JP2010106856A - Method for reduction of nox-emission at internal combustion engine and internal combustion engine appropriate for this method - Google Patents

Method for reduction of nox-emission at internal combustion engine and internal combustion engine appropriate for this method Download PDF

Info

Publication number
JP2010106856A
JP2010106856A JP2010034581A JP2010034581A JP2010106856A JP 2010106856 A JP2010106856 A JP 2010106856A JP 2010034581 A JP2010034581 A JP 2010034581A JP 2010034581 A JP2010034581 A JP 2010034581A JP 2010106856 A JP2010106856 A JP 2010106856A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
recirculation
working chamber
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010034581A
Other languages
Japanese (ja)
Inventor
Niels Kjemtrup
ニルス・クジェントルップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions Filial af MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo Filial af MAN Diesel and Turbo SE
MAN Diesel Filial af MAN Diesel SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo Filial af MAN Diesel and Turbo SE, MAN Diesel Filial af MAN Diesel SE filed Critical MAN Diesel and Turbo Filial af MAN Diesel and Turbo SE
Publication of JP2010106856A publication Critical patent/JP2010106856A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/10Engines with means for rendering exhaust gases innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/20Feeding recirculated exhaust gases directly into the combustion chambers or into the intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing the NO<SB>X</SB>emission in an internal combustion engine and an internal combustion engine appropriate for the same. <P>SOLUTION: This method reduces the NO<SB>X</SB>emission by recirculating a part of the combustion product generated in operation cycles and re-supplying it to a working room 2 for a combustion process after that in at least one of the internal combustion engine having the working room 2 partitioned by a piston 3 which supplies fuel and air by the operation cycles so as to discharge the combustion product. In the method, the combustion product not diluted by the air and used for recirculation is removed for each cycle from the working room 2 before new gas is supplied for the next combustion process, and removing of the recirculated combustion product is started before start of exhaust emission, and is completed between start of the exhaust emission and start of fresh air supply. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発明の第1概念によって、各動作サイクルで燃料および空気が供給されて燃焼生成物を放出する、ピストンで区切られた作動室を有する少なくとも1つの内燃機関、特に2サイクル大形ディーゼル機関で、各動作サイクルで発生する燃焼生成物の一部を再循環して、その後の燃焼工程のために作動室に再度供給することでNOX排出を低減させる方法に関し、そしてその他の発明の概念によって、好ましくはピストンによって制御可能な少なくとも1つの吸気口と、互いに独立して操作可能なバルブによって制御可能で、少なくとも1つが再循環管に接続される、作動室での燃焼の際に生じる燃焼生成物用の複数の排気口とを有するクランク軸と協同で作用するピストンに区切られた、燃料および空気が供給される少なくとも1つの作動室を有する内燃機関、特に2サイクル大形ディーゼル機関に関する。 The present invention provides, according to the first concept of the invention, at least one internal combustion engine, in particular a two-cycle large diesel, having a working chamber delimited by a piston, which is supplied with fuel and air in each operating cycle and discharges combustion products. in the engine, and re-circulated part of the combustion products generated in each operation cycle, it relates to a method to reduce the NO X emissions by re-supplied to the working chamber for subsequent combustion process, and the other inventions By concept, preferably during combustion in the working chamber, which is controllable by at least one intake port which can be controlled by a piston and valves which can be operated independently of each other, at least one of which is connected to a recirculation pipe It has at least one working chamber supplied with fuel and air, which is delimited by a piston that works in cooperation with a crankshaft having a plurality of exhaust ports for combustion products. The present invention relates to an internal combustion engine, particularly a two-cycle large diesel engine.

冒頭に記述された方式の方法は、特許文献1からよく知られている。その場合に、燃焼終了後に排気口を介して放出された排気ガスの一部が再循環させられる。しかしながら動作サイクルの一部の区間では吸気スリットと排気口とが同時に開けられて、新しいガスも排気口に到達するために、排気口を介して放出された排気ガスは空気で希釈される。排気ガスが新しいガスで希釈された結果、再循環させるべきガスの量が増えるので、比較的容積の大きな再循環装置が必要となる。さらにそれによって排気ガス中のO2濃度も増加するので、このことは所望のNOX減少の侵害を招く。 The method of the method described at the beginning is well known from Patent Document 1. In that case, a part of the exhaust gas discharged through the exhaust port after the end of combustion is recirculated. However, in some sections of the operation cycle, the intake slit and the exhaust port are opened simultaneously, and new gas also reaches the exhaust port, so that the exhaust gas released through the exhaust port is diluted with air. As the exhaust gas is diluted with new gas, the amount of gas to be recirculated increases, necessitating a relatively large volume recirculation device. This also increases the concentration of O 2 in the exhaust gas, which leads to a violation of the desired NO x reduction.

特許文献2から上述の方式の2サイクル大形ディーゼル機関がよく知られていて、その場合に1つが再循環ガス用の排気口である複数の排気口には、互いに独立して操作可能なバルブが設けられる。しかしながらこの排気口の開口時期は、少なくとも一部または完全に吸気スリット閉鎖後で、それによって作動室にちょうど新しいガスが充填される時期となる。したがって、その場合に再循環ガスは新しいガスで特に激しく希釈されるので、上述の短所が非常に強く表れる。   A two-cycle large diesel engine of the above-mentioned system is well known from Patent Document 2, and in this case, a plurality of exhaust ports, one of which is an exhaust port for recirculation gas, can be operated independently of each other. Is provided. However, the opening timing of the exhaust port is the time when at least partly or completely after the intake slit is closed, thereby filling the working chamber with just new gas. Therefore, in this case, the recycle gas is diluted particularly vigorously with fresh gas, so that the above-mentioned disadvantages appear very strongly.

独国特許第10116643号明細書German Patent No. 10116643 独国特許第19809618号明細書German patent 19809618 specification

したがって、このことから出発して本発明の課題は、冒頭で記述された方式の方法を、容易で安価な手段を用いて、NOX低減に関する再循環ガスの効果を最大にして、再循環に必要なガスの量が最小となるように改良することである。本発明のその他の課題は、それに適する内燃機関を提供することにある。 Therefore, starting from this, the problem of the present invention is to recycle the method of the method described at the beginning, using easy and inexpensive means, maximizing the effect of recirculating gas on NO X reduction. The improvement is to minimize the amount of gas required. The other subject of this invention is providing the internal combustion engine suitable for it.

属概念による方法の改良に関連付けられる課題は、請求項1の上位概念に関連して、再循環に使用される燃焼生成物を、次の燃焼工程でこれに新ガスが供給される前にサイクル毎に作動室から取り出すことによって解決される。   The problem associated with the improvement of the method according to the genus concept is related to the superordinate concept of claim 1 in which the combustion products used for recirculation are cycled before being supplied with new gas in the next combustion step. It is solved by taking it out of the working chamber every time.

内燃機関に関連付けられるその他の課題は、請求項7の上位概念に関連して、再循環管に接続される排気口に割り当てられた各バルブの開口時期が、それぞれ予定されている吸気始動(吸入動作開始)前に開始および終了するクランク角領域内にあることによって解決される。   Another problem associated with the internal combustion engine is related to the superordinate concept of claim 7, in which the opening timing of each valve assigned to the exhaust port connected to the recirculation pipe is set to the respective intake start (intake It is solved by being in the crank angle region starting and ending before (operation start).

