図面に記
載された各要素のうち、前述した要素と同一のものにつ
いては同一の参照符号を付してその説明を省略し、以下
に各具体例の特徴部分についてのみ説明を加える。
9 to 12 show specific examples of the storage chamber 15, of which FIGS. 9 and 10 show an example,
FIG. 12 shows another example. It should be noted that, among the elements described in these drawings, the same elements as those described above are designated by the same reference numerals, and the description thereof will be omitted, and only the characteristic portions of each specific example will be described below.

【0033】図9、図10において、符号30はシリン
ダヘッドで、既知のように、シリンダヘッド30に吸気
ポ−ト7等が形成されている。また、この具体例では、
シリンダヘッド30は各気筒に4つのバルブを配した4
気筒エンジン用とされ、貯留室ポ−ト15aは、燃焼室
4に対して、2つの吸気ポ−ト6と6とで挟まれた領域
に開口されている。
In FIGS. 9 and 10, reference numeral 30 is a cylinder head, and the intake port 7 and the like are formed on the cylinder head 30 as is known. Also, in this specific example,
The cylinder head 30 has 4 valves for each cylinder.
It is for a cylinder engine, and the storage chamber port 15a is opened with respect to the combustion chamber 4 in a region sandwiched between two intake ports 6 and 6.

【0034】他方、貯留室15は、シリンダヘッド30
の内部において、長手方向に延びる1本のドリル孔40
によって構成され、このドリル孔40が各気筒の共通貯
留室15とされて、この共通貯留室15回り及び貯留室
ポ−ト15a回りに冷却水通路32が形成されて、この
冷却水通路32を通るエンジン冷却水によって水冷され
るようになっている。尚、貯留室バルブ16はカム22
によって開閉駆動され、このカム22は吸気弁7用のカ
ムシャフト20に取付けられている。符号33はリタ−
ンスプリングである。
On the other hand, the storage chamber 15 has a cylinder head 30.
A drill hole 40 extending in the longitudinal direction inside the
The drill hole 40 serves as the common storage chamber 15 of each cylinder, and the cooling water passage 32 is formed around the common storage chamber 15 and the storage chamber port 15a. It is designed to be cooled by passing engine cooling water. The storage chamber valve 16 is provided with a cam 22.
The cam 22 is mounted on the cam shaft 20 for the intake valve 7 by being driven to open and close by. Reference numeral 33 is a return
Spring.

【0035】図11、図12に示すシリンダヘッド30
は各気筒に2つの吸気弁7、7と1つの排気弁9を配し
た3バルブ式のDOHC型4気筒エンジン用とされてい
る。そして、2つの吸気ポ−ト6、6に対して、貯留室
ポ−ト15aは燃焼室4に生成されるスワ−ルSの流れ
方向上流側に開口され、またこの貯留室ポ−ト15aは
スワ−ルSの流れ方向に指向されている。これによりス
ワ−ルSによるEGRガス(貯留室15内のガス)の流
出が促進され、新気とEGRガスとの混合が促進される
ことになる。
Cylinder head 30 shown in FIGS. 11 and 12.
Is for a three-valve DOHC 4-cylinder engine in which two intake valves 7, 7 and one exhaust valve 9 are arranged in each cylinder. With respect to the two intake ports 6, 6, the storage chamber port 15a is opened upstream in the flow direction of the swirl S generated in the combustion chamber 4, and the storage chamber port 15a is also opened. Are oriented in the flow direction of the swirl S. As a result, the outflow of EGR gas (gas in the storage chamber 15) by the swirl S is promoted, and the mixing of fresh air and EGR gas is promoted.

【0036】以上、本発明の実施例を説明したが、本発
明は自然吸気式のエンジンに限られず、エンジン出力に
よって駆動される機械式過給機を備えたエンジンに対し
て適用することができる。また、本発明は、排気エネル
ギによって駆動されるタ−ボチャ−ジャ付きエンジンに
対して適用することができる。
Although the embodiment of the present invention has been described above, the present invention is not limited to a naturally aspirated engine, but can be applied to an engine having a mechanical supercharger driven by an engine output. .. Further, the present invention can be applied to an engine with a turbocharger driven by exhaust energy.