前述の措置によって、空気で希釈された排気ガスではなく、燃焼ガスのみが再循環されることが確実となる。新しいガスでの希釈は排除される。したがって再循環されたガスのO2量は比較的少ない。それゆえNOX低減を確実に達成するためには比較的少量のガスのみ再循環すればよい。少量の再循環ガスは、好ましい方法で、比較的低い燃焼温度の保持にもプラスに作用し、このことは同様にNOX低減に有利である。 The above measures ensure that only the combustion gas is recirculated, not the exhaust gas diluted with air. Dilution with new gas is eliminated. Therefore, the amount of O 2 in the recirculated gas is relatively small. Therefore, only a relatively small amount of gas needs to be recirculated to ensure NO x reduction. A small amount of recirculated gas also has a positive effect on maintaining a relatively low combustion temperature in a preferred manner, which is likewise advantageous for NO x reduction.

上位の措置の好ましい形態および合目的的な発展は従属請求項に挙げられている。   Preferred forms and purposeful developments of the superordinate measures are listed in the dependent claims.

再循環の結果生じる作動室内の圧力損失をできるだけ低く抑えるために、再循環ガスを、排気ガス放出開始前で、排気ガス放出開始と新しいガスの供給開始の間に終わらせることが考えられる。その場合に再循環ガスを燃焼空気と共に作動室に再び供給することができる。しかしながら、いわゆるブースタ効果が完遂されるように再循環ガスを追加で圧縮することも考えられる。このようにして温度をさらに上げることなくシリンダ内の圧力を増大させることができ、このことはNOX低減に有利である。この場合には再循環ガスを作動室に直接供給することができる。 In order to keep the pressure loss in the working chamber as a result of the recirculation as low as possible, it is conceivable that the recirculation gas is terminated between the start of exhaust gas discharge and the start of supply of new gas before the start of exhaust gas discharge. In this case, the recirculation gas can be supplied again to the working chamber together with the combustion air. However, it is also conceivable to compress the recirculated gas additionally so that the so-called booster effect is achieved. Thus further pressure in the cylinder can be increased without raising the temperature, which is advantageous in the NO X reduction. In this case, the recirculation gas can be supplied directly to the working chamber.

別の好ましい形態は、排気ガス放出が始まる前に再循環ガスを完全に作動室から取り出すことにある。その場合に再循環ガスの圧力が非常に高くなるので、排気ガス放出終了後に追加で圧力を増大させることなく、これを直接再び作動室に導入することができる。   Another preferred form is to completely remove the recirculation gas from the working chamber before exhaust gas emission begins. In this case, the pressure of the recirculation gas becomes very high, so that it can be directly introduced again into the working chamber without increasing the pressure after the end of exhaust gas discharge.

好ましくは、全シリンダ上を通過する再循環ガス収集室を設けることができ、連絡ラインを介して各シリンダの、再循環管が続く再循環ガス排出口が該収集室に接続される。このことによって再循環管に再循環ガスを確実に供給できるようになる。   Preferably, a recirculation gas collection chamber can be provided which passes over all the cylinders, and a recirculation gas outlet of each cylinder followed by a recirculation pipe is connected to the collection chamber via a communication line. This ensures that the recirculation gas can be supplied to the recirculation pipe.

再循環ガスを作動室に直接供給する構造の場合には、この目的によってバルブを用いて制御可能な再循環ガス入口が備えられる。このようにして各作動室には、再循環のために設けられた2つのバルブが存在する。したがって好ましい方法で、両バルブを排気弁または吸気弁として交替で動作させることが可能となり、そのことによってバルブの温度負荷を抑えることができる。   In the case of a structure for supplying the recirculation gas directly to the working chamber, a recirculation gas inlet that can be controlled by means of a valve is provided for this purpose. Thus, in each working chamber, there are two valves provided for recirculation. Therefore, in a preferred manner, both valves can be operated alternately as exhaust valves or intake valves, thereby reducing the temperature load on the valves.

前述の方式の場合に合目的的に再循環ガス入口の開口時期を、排気ガス放出の開口時期の終了後に開始する。そのことによって、開いている排出ガス口を介して再循環ガスが漏れることが避けられる。   In the case of the above-described method, the recirculation gas inlet opening timing is purposely started after the exhaust gas discharge opening timing ends. This prevents recirculation gas from leaking through the open exhaust gas port.

その他の合目的的な措置は、各シリンダの再循環ガス入口が連絡ラインを用いて、再循環管がつながる、全シリンダ上を通過する再循環ガス分配室に接続されることにある。このことによって全作動室への再循環ガスの一様な供給が保証される。   Another purposeful measure is that the recirculation gas inlet of each cylinder is connected using a communication line to a recirculation gas distribution chamber passing over all cylinders to which the recirculation pipe is connected. This ensures a uniform supply of recirculation gas to the entire working chamber.

上位の措置のその他の好ましい形態および合目的的な発展は、残りの従属請求項に挙げられていて、下記の図に基づく実施例の説明からより詳しく読み取ることができる。   Other preferred forms and purposeful developments of the superordinate measures are given in the remaining dependent claims and can be read in more detail from the description of the embodiments on the basis of the following figures.

本発明の再循環装置を備えた2サイクル大形ディーゼルエンジンを示す図である。1 is a view showing a two-cycle large diesel engine equipped with a recirculation device of the present invention. 図1の装置に帰属する、吸気および排気の開口時期を示す図である。FIG. 2 is a diagram showing intake and exhaust opening timings belonging to the apparatus of FIG. 本発明の再循環装置のその他の形態を備えた2サイクル大形ディーゼルエンジンを示す図である。It is a figure which shows the 2-cycle large sized diesel engine provided with the other form of the recirculation apparatus of this invention. 図3の装置に帰属する、吸気および排気の開口時期を示す図である。FIG. 4 is a diagram showing intake and exhaust opening timings belonging to the apparatus of FIG. 本発明の再循環装置のその他の形態を備えた2サイクル大形ディーゼルエンジンを示す図である。It is a figure which shows the 2-cycle large sized diesel engine provided with the other form of the recirculation apparatus of this invention. 図5の装置に帰属する、吸気および排気の開口時期を示す図である。FIG. 6 is a diagram showing intake and exhaust opening timings belonging to the apparatus of FIG. 本発明の再循環装置を備えた2サイクル大形ディーゼルエンジンのシリンダのシリンダ蓋部を通る断面図である。It is sectional drawing which passes along the cylinder cover part of the cylinder of the two-cycle large sized diesel engine provided with the recirculation apparatus of this invention.

本発明の主適用分野は、船舶用エンジンなどとして使用することができる2サイクル大形ディーゼルエンジンである。その基本構造およびそのような構造体の作用はよく知られている。   The main application field of the present invention is a two-cycle large diesel engine that can be used as a marine engine or the like. Its basic structure and the action of such a structure are well known.

図1、図3および図5には、その種のエンジンのシリンダ1が示され、これは一列に配された複数のシリンダを有することができる。各シリンダ1は作動室2を含み、該作動室は、詳しくは示されていない方法でピストン棒、クロスヘッドおよび連接棒を介してクランク軸と協同作用する上下動可能なピストン3によって下方への範囲が画定される。シリンダ1の下方領域には吸気スリット4が設けられ、該スリットをピストン3が通過し、この方法で該スリットは上下に制御される。各シリンダ1の吸気スリット4は、組み込まれた供給管5に連通され、該供給管は、全シリンダ上を通過して充填空気が供給される分配管6に接続される。吸気スリット4は、それに応じて吸気口として機能し、該スリットを介して作動室2に燃焼空気が供給可能である。   1, 3 and 5 show a cylinder 1 of such an engine, which can have a plurality of cylinders arranged in a row. Each cylinder 1 includes a working chamber 2, which is lowered by a vertically movable piston 3 that cooperates with the crankshaft via a piston rod, crosshead and connecting rod in a manner not shown in detail. A range is defined. An intake slit 4 is provided in a lower region of the cylinder 1, and the piston 3 passes through the slit, and the slit is controlled up and down by this method. The intake slit 4 of each cylinder 1 is communicated with a built-in supply pipe 5, which is connected to a distribution pipe 6 that passes over all cylinders and is supplied with filling air. The intake slit 4 functions as an intake port accordingly, and combustion air can be supplied to the working chamber 2 through the slit.

上方への作動室2の範囲を規定するシリンダ蓋部の領域には、詳しく示されていない燃料噴射装置ならびに排気口7および再循環ガス出口8が設けられ、それぞれに1つのバルブ9または10が上下に制御するために組み込まれている。このバルブ9または10は互いに独立しており、すなわち異なる時刻に動作可能である。再循環ガス出口8の内のりの断面積は排気口7の内のりの断面積より小さい。それに応じてバルブ10もバルブ9より小さい。   In the area of the cylinder lid that defines the range of the working chamber 2 upward, a fuel injection device not shown in detail and an exhaust port 7 and a recirculation gas outlet 8 are provided, each with one valve 9 or 10 Built in to control up and down. The valves 9 or 10 are independent of each other, i.e. can be operated at different times. The cross-sectional area of the inner gas in the recirculation gas outlet 8 is smaller than the cross-sectional area of the inner gas in the exhaust port 7. Accordingly, the valve 10 is also smaller than the valve 9.

排気口7は排気管11に接続される。全シリンダの排気管11は、全シリンダ上を通過する排気収集管12に接続される。この収集管から排気管13が延び、これは排気ガスタービン式過給装置のタービン14に排気を供給する。タービン14は圧縮機15を作動させ、該圧縮機は充填空気ライン16を介して圧縮された充填空気を充填空気分配管6に供給する。充填空気ライン16内には充填空気冷却器17を配設することができる。   The exhaust port 7 is connected to the exhaust pipe 11. The exhaust pipes 11 of all cylinders are connected to an exhaust collection pipe 12 that passes over all the cylinders. An exhaust pipe 13 extends from this collection pipe and supplies exhaust to the turbine 14 of the exhaust gas turbine supercharger. The turbine 14 operates the compressor 15, and the compressor supplies the compressed charge air to the charge air distribution pipe 6 via the charge air line 16. A filling air cooler 17 can be disposed in the filling air line 16.

タービン14から出た排気は大気中へ放出される。この排気のNOX量をできるだけ少なく抑えるために、燃焼の際、作動室2内で生じるガスの一部を直接または間接的に再び作動室2に戻す(再循環させる)。そのために設けられる再循環装置は再循環管18を含み、該管は全シリンダ1上を通過する再循環ガス収集室19から出発して、全シリンダ1の再循環ガス出口8が、それぞれ1つの連絡ライン20を介して該収集室に接続される。再循環管18は、作動室2から取り出された再循環ガスを冷却および/または洗浄および/またはフィルタリングするために、処理連結装置21を介して運ばれる。 Exhaust from the turbine 14 is released into the atmosphere. In order to suppress as little as possible the amount of NO X in the exhaust, upon combustion, a portion of the gas generated in the working chamber 2 directly or indirectly back into the working chamber 2 (recirculate). For this purpose, the recirculation device provided comprises a recirculation pipe 18, which starts from a recirculation gas collection chamber 19 passing over all cylinders 1, and each of the recirculation gas outlets 8 of all cylinders 1 has one It is connected to the collection chamber via a communication line 20. The recirculation pipe 18 is conveyed via the process coupling device 21 in order to cool and / or wash and / or filter the recirculated gas taken from the working chamber 2.

図1に基づく構造では、再循環ガスが充填空気に混合され、該空気と共に、すなわち間接的に作動室2に供給される。そのために充填空気ライン16には、ここでは充填空気冷却器17に後置される再循環ガス管18用の導入口22が備わる。この導入口22は、図1に破線によって示したように充填空気冷却器17に前置されている。そのような場合には再循環ガスの単独冷却を省略することができる。   In the structure according to FIG. 1, the recirculated gas is mixed with the filling air and supplied to the working chamber 2 together with the air, ie indirectly. For this purpose, the filling air line 16 is provided here with an inlet 22 for the recirculation gas pipe 18 which is placed after the filling air cooler 17. The inlet 22 is placed in front of the charging air cooler 17 as indicated by a broken line in FIG. In such a case, single cooling of the recirculated gas can be omitted.

作動室2から取り出され充填空気ライン16へ供給された再循環ガスの圧力は充填空気圧より高いので、自発的に流れが生じ、再循環ライン10内の圧力を増大する追加の連結装置は必要なくなる。短時間の圧力噴射の場合に充填空気の再循環管18への戻りを確実に阻止するために、導入口22に前置された再循環管18領域に逆止め弁23が設けられ、該弁は導入口22方向に開口およびその逆を行う。   Since the pressure of the recirculation gas removed from the working chamber 2 and supplied to the filling air line 16 is higher than the filling air pressure, a spontaneous flow occurs and no additional coupling device is required to increase the pressure in the recirculation line 10. . A check valve 23 is provided in the region of the recirculation pipe 18 placed in front of the introduction port 22 in order to reliably prevent the charge air from returning to the recirculation pipe 18 in the case of short-time pressure injection. Opens in the direction of the inlet 22 and vice versa.

図3および図5の装置の基本構造は、前述の図1の装置の構造に相当する。その違いは、図3および図5の装置では再循環ガスが直接作動室2に戻ることである。そのために各シリンダ1の作動室2には、組み込まれたバルブ24を用いて制御可能な再循環ガス入口25が設けられ、該入口を介して再循環ガスを作動室2に導入することができる。ここでは再循環管18は、全シリンダ上を通過する再循環ガス分配室26へつながり、それぞれ組み込まれた連絡ライン27を介して全シリンダ1の再循環ガス入口25が該分配室に接続される。   The basic structure of the apparatus shown in FIGS. 3 and 5 corresponds to the structure of the apparatus shown in FIG. The difference is that the recirculated gas returns directly to the working chamber 2 in the apparatus of FIGS. For this purpose, the working chamber 2 of each cylinder 1 is provided with a recirculation gas inlet 25 that can be controlled using a built-in valve 24, through which recirculation gas can be introduced into the working chamber 2. . Here, the recirculation pipe 18 is connected to a recirculation gas distribution chamber 26 that passes over all cylinders, and the recirculation gas inlet 25 of all cylinders 1 is connected to the distribution chamber via a communication line 27 incorporated therein. .

図5の装置では、その他の特色として再循環管18に割り当てられた圧力増大連結装置が設けられる。その場合には、再循環管18へ統合された圧縮機28が重要であり、これはここでは排気ガスタービン29を用いて始動される。この圧力増大連結装置は、排気ガスタービン式過給装置の種類に応じて構成される。排気ガスタービン29の供給に必要な排気は、排気ライン13から分けられる。図3には、そのような圧力増大連結装置は設けられていない。   The apparatus of FIG. 5 is provided with a pressure increasing coupling device assigned to the recirculation pipe 18 as another feature. In that case, a compressor 28 integrated into the recirculation pipe 18 is important, which is started here with an exhaust gas turbine 29. This pressure increase coupling device is configured according to the type of the exhaust gas turbine supercharger. Exhaust gas required for supplying the exhaust gas turbine 29 is separated from the exhaust line 13. In FIG. 3, such a pressure increasing coupling device is not provided.