【0037】更に、本発明はディ−ゼルエンジンに対し
て適用することができる。すなわち、ディ−ゼルエンジ
ンに対して本発明を適用したときには、吸気系に排気ガ
スを還流することなくエンジン内部でEGRできるた
め、つまり新気の充填量を減少させることなくEGRで
きるため、NOX の低減の他に、スモ−ク、パテキュレ
−トを低減することができる。換言すれば、スモ−ク、
パテキュレ−トを減少させるには、新気の充填量を多く
することが効果的であるが、吸気系にEGRを還流した
ときには、このEGRガスによって新気の充填量が減少
しスモ−ク、パテキュレ−トの低減に結びつかないとい
う問題がある。
Further, the present invention can be applied to a diesel engine. That is, when the present invention is applied to a diesel engine, the EGR can be performed inside the engine without recirculating the exhaust gas to the intake system, that is, the EGR can be performed without reducing the charging amount of fresh air, and thus NO X In addition to the reduction of smoke, it is possible to reduce smoke and particulates. In other words, smoke,
In order to reduce the particulate matter, it is effective to increase the filling amount of fresh air, but when EGR is recirculated to the intake system, this EGR gas reduces the filling amount of fresh air and smoke, There is a problem that it does not lead to the reduction of the particle rate.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
によれば、エンジン内部において低温のEGRを行うこ
とができる。換言すれば、吸気系を経由することなくE
GRすることができるため、新気の充填量を低下させる
ことなく、いわゆる運転領域において確実にEGRする
ことができる。特に、機械式過給機を備えたエンジンに
対して本発明を適用したときには、過給機の信頼性を損
なうことなくEGRすることができる。
As is apparent from the above description, according to the present invention, low temperature EGR can be performed inside the engine. In other words, E without passing through the intake system
Since GR can be performed, it is possible to reliably perform EGR in a so-called operating region without reducing the amount of fresh air charged. In particular, when the present invention is applied to an engine equipped with a mechanical supercharger, EGR can be performed without impairing the reliability of the supercharger.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に適用されるエンジンの機械的構成を示
す概念図。
FIG. 1 is a conceptual diagram showing a mechanical configuration of an engine applied to the present invention.

【図2】貯留室バルブのバルブタイミングの一例を示す
図。
FIG. 2 is a diagram showing an example of valve timing of a storage chamber valve.

【図3】貯留室バルブのバルブタイミングの他の例を示
す図。
FIG. 3 is a diagram showing another example of the valve timing of the storage chamber valve.

【図4】貯留室バルブのバルブタイミングの他の例を示
す図・
FIG. 4 is a diagram showing another example of the valve timing of the storage chamber valve.

【図5】貯留室バルブのバルブタイミングの他の例を示
す図。
FIG. 5 is a diagram showing another example of the valve timing of the storage chamber valve.

【図6】貯留室バルブの作動停止機構を示す平面図。FIG. 6 is a plan view showing an operation stop mechanism of the storage chamber valve.

【図7】貯留室バルブの作動が禁止された状態を示す断
面図。
FIG. 7 is a cross-sectional view showing a state in which the operation of the storage chamber valve is prohibited.

【図8】貯留室バルブの作動が許容された状態を示す断
面図。
FIG. 8 is a cross-sectional view showing a state in which the operation of the storage chamber valve is allowed.

【図9】シリンダヘッドに形成され貯留室及び貯留室ポ
−トの具体例を示す図。
FIG. 9 is a view showing a specific example of a storage chamber and a storage chamber port formed in the cylinder head.

【図10】図9に示すX10−X10線に沿って切断し
た断面図。
10 is a sectional view taken along line X10-X10 shown in FIG.

【図11】シリンダヘッドに形成された貯留室及び貯留
室ポ−トの他の具体例を示す図。
FIG. 11 is a diagram showing another specific example of the storage chamber and the storage chamber port formed in the cylinder head.