図2、図4および図6から、各作動室2に割り当てられた入口および出口の開口行程の開始および終了が分かる。その場合に図2は図1に、図4は図3に、図6は図5に帰属する。前述の図2、図4および図6には、生じる吸気断面積および排気断面積が、ここでは「度」でのクランク角で表される時間に関してプロットされ、その場合に曲線30は吸気スリット4に、曲線31は排気口7に、曲線32は再循環ガス出口8に、曲線33は再循環ガス入口25に帰属している。吸気スリット4は全ての場合にUT(下死点)前約40°のクランク角からUT後40°のクランク角まで開いている。それに対して排気口7は、曲線31が示しているように前回りで開き、後回りで閉じる。それに応じて排気口7および吸気スリット4が同時に開いている長い時間が生じる。その場合に吸気スリット4を介して供給された空気の一部も確実に排気口7に到達し、そのことから排気が空気で希釈される。再循環ガスの場合にこのことを回避するために、曲線32が示しているように全ての場合に、吸気スリット4が開く前に再循環ガス出口8は既に再び閉じている。曲線32は完全または部分的にも曲線30と重なることは決してなく、常に曲線30の前に完全な形で、すなわち図示した実施例ではUT前40°に存在する。   From FIG. 2, FIG. 4 and FIG. 6, the start and end of the opening stroke of the inlet and outlet assigned to each working chamber 2 can be seen. In that case, FIG. 2 belongs to FIG. 1, FIG. 4 belongs to FIG. 3, and FIG. 6 belongs to FIG. In FIG. 2, FIG. 4 and FIG. 6 above, the resulting intake and exhaust cross sections are plotted with respect to time, here expressed in terms of crank angle in "degrees", in which case curve 30 is the intake slit 4 Further, the curve 31 belongs to the exhaust port 7, the curve 32 belongs to the recirculation gas outlet 8, and the curve 33 belongs to the recirculation gas inlet 25. In all cases, the intake slit 4 is open from a crank angle of about 40 ° before UT (bottom dead center) to a crank angle of 40 ° after UT. On the other hand, the exhaust port 7 opens forward and closes backward as indicated by the curve 31. Correspondingly, it takes a long time for the exhaust port 7 and the intake slit 4 to open simultaneously. In that case, a part of the air supplied through the intake slit 4 also reliably reaches the exhaust port 7, and the exhaust is diluted with air. In order to avoid this in the case of recirculation gas, in all cases, as indicated by curve 32, recirculation gas outlet 8 is already closed again before intake slit 4 is opened. The curve 32 never overlaps the curve 30 completely or partly and always exists in full form before the curve 30, i.e. in the illustrated embodiment at 40 ° before UT.

図1および図2の形態では、排気口8は曲線31にしたがってUT前約70°からUT後55°まで開いている。再循環ガス出口8はここでは曲線32にしたがってUT前約95°からUT前約45°まで開いている。それに応じて排気口7の開口時期との重なりが生じるが、吸気スリット4の開口時期とは重ならない。前述の重なりは、作動室2から取り出された再循環ガスの圧力が比較的小さくなることにつながる。しかしながらこれはまだ常に、ここでは充填空気ライン16に供給された再循環ガスの自発的な流れが生じるほど高い。他方、再循環ガス出口8の比較的遅い開口は、比較的小さい圧力と、それによる作動室2内のエネルギー損失を招く。   In the form of FIGS. 1 and 2, the exhaust port 8 opens from about 70 ° before UT to 55 ° after UT according to the curve 31. The recirculation gas outlet 8 is now open from about 95 ° before UT to about 45 ° before UT according to curve 32. Accordingly, there is an overlap with the opening timing of the exhaust port 7, but it does not overlap with the opening timing of the intake slit 4. The aforementioned overlap leads to a relatively small pressure of the recirculated gas taken out from the working chamber 2. However, this is still always so high that a spontaneous flow of the recirculation gas supplied to the charge air line 16 occurs here. On the other hand, the relatively slow opening of the recirculation gas outlet 8 causes a relatively small pressure and thereby energy loss in the working chamber 2.

図3および図4の形態では、既に記述されているように再循環ガスは直接作動室2に供給される。圧力増大連結装置を追加しなくて済むように、ここでは再循環ガスの比較的高い圧力が必要である。したがって再循環ガス出口8の開口時期は、図4の曲線32が示すように、ここでは完全に曲線31で表された排気口7の開口時期の前にある。これはここではUT前約70°で開き、UT後約85°で閉じる。再循環ガス出口はここではUT前約102°で開き、UT後約70°、すなわち排気口7が開き始める時には既に閉じている。したがって再循環ガス入口25の開口時期は完全に再循環ガス出口8の開口時期とは重なっていない。排気口7は図3、図4の形態ではUT後約85°で閉じる。その後、初めて、再循環ガス入口25が開く。ここでは再循環ガス入口25の開口時期は、図4の曲線33の位置に基づいて認識されるようにUT後約85°からUT後約115°まで広がる。   3 and 4, the recirculation gas is supplied directly to the working chamber 2 as already described. Here, a relatively high pressure of the recirculation gas is required so that no additional pressure coupling device is required. Therefore, the opening timing of the recirculation gas outlet 8 is completely before the opening timing of the exhaust port 7 represented by the curve 31 here, as indicated by the curve 32 in FIG. This opens at about 70 ° before UT and closes at about 85 ° after UT. The recirculation gas outlet here opens at about 102 ° before UT and is already closed at about 70 ° after UT, ie when the outlet 7 starts to open. Therefore, the opening timing of the recirculation gas inlet 25 does not completely overlap with the opening timing of the recirculation gas outlet 8. The exhaust port 7 is closed at about 85 ° after UT in the configurations of FIGS. Only then will the recirculation gas inlet 25 open. Here, the opening timing of the recirculation gas inlet 25 extends from about 85 ° after UT to about 115 ° after UT as recognized based on the position of the curve 33 in FIG.

図4から分かる排気口7、再循環ガス出口8および再循環ガス入口25のバルブ9,10および25は、再循環ガス出口8および再循環ガス入口25の開口時期が、排気口8の開口時期および当然入口スリット4の開口時期と重ならないようにする。したがってこのことから再循環ガスの空気での希釈が避けられるだけでなく、排気口7を介した再循環ガスの損失も避けられる。さらに再循環ガス出口8の早期の開口は、再循環管18内に自発的な流れが生じるだけの十分に高い再循環ガスの圧力が達成されることを保証する。   As can be seen from FIG. 4, the valves 9, 10 and 25 of the exhaust port 7, the recirculation gas outlet 8 and the recirculation gas inlet 25 have the opening timing of the recirculation gas outlet 8 and the recirculation gas inlet 25 determined by And naturally, it should not overlap with the opening time of the entrance slit 4. Therefore, this not only avoids dilution of the recirculated gas with air, but also avoids loss of the recirculated gas through the exhaust port 7. Furthermore, the early opening of the recirculation gas outlet 8 ensures that a recirculation gas pressure high enough to produce a spontaneous flow in the recirculation pipe 18 is achieved.