【図12】図11に示すX12−X12線に沿って切断
した断面図。
FIG. 12 is a cross-sectional view taken along line X12-X12 shown in FIG.

【符号の説明】[Explanation of symbols]

1 エンジン 3 ピストン 4 燃焼室 6 吸気ポ−ト 7 吸気弁 8 排気ポ−ト 9 排気弁 15 貯留室 15a 貯留室ポ−ト 16 貯留室バルブ 1 Engine 3 Piston 4 Combustion Chamber 6 Intake Port 7 Intake Valve 8 Exhaust Port 9 Exhaust Valve 15 Reservoir 15a Reservoir Port 16 Reservoir Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 潤三 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junzo Sasaki 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Motor Corporation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】エンジン本体に形成された貯留室と、 該貯留室と燃焼室とを連通させる貯留室ポ−トと、 該貯留室ポ−トを開閉する貯留室バルブと、を備え、 前記貯留室バルブを開閉させて、燃焼後の既燃ガスを前
記貯留室に取込んだ後、該貯留室内の既燃ガスを吸気行
程、圧縮行程あるいは吸気行程から圧縮行程にかけて燃
焼室に吐出させる、ことを特徴とするエンジン。
1. A storage chamber formed in an engine body, a storage chamber port for connecting the storage chamber and a combustion chamber, and a storage chamber valve for opening and closing the storage chamber port, After opening and closing the storage chamber valve and taking in the burned gas after combustion into the storage chamber, the burned gas in the storage chamber is discharged to the combustion chamber during the intake stroke, the compression stroke or the intake stroke to the compression stroke, An engine characterized by that.
【請求項2】 請求項1において、 前記貯留室バルブを膨張行程中に開閉させて、既燃ガス
を前記貯留室に取込む、ことを特徴とするエンジン。
2. The engine according to claim 1, wherein the storage chamber valve is opened and closed during an expansion stroke to take in burnt gas into the storage chamber.
【請求項3】 請求項1において、 前記貯留室バルブを膨張行程で開き、その後排気行程で
閉じて、既燃ガスを前記貯留室に取込む、ことを特徴と
するエンジン。
3. The engine according to claim 1, wherein the storage chamber valve is opened in an expansion stroke and then closed in an exhaust stroke to take in burnt gas into the storage chamber.
【請求項4】 請求項1において、 前記貯留室バルブを排気行程中に開閉させて、既燃ガス
を前記貯留室に取込む、ことを特徴とするエンジン。
4. The engine according to claim 1, wherein the storage chamber valve is opened and closed during an exhaust stroke to take in burnt gas into the storage chamber.
【請求項5】 請求項1において、 前記貯留室バルブを排気行程で開き、その後吸気行程の
初期に閉じて、既燃ガスを前記貯留室に取込む、ことを
特徴とするエンジン。
5. The engine according to claim 1, wherein the storage chamber valve is opened during an exhaust stroke and then closed at the beginning of an intake stroke to take in burnt gas into the storage chamber.
【請求項6】 請求項1において、 前記貯留室バルブを吸気行程中に開閉させて、前記貯留
室内の既燃ガスを前記燃焼室内に吐出させる、ことを特
徴とするエンジン。
6. The engine according to claim 1, wherein the storage chamber valve is opened and closed during an intake stroke to discharge burnt gas in the storage chamber into the combustion chamber.
【請求項7】 請求項1において、 前記貯留室バルブを吸気行程で開き、その後圧縮行程で
閉じて、前記貯留室内の既燃ガスを前記燃焼室内に吐出
させる、ことを特徴とするエンジン。
7. The engine according to claim 1, wherein the storage chamber valve is opened in an intake stroke and then closed in a compression stroke to discharge burnt gas in the storage chamber into the combustion chamber.
【請求項8】 請求項1において、 前記貯留室バルブを圧縮行程中に開閉させて、前記貯留
室内の既燃ガスを前記燃焼室内に吐出させる、ことを特
徴とするエンジン。
8. The engine according to claim 1, wherein the storage chamber valve is opened and closed during a compression stroke to discharge burnt gas in the storage chamber into the combustion chamber.
【請求項9】 請求項1において、 前記エンジンが、エンジン出力よって駆動される機械式
過給機を備えた過給エンジンとされている、 ことを特徴とするエンジン。
9. The engine according to claim 1, wherein the engine is a supercharged engine including a mechanical supercharger driven by an engine output.
【請求項10】 請求項1において、 前記エンジンが火花点火式エンジンである、ことを特徴
とするエンジン。
10. The engine according to claim 1, wherein the engine is a spark ignition type engine.
【請求項11】 請求項1において、 前記エンジンがディ−ゼルエンジンである、ことを特徴
とするエンジン。
11. The engine according to claim 1, wherein the engine is a diesel engine.
JP3340419A 1991-11-29 1991-11-29 Engine Pending JPH05157008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340419A JPH05157008A (en) 1991-11-29 1991-11-29 Engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340419A JPH05157008A (en) 1991-11-29 1991-11-29 Engine