図5および図6に基づく装置では、再循環管18内に圧縮機28の形の追加の圧力増大連結装置が設けられる。その結果、ここでは、図6の曲線30,31および32の位置から明らかなように、排気出口8の開口時期を遅くして、図1および図2の装置の場合のように入口スリット4の開口の直前に排気口7の開口時期との重なりを生じさせることが可能である。その場合に排気口7の開口はUT前約70°で始まりUT後約85°で終わる。入口スリット4はほぼ全ての形態のようにUT前約40°からUT後約40°まで開いている。したがって再循環ガス出口8は、ここではUT前約40°直前まで開いていると言える。開口時期は、ここではUT前約85°からUT前約40°直前、たとえばUT前42°まで広がる。   In the device according to FIGS. 5 and 6, an additional pressure-increasing coupling device in the form of a compressor 28 is provided in the recirculation pipe 18. As a result, as is apparent from the positions of curves 30, 31, and 32 in FIG. 6, the opening timing of the exhaust outlet 8 is delayed so that the inlet slit 4 is not as in the case of the apparatus in FIGS. It is possible to cause an overlap with the opening timing of the exhaust port 7 immediately before the opening. In that case, the opening of the exhaust port 7 starts at about 70 ° before UT and ends at about 85 ° after UT. The entrance slit 4 is open from about 40 ° before UT to about 40 ° after UT as in almost all forms. Therefore, it can be said that the recirculation gas outlet 8 is open until just before 40 ° before UT. Here, the opening time extends from about 85 ° before UT to about 40 ° just before UT, for example, 42 ° before UT.

圧縮機28を用いて行った再循環ガスの圧力増大は、好ましい方法で温度を上げずに作動室2内の圧力を高め、このことはNOX排出の低減に有利に作用する。合目的的にこの圧縮機28に冷却器21aを後置することができる。多くの動作段階で圧縮機28を用いた圧力増大が必要とされない限りにおいては、これは切り離すことができる。この方式の場合には、図5で破線によって示された短絡ライン18aが設けられ、これは通常操作の際には圧縮機28と切り離すことができる。 The pressure increase of the recycle gas was performed using a compressor 28 increases the pressure in the working chamber 2 without increasing the temperature in the preferred method, this is an advantageous effect on the reduction of the NO X emissions. For this purpose, the cooler 21a can be placed behind the compressor 28. As long as the pressure increase with the compressor 28 is not required in many operating stages, it can be disconnected. In the case of this method, a short-circuit line 18a indicated by a broken line in FIG. 5 is provided, which can be disconnected from the compressor 28 during normal operation.

再循環ガス出口8および再循環ガス入口25を備えた図3および図5に基づく形態では、付属弁10を備えた再循環ガス出口および付属弁24を備えた再循環ガス入口25を同一に形成することができる。したがって排気動作から吸気動作へおよびその逆へサイクル毎に交替させるように制御装置を設けることも可能である。この方法でバルブ10および24の温度負荷がさらに一様に下げられる。前述の逆転制御を可能にするために、それぞれ1つの再循環ガス入口25に割り当てられた連絡ライン27が、それぞれ1つのバイパスライン34によって、付属シリンダ1の再循環ガス出口8から出ている割り当てられた連絡ライン20に接続される。連絡ライン27または20へのバイパスライン34の接続部には、二方弁として形成されたそれぞれ1つのパイロット弁35が配設される。このパイロット弁35は、吸気動作と排気動作を交替させるために、再循環ガス収集室19および再循環ガス分配室26が交替で出口8または入口25に接続されるように制御される。図3および図5に示したバルブ35の位置では、再循環ガス出口8から再循環ガス入口25への再循環ガスの流れが生じる。   3 and 5 with the recirculation gas outlet 8 and the recirculation gas inlet 25, the recirculation gas outlet with the auxiliary valve 10 and the recirculation gas inlet 25 with the auxiliary valve 24 are formed identically. can do. Therefore, it is also possible to provide a control device so as to change every cycle from the exhaust operation to the intake operation and vice versa. In this way, the temperature load on the valves 10 and 24 is reduced evenly. In order to enable the aforementioned reverse control, the communication lines 27 each assigned to one recirculation gas inlet 25 are each assigned by a bypass line 34 from the recirculation gas outlet 8 of the attached cylinder 1 Connected to the connected communication line 20. At the connection of the bypass line 34 to the communication line 27 or 20, one pilot valve 35, each formed as a two-way valve, is arranged. The pilot valve 35 is controlled so that the recirculation gas collection chamber 19 and the recirculation gas distribution chamber 26 are alternately connected to the outlet 8 or the inlet 25 in order to alternate between the intake operation and the exhaust operation. In the position of the valve 35 shown in FIGS. 3 and 5, the flow of the recirculation gas from the recirculation gas outlet 8 to the recirculation gas inlet 25 occurs.

バルブ10および24は、すでに先に述べたように等しい。そのようなバルブの合目的的な構成は図7から分かる。これは、中央に配設された排気口7とその隣に配設された再循環ガス出口8とを備えたシリンダ蓋部36を示す。排気口7の反対側には、図3および図5の場合には再循環ガス入口25が設けられる。再循環ガス出口8に割り当てられたバルブ10は、周知の始動空気入口弁の構造に相当する。同じことが当然再循環ガス入口弁24に関しても適用される。前述の構造は、好ましい方法で信頼できる部品の使用を可能にする。   Valves 10 and 24 are equal as already described above. A suitable configuration of such a valve can be seen from FIG. This shows a cylinder lid portion 36 having an exhaust port 7 disposed in the center and a recirculation gas outlet 8 disposed adjacent thereto. On the opposite side of the exhaust port 7, a recirculation gas inlet 25 is provided in the case of FIGS. The valve 10 assigned to the recirculation gas outlet 8 corresponds to a known start air inlet valve structure. The same applies naturally with respect to the recirculation gas inlet valve 24. The aforementioned structure allows the use of reliable parts in a preferred way.

バルブ10は、再循環ガス出口または入口に割り当てられたシリンダ蓋部36の穿孔内に挿入可能な筒状の弁箱37を含み、該弁箱は、該弁箱37内に運ばれ、その後方末端に圧力媒体が供給可能な圧力室40を閉鎖する軸部39に受け入れられる弁頭38を用いて閉鎖可能である。圧力室40の、液圧媒体または空気圧媒体での圧力供給によって、弁頭38は弁箱37の割り当てられた弁座から持ち上げられ、そして逆のことが行われる。軸部39により押し抜かれた弁箱37の内部は、軸ガイドの下側に側面開口部41を備え、該側面開口部に、その都度所望の連絡ライン20または27が接続可能である。弁頭38が弁座から持ち上げられると、図7から分かるように作動室2と開口部41との間で流れがつながるので、再循環ガスを作動室2から取り出すことができ、もしくはこの中に供給することができる。   The valve 10 includes a cylindrical valve box 37 that can be inserted into the bore of the cylinder lid 36 assigned to the recirculation gas outlet or inlet, the valve box being carried into the valve box 37 and behind it. It can be closed using a valve head 38 which is received in a shaft 39 which closes a pressure chamber 40 which can be supplied with a pressure medium at the end. By pressure supply of the pressure chamber 40 with hydraulic or pneumatic medium, the valve head 38 is lifted from the assigned valve seat of the valve box 37 and vice versa. The inside of the valve box 37 pushed out by the shaft portion 39 is provided with a side opening 41 on the lower side of the shaft guide, and a desired communication line 20 or 27 can be connected to the side opening each time. When the valve head 38 is lifted from the valve seat, the flow is connected between the working chamber 2 and the opening 41, as can be seen from FIG. 7, so that the recirculated gas can be taken out of the working chamber 2 or into this. Can be supplied.

1 シリンダ
2 作動室
3 ピストン
4 吸気口
7 排気口
8 再循環ガス出口
9,10 バルブ
18 再循環管
19 再循環ガス収集室
20 連絡ライン
21 処理連結装置
22 導入口
23 逆止め弁
24 バルブ
25 入口
26 再循環ガス分配室
27 連絡ライン
28 圧力増大連結装置
29 排気ガスタービン
34 バイパスライン
35 パイロット弁
36 シリンダ蓋部
37 弁箱
41 側面開口部
1 cylinder
2 Working chamber
3 piston
4 Air intake
7 Exhaust port
8 Recirculation gas outlet
9,10 Valve
18 Recirculation pipe
19 Recirculation gas collection room
20 Contact line
21 Processing connection device
22 Introduction
23 Check valve
24 valves
25 entrance
26 Recirculation gas distribution chamber
27 Contact line
28 Pressure increase coupling device
29 Exhaust gas turbine
34 Bypass line
35 Pilot valve
36 Cylinder lid
37 Valve box
41 Side opening

Claims (24)

各動作サイクルで燃料および空気を供給して燃焼生成物を放出する、ピストン(3)で区切られた作動室(2)を有する少なくとも1つの内燃機関において、各動作サイクルで発生する前記燃焼生成物の一部を再循環して、その後の燃焼工程のために前記作動室(2)に再度供給することでNOX排出を低減させる方法であって、空気によって希釈されていない、再循環に使用される前記燃焼生成物を、次の燃焼工程で新しいガスが供給される前に作動室(2)からサイクル毎に取り出し、再循環される前記燃焼生成物の取り出しが、排気放出開始前に始まり、排気放出開始と新たな空気の供給開始との間に終了することを特徴とする方法。 In at least one internal combustion engine having a working chamber (2) delimited by a piston (3) for supplying fuel and air in each operating cycle and releasing the combustion products, the combustion products generated in each operating cycle recycled a part of, a method for reducing the nO X emissions by supplying again the working chamber (2) for subsequent combustion process, undiluted by the air, used for recycling The combustion product is removed from the working chamber (2) every cycle before new gas is supplied in the next combustion step, and the removal of the recirculated combustion product starts before the start of exhaust emission. And ending between the start of exhaust emission and the start of supply of new air. 再循環される前記燃焼生成物の少なくとも一部を、次の燃焼のために用意された充填空気と共に前記作動室(2)に供給することを特徴とする請求項1に記載の方法。   2. A method according to claim 1, characterized in that at least a part of the recirculated combustion products is supplied to the working chamber (2) together with the charge air prepared for the next combustion. 再循環される前記燃焼生成物の少なくとも一部を、排気放出終了後にサイクル毎に直接前記作動室(2)に供給することを特徴とする請求項1または請求項2に記載の方法。   The method according to claim 1 or 2, characterized in that at least a part of the recirculated combustion products is fed directly into the working chamber (2) every cycle after exhaust emission has ended. 再循環される前記燃焼生成物を、前記作動室(2)から取り出した後に冷却および/または洗浄および/またはフィルタリングすることを特徴とする請求項1から請求項3のいずれか一項に記載の方法。   The combustion product to be recirculated is cooled and / or cleaned and / or filtered after being removed from the working chamber (2). Method. 再循環される前記燃焼生成物を、排気放出開始前に前記作動室から取り出すことを特徴とする請求項1から請求項4のいずれか一項に記載の方法。   5. The method according to claim 1, wherein the combustion product to be recirculated is removed from the working chamber before the start of exhaust emission. 少なくとも1つの、クランク軸と協同で作用するピストン(3)で区切られた、燃料および空気が供給可能な作動室(2)を有する内燃機関であって、前記作動室は、少なくとも1つの吸気口(4)と、前記作動室での燃焼の際に生じる燃焼生成物用の、互いに独立して操作可能なバルブ(9,10)によって制御可能な、複数の排気口とを有し、少なくとも1つの排気口(8)が、再循環管(18)と接続されており、前記再循環管は前記作動室(2)に戻る内燃機関において、再循環管(18)と接続される排気口(再循環ガス出口8)に割り当てられたバルブ(10)の開口時期が、それぞれ設けられた吸気口(4)の始動前に開始および終了するクランク角領域に存在し、前記再循環ガス出口(8)の開口時期の開始が、前記排気口(7)の開口時期の開始前にあることを特徴とする内燃機関。   An internal combustion engine having at least one working chamber (2) separated by a piston (3) acting in cooperation with a crankshaft and capable of supplying fuel and air, the working chamber comprising at least one intake port (4) and a plurality of exhaust ports that are controllable by valves (9, 10) that can be operated independently of each other, for combustion products generated during combustion in the working chamber, and at least 1 One exhaust port (8) is connected to a recirculation pipe (18), and the recirculation pipe is connected to the recirculation pipe (18) in the internal combustion engine returning to the working chamber (2) ( The opening timing of the valve (10) assigned to the recirculation gas outlet 8) exists in the crank angle region that starts and ends before the start of the intake port (4) provided, and the recirculation gas outlet (8 ) Opening timing is before the opening timing of the exhaust port (7). 2つの異なる大きさの排気口が設けられ、そのうち大きい方が排気管に接続される排気口(7)として形成され、小さい方が前記再循環管(18)に接続される前記再循環ガス出口(8)として形成されることを特徴とする請求項6に記載の装置。   Two different sized exhaust ports are provided, the larger one of which is formed as an exhaust port (7) connected to the exhaust pipe, and the smaller one is connected to the recirculation pipe (18). 7. The device according to claim 6, wherein the device is formed as (8). 前記再循環ガス出口(8)の開口時期の終了が、前記排気口(7)の開口時期の開始と前記各吸気口(4)の開口時期の開始の間の領域にあることを特徴とする請求項6または請求項8に記載の内燃機関。   The end of the opening timing of the recirculation gas outlet (8) is in a region between the start of the opening timing of the exhaust port (7) and the start of the opening timing of each intake port (4). 9. An internal combustion engine according to claim 6 or claim 8. 前記再循環ガス出口(8)の開口時期の開始および終了が、前記排気口(7)の開口時期の開始前にあることを特徴とする請求項6から請求項8のいずれか一項に記載の内燃機関。   The start and end of the opening timing of the recirculation gas outlet (8) are before the start of the opening timing of the exhaust port (7), according to any one of claims 6 to 8. Internal combustion engine. 全シリンダ(1)上を通過する再循環ガス収集室(19)が設けられ、前記収集室に連絡ライン(20)を介して各シリンダ(1)の前記再循環ガス出口(8)が接続され、ここから前記再循環管(18)が延びることを特徴とする請求項6から請求項9のいずれか一項に記載の内燃機関。   A recirculation gas collection chamber (19) passing over all cylinders (1) is provided, and the recirculation gas outlet (8) of each cylinder (1) is connected to the collection chamber via a communication line (20). 10. The internal combustion engine according to any one of claims 6 to 9, wherein the recirculation pipe (18) extends therefrom. 前記再循環管(18)内に、前記再循環ガスを冷却および/または洗浄および/またはフィルタリングする少なくとも1つの処理連結装置(21)が配設されることを特徴とする請求項6から請求項10のいずれか一項に記載の内燃機関。   The at least one process coupling device (21) for cooling and / or cleaning and / or filtering the recirculated gas is arranged in the recirculation pipe (18). The internal combustion engine according to any one of 10 above. 前記再循環管(18)が、前記吸気口(4)に割り当てられた充填空気供給装置へつながることを特徴とする請求項6から請求項11のいずれか一項に記載の内燃機関。   12. The internal combustion engine according to any one of claims 6 to 11, wherein the recirculation pipe (18) is connected to a charged air supply device assigned to the intake port (4). 導入口(22)に逆止め弁(23)が前置されることを特徴とする請求項12に記載の内燃機関。   13. The internal combustion engine according to claim 12, wherein a check valve (23) is placed in front of the introduction port (22). 各シリンダ(1)の前記作動室(2)に、バルブ(24)によって制御可能な再循環ガス入口(25)が備わることを特徴とする請求項6から請求項11のいずれか一項に記載の内燃機関。   12. The working chamber (2) of each cylinder (1) is provided with a recirculation gas inlet (25) controllable by a valve (24), according to any one of claims 6 to 11. Internal combustion engine. 前記再循環ガス入口(25)の開口時期の開始が、前記排気口(7)の開口時期の終了後にあることを特徴とする請求項14に記載の内燃機関。   15. The internal combustion engine according to claim 14, wherein the opening timing of the recirculation gas inlet (25) starts after the opening timing of the exhaust port (7) ends. 前記再循環管(18)が、少なくとも1つの駆動可能な圧力増大連結装置(28)を介して延びることを特徴とする請求項14または請求項15に記載の内燃機関。   16. An internal combustion engine according to claim 14 or 15, characterized in that the recirculation pipe (18) extends via at least one drivable pressure increasing coupling device (28). 前記圧力増大連結装置(28)が、排気ガスタービン(29)を用いて駆動可能であることを特徴とする請求項16に記載の内燃機関。   17. The internal combustion engine according to claim 16, wherein the pressure increasing coupling device (28) can be driven using an exhaust gas turbine (29). 各シリンダ(1)の前記再循環ガス入口(25)が、連絡ライン(27)を用いて、全シリンダ(1)上を通過し、前記再循環管(18)が注ぎ込む再循環ガス分配室(26)に接続されることを特徴とする請求項14ら請求項17のいずれか一項に記載の内燃機関。   The recirculation gas distribution chamber (in which the recirculation gas inlet (25) of each cylinder (1) passes over all the cylinders (1) using the communication line (27) and the recirculation pipe (18) is poured. 18. The internal combustion engine according to claim 14, wherein the internal combustion engine is connected to 26). 前記再循環ガス出口(8)および入口(25)を、サイクル毎にその都度もう1つの機能に切り換える装置が設けられることを特徴とする請求項14から請求項18のいずれか一項に記載の内燃機関。   A device according to any one of claims 14 to 18, characterized in that a device is provided for switching the recirculation gas outlet (8) and the inlet (25) to another function each time in each cycle. Internal combustion engine. 前記切換装置が、前記再循環ガス出口(8)および入口(25)に割り当てられた連絡ライン(20,27)の間にバイパスライン(34)を有し、前記バイパスライン(34)の連結部にパイロット弁(35)が設けられることを特徴とする請求項19に記載の内燃機関。   The switching device has a bypass line (34) between the communication lines (20, 27) allocated to the recirculation gas outlet (8) and the inlet (25), and a connecting portion of the bypass line (34). 20. The internal combustion engine according to claim 19, wherein a pilot valve (35) is provided in the internal combustion engine. 前記再循環ガス出口(8)および入口(25)に割り当てられた前記バルブ(10,24)が、シリンダ蓋部(36)の穿孔内に挿入可能な弁箱(37)を有し、前記弁箱は側面開口部(41)を含み、前記開口部に、割り当てられた前記連絡ライン(20または27)が接続可能であることを特徴とする請求項6から請求項20のいずれか一項に記載の内燃機関。   The valve (10, 24) assigned to the recirculation gas outlet (8) and the inlet (25) has a valve box (37) that can be inserted into a bore of a cylinder lid (36), and the valve The box according to any one of claims 6 to 20, characterized in that the box includes a side opening (41), to which the assigned communication line (20 or 27) can be connected. The internal combustion engine described. 前記内燃機関が2サイクル大型ディーゼル機関であることを特徴とする請求項1に記載の方法。   2. The method according to claim 1, wherein the internal combustion engine is a two-cycle large diesel engine. 2サイクル大型ディーゼル機関であることを特徴とする請求項6に記載の内燃機関。   7. The internal combustion engine according to claim 6, which is a two-cycle large diesel engine. 前記吸気口(4)は、前記ピストン(3)によって制御可能であることを特徴とする請求項6に記載の内燃機関。   The internal combustion engine according to claim 6, wherein the intake port (4) can be controlled by the piston (3).
JP2010034581A 2005-12-01 2010-02-19 Method for reduction of nox-emission at internal combustion engine and internal combustion engine appropriate for this method Pending JP2010106856A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005057207A DE102005057207B4 (en) 2005-12-01 2005-12-01 Internal combustion engine and method for reducing the NOx emission in such a motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006320709A Division JP4828385B2 (en) 2005-12-01 2006-11-28 NOX emission reduction method for internal combustion engine and internal combustion engine suitable for the same