Publications (1)

Publication Number Publication Date
JPH05157008A true JPH05157008A (en) 1993-06-22

Family

ID=18336774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340419A Pending JPH05157008A (en) 1991-11-29 1991-11-29 Engine

Country Status (1)

Country Link
JP (1) JPH05157008A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063394A2 (en) 1999-06-25 2000-12-27 Nissan Motor Co., Ltd. Internal combustion engine
EP1134403A3 (en) * 2000-03-15 2002-03-20 Filterwerk Mann + Hummel Gmbh Combustion engine with exhaust gas recirculation
KR20020055738A (en) * 2000-12-29 2002-07-10 이성욱 EGR system for diesel engine
FR2864166A1 (en) * 2003-12-22 2005-06-24 Renault Sas Internal combustion engine for motor vehicle, has cylinder disposed on top of cylinder head for defining combustion chamber, and injection unit and nozzle placed in head for injecting recycled exhaust gases into cylinder
US7028648B2 (en) 2001-04-09 2006-04-18 Daihatsu Motor Co., Ltd. Multiple cylinder internal combustion engine
JP2006233963A (en) * 2005-01-25 2006-09-07 Yamaha Motor Co Ltd Four cycle internal combustion engine
JP2007247524A (en) * 2006-03-15 2007-09-27 Toyota Motor Corp Gas fuel engine
DE102006048269A1 (en) * 2006-10-12 2008-04-17 Man Diesel Se Method for operation of internal-combustion engine, particularly turbo-loaded diesel internal-combustion engine, involves recycling of exhaust gases of cooled partial flow, which takes place in cylinders of internal-combustion engine
WO2009069425A1 (en) * 2007-11-30 2009-06-04 Honda Motor Co., Ltd. Egr device, valve switching device, and cam switching device
JP2010106856A (en) * 2005-12-01 2010-05-13 Man Diesel Filial Af Man Diesel Se Tyskland Method for reduction of nox-emission at internal combustion engine and internal combustion engine appropriate for this method
WO2011015336A1 (en) * 2009-08-03 2011-02-10 Eth Zurich Turbocharged reciprocating piston engine having a connected pressure tank for bridging turbo lag, and method for operating said engine
CN114962094A (en) * 2022-05-09 2022-08-30 潍柴动力股份有限公司 Combustion system and control method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6311653B1 (en) 1999-06-25 2001-11-06 Nissan Motor Co., Ltd. Internal combustion engine
EP1063394A2 (en) 1999-06-25 2000-12-27 Nissan Motor Co., Ltd. Internal combustion engine
EP1134403A3 (en) * 2000-03-15 2002-03-20 Filterwerk Mann + Hummel Gmbh Combustion engine with exhaust gas recirculation
KR20020055738A (en) * 2000-12-29 2002-07-10 이성욱 EGR system for diesel engine
US7028648B2 (en) 2001-04-09 2006-04-18 Daihatsu Motor Co., Ltd. Multiple cylinder internal combustion engine
FR2864166A1 (en) * 2003-12-22 2005-06-24 Renault Sas Internal combustion engine for motor vehicle, has cylinder disposed on top of cylinder head for defining combustion chamber, and injection unit and nozzle placed in head for injecting recycled exhaust gases into cylinder
JP2006233963A (en) * 2005-01-25 2006-09-07 Yamaha Motor Co Ltd Four cycle internal combustion engine
JP2010106856A (en) * 2005-12-01 2010-05-13 Man Diesel Filial Af Man Diesel Se Tyskland Method for reduction of nox-emission at internal combustion engine and internal combustion engine appropriate for this method
JP2007247524A (en) * 2006-03-15 2007-09-27 Toyota Motor Corp Gas fuel engine
DE102006048269A1 (en) * 2006-10-12 2008-04-17 Man Diesel Se Method for operation of internal-combustion engine, particularly turbo-loaded diesel internal-combustion engine, involves recycling of exhaust gases of cooled partial flow, which takes place in cylinders of internal-combustion engine
DE102006048269B4 (en) * 2006-10-12 2012-10-04 Man Diesel & Turbo Se Method for operating an internal combustion engine with exhaust gas recirculation and internal combustion engine
WO2009069425A1 (en) * 2007-11-30 2009-06-04 Honda Motor Co., Ltd. Egr device, valve switching device, and cam switching device
JP4995924B2 (en) * 2007-11-30 2012-08-08 本田技研工業株式会社 EGR device and valve operation switching device
WO2011015336A1 (en) * 2009-08-03 2011-02-10 Eth Zurich Turbocharged reciprocating piston engine having a connected pressure tank for bridging turbo lag, and method for operating said engine
CN102498272A (en) * 2009-08-03 2012-06-13 苏黎世联邦理工学院 Turbocharged reciprocating piston engine having a connected pressure tank for bridging turbo lag, and method for operating said engine
JP2013501187A (en) * 2009-08-03 2013-01-10 イーティーエイチ・チューリッヒ Turbocharged reciprocating piston engine with connecting pressure tank for avoiding turbo lag and method of operation thereof
US8997488B2 (en) 2009-08-03 2015-04-07 ETH Zürich Turbocharged reciprocating piston engine having a connected pressure tank for bridging turbo lag, and method for operating said engine
CN114962094A (en) * 2022-05-09 2022-08-30 潍柴动力股份有限公司 Combustion system and control method thereof

Similar Documents

Publication Publication Date Title
US5862790A (en) Method of generating turbulence with intra-cycle cooling for spark ignition engines
EP0849453B1 (en) Exhaust gas recirculation system for an internal combusion engine
US7753037B2 (en) Engine
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
JPH05157008A (en) Engine
US5878714A (en) Turbulence generation with intra-cycle cooling for spark ignition engines
US20050241597A1 (en) Air and fuel supply system for a combustion engine
JP4432708B2 (en) 4-cycle engine
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JP2994112B2 (en) Engine intake system
GB2350400A (en) I.C. engine with internal exhaust gas recirculation generated by variable valve timing
JP2014058914A (en) Exhaust gas recirculation system of internal combustion engine
JPH08218879A (en) Intake structure of four-cycle engine
JP4678164B2 (en) 4-cycle engine
JPH0510164A (en) Engine knocking controller
JP3133434B2 (en) engine
JP3315416B2 (en) Diesel engine intake system
JPH06173724A (en) Scavenging device for engine
JPH06330776A (en) Intake device for engine with mechanical supercharger
JP3464806B2 (en) EGR device for two-stroke engine
JP2994784B2 (en) Engine combustion chamber structure
JPS60256523A (en) Diesel engine
JPH03246361A (en) Exhaust gas recirculation control device for diesel engine
JPH0717787Y2 (en) Supercharged engine
JPH077551Y2 (en) Multi-cylinder diesel engine