Publications (1)

Publication Number Publication Date
JP2010106856A true JP2010106856A (en) 2010-05-13

Family

ID=38108940

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006320709A Active JP4828385B2 (en) 2005-12-01 2006-11-28 NOX emission reduction method for internal combustion engine and internal combustion engine suitable for the same
JP2010034581A Pending JP2010106856A (en) 2005-12-01 2010-02-19 Method for reduction of nox-emission at internal combustion engine and internal combustion engine appropriate for this method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006320709A Active JP4828385B2 (en) 2005-12-01 2006-11-28 NOX emission reduction method for internal combustion engine and internal combustion engine suitable for the same

Country Status (4)

Country Link
JP (2) JP4828385B2 (en)
KR (1) KR100807775B1 (en)
CN (1) CN100540877C (en)
DE (2) DE102005057207B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070804A (en) * 2018-10-31 2020-05-07 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド Large 2-stroke uniflow scavenging gas fuel engine and method of reducing preignition or diesel knocking

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2151569T3 (en) * 2008-08-06 2012-10-29 Waertsilae Switzerland Ltd Device for extracting an exhaust gas partial flow and combustion engine with this device
DE102008050911A1 (en) 2008-10-10 2010-04-15 Fachhochschule Hannover Einrichtung für Weiterbildung und Technologietransferstelle Method for tensile compressive forming or tensile forming of work piece, involves moving positive form relatively to negative form, where form has pressure transmission medium
DE102008058612B4 (en) * 2008-11-22 2017-05-24 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland Internal combustion engine and exhaust valve housing and Rezirkulationsgassammelbehälter this
DE102008060063B4 (en) * 2008-12-02 2011-08-25 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland internal combustion engine
JP4997336B2 (en) * 2010-01-29 2012-08-08 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド Large two-cycle diesel engine with exhaust gas recirculation system
JP2011157960A (en) * 2010-01-29 2011-08-18 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Large two-cycle diesel engine with exhaust gas recirculation control system
DK201000077U4 (en) * 2010-04-29 2012-05-25 Beco Consult Aps Closing mechanism for boxes and lids
CN102330573A (en) * 2010-10-22 2012-01-25 靳北彪 Pressure gas turbine booster system
DE102010054206B4 (en) 2010-12-11 2018-09-06 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland Two-stroke large diesel engine, exhaust valve and cylinder head for it, as well as production, operation and use of an internal combustion engine
JP5839801B2 (en) * 2011-01-11 2016-01-06 日立造船株式会社 2-stroke engine and 4-stroke engine
DK177398B1 (en) * 2012-05-24 2013-03-18 Man Diesel & Turbo Deutschland Method for operating a large, crosshead reciprocating piston internal combustion engine and suitable such engine
EP2677141A1 (en) 2012-06-21 2013-12-25 Wärtsilä Schweiz AG Method for operating a two stroke diesel engine and two-stroke diesel motor
CN104234875B (en) * 2013-06-13 2019-07-05 常州市利众环保科技有限公司 The burning of fuel-firing gas-firing cycle of engine is in green emissions
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
DK178404B1 (en) * 2014-07-17 2016-02-08 Man Diesel & Turbo Deutschland Large slow-running turbocharged two-stroke self-igniting internal combustion engine with a starting air system
DE102017203951B4 (en) 2017-03-09 2020-09-03 Mtu Friedrichshafen Gmbh Internal combustion engine
CN107120185A (en) * 2017-06-07 2017-09-01 广西九壹动力科技有限公司 Gas engine peculiar to vessel
GB2601145A (en) * 2020-11-19 2022-05-25 Warburton Adam An internal combustion engine
CN114622982A (en) * 2022-03-15 2022-06-14 天津大学 Internal combustion engine cylinder gas self-circulation system device based on differential pressure driving

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978621U (en) * 1972-10-30 1974-07-08
JPS50125125A (en) * 1974-03-18 1975-10-01
JPH01244155A (en) * 1988-03-24 1989-09-28 Mazda Motor Corp Exhaust gas reflux device for engine
JPH03213616A (en) * 1990-01-18 1991-09-19 Mitsubishi Heavy Ind Ltd Scavenging air recirculating mechanism
JPH05157008A (en) * 1991-11-29 1993-06-22 Mazda Motor Corp Engine
JPH06200832A (en) * 1992-12-28 1994-07-19 Isuzu Motors Ltd Two-stroke engine
JPH08121241A (en) * 1994-10-27 1996-05-14 Yanmar Diesel Engine Co Ltd Cylinder head
JPH11311122A (en) * 1998-03-06 1999-11-09 Man B & W Diesel As Two-cycle engine
JP2002519556A (en) * 1998-06-22 2002-07-02 ドゥレク ダニエル Two-stroke internal combustion engine with supercharger and partial exhaust gas recycling
JP2005098309A (en) * 2005-01-11 2005-04-14 Honda Motor Co Ltd Exhaust recirculation device for internal combustion engine
US6892682B2 (en) * 2002-06-27 2005-05-17 Avl List Gmbh Two-stroke internal combustion engine with internal scavenging
JP2005139990A (en) * 2003-11-06 2005-06-02 Nissan Diesel Motor Co Ltd Exhaust gas recirculation device for supercharged engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT402432B (en) * 1988-02-25 1997-05-26 Avl Verbrennungskraft Messtech INTERNAL COMBUSTION ENGINE
KR960702056A (en) * 1993-06-02 1996-03-28 케니쓰 필립 사이버 Exhaust gas recirculation in two stroke internal combustion engines
DE59308450D1 (en) * 1993-11-12 1998-05-28 Waertsilae Nsd Schweiz Ag Method for reducing the amount of nitrogen oxide in the exhaust gas of a large two-stroke diesel engine and engine for carrying out the method
DE10116643C2 (en) * 2001-04-04 2003-07-03 Man B&W Diesel A/S, Copenhagen Sv reciprocating internal combustion engine
KR20030013599A (en) * 2001-08-08 2003-02-15 현대자동차주식회사 EGR system using turbo charger
DE10331187B4 (en) * 2003-07-10 2007-09-06 Man B & W Diesel A/S reciprocating internal combustion engine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978621U (en) * 1972-10-30 1974-07-08
JPS50125125A (en) * 1974-03-18 1975-10-01
JPH01244155A (en) * 1988-03-24 1989-09-28 Mazda Motor Corp Exhaust gas reflux device for engine
JPH03213616A (en) * 1990-01-18 1991-09-19 Mitsubishi Heavy Ind Ltd Scavenging air recirculating mechanism
JPH05157008A (en) * 1991-11-29 1993-06-22 Mazda Motor Corp Engine
JPH06200832A (en) * 1992-12-28 1994-07-19 Isuzu Motors Ltd Two-stroke engine
JPH08121241A (en) * 1994-10-27 1996-05-14 Yanmar Diesel Engine Co Ltd Cylinder head
JPH11311122A (en) * 1998-03-06 1999-11-09 Man B & W Diesel As Two-cycle engine
JP2002519556A (en) * 1998-06-22 2002-07-02 ドゥレク ダニエル Two-stroke internal combustion engine with supercharger and partial exhaust gas recycling
US6892682B2 (en) * 2002-06-27 2005-05-17 Avl List Gmbh Two-stroke internal combustion engine with internal scavenging
JP2005139990A (en) * 2003-11-06 2005-06-02 Nissan Diesel Motor Co Ltd Exhaust gas recirculation device for supercharged engine
JP2005098309A (en) * 2005-01-11 2005-04-14 Honda Motor Co Ltd Exhaust recirculation device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070804A (en) * 2018-10-31 2020-05-07 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド Large 2-stroke uniflow scavenging gas fuel engine and method of reducing preignition or diesel knocking

Also Published As

Publication number Publication date
JP4828385B2 (en) 2011-11-30
DE102005057207A1 (en) 2007-06-06
CN1975145A (en) 2007-06-06
JP2007154877A (en) 2007-06-21
DE102005063377B4 (en) 2018-11-08
KR100807775B1 (en) 2008-02-28
DE102005057207B4 (en) 2011-07-21
CN100540877C (en) 2009-09-16
DE102005063377A1 (en) 2007-06-28
KR20070057683A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4828385B2 (en) NOX emission reduction method for internal combustion engine and internal combustion engine suitable for the same
EP2640934B1 (en) Two stroke opposed-piston engines with compression release for engine braking
KR101251231B1 (en) Method of controlling scavenging of the burnt gas of an indirect-injection engine, notably a supercharged engine, and engine using such a method
DE10154947B4 (en) Rechargeable internal combustion engine with variable displacement
CN103392055B (en) The two stroke opposed-piston engines with engine braking
EP1363001A3 (en) Air and fuel supply system for combustion engine
KR101342815B1 (en) Method for operating an internal combustion engine
WO2005068804A1 (en) A two-stroke compression ignition engine
KR20080092974A (en) A two stroke combustion engine with liquid injection
JP2009525430A (en) 2-stroke combustion engine
DE102015211329B3 (en) Method for operating a exhaust-gas-charged internal combustion engine with partial deactivation and self-igniting internal combustion engine for carrying out such a method
CA2748667A1 (en) Internal combustion engine having independent gas supply with no compression stroke
KR101475834B1 (en) Method for operating a large, crosshead reciprocating piston internal combustion engine and suitable such engine
CN101165330B (en) Method for operating an internal combustion engine with exhaust gas recirculation and internal combustion engine
WO2001053677A1 (en) Method and apparatus for energy transfer in a four-cycle combustion engine
WO2016018184A1 (en) Method at a 2-stroke engine, and a 2-stroke engine operating according to said method
DE102014218655A1 (en) Method for operating a partially switched off self-igniting internal combustion engine and internal combustion engine for carrying out such a method
NL2028576B1 (en) Internal combustion engine arranged for conducting a six-stroke internal combustion process.
CN210530941U (en) Common rail system driven in-cylinder brake device of engine
DE19805678A1 (en) Internal combustion engine
EP1522690A3 (en) Improved internal combustion engine and working cycle
CN110857659A (en) Method for de-throttling a four-stroke internal combustion engine
JP2006070890A (en) Operation method of four-cycle direct injection spark ignition piston engine
DE19630520A1 (en) Crank drive internal combustion engine
DE10203185A1 (en) Operating process and engine for a cylinder combustion engine especially for a motor vehicle changes between two and four cycle operation at a power threshold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321