JP3678861B2 - Engine operation control device - Google Patents

Engine operation control device Download PDF

Info

Publication number
JP3678861B2
JP3678861B2 JP33844296A JP33844296A JP3678861B2 JP 3678861 B2 JP3678861 B2 JP 3678861B2 JP 33844296 A JP33844296 A JP 33844296A JP 33844296 A JP33844296 A JP 33844296A JP 3678861 B2 JP3678861 B2 JP 3678861B2
Authority
JP
Japan
Prior art keywords
exhaust
timing
intake
valve
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33844296A
Other languages
Japanese (ja)
Other versions
JPH10176558A (en
Inventor
満志 中尾
宏信 請井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP33844296A priority Critical patent/JP3678861B2/en
Publication of JPH10176558A publication Critical patent/JPH10176558A/en
Application granted granted Critical
Publication of JP3678861B2 publication Critical patent/JP3678861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの運転状態に応じて吸気弁開閉タイミング,及び排気弁開閉タイミングを可変制御するようにした運転制御装置に関する。
【0002】
【従来の技術】
エンジンの運転制御装置として、従来、吸気弁の開閉タイミングを変化させる吸気タイミング可変機構と、該吸気タイミング可変機構による吸気弁の開閉タイミングをエンジンの運転状態に応じて制御する可変機構制御手段とを備えたものがある。
【0003】
この従来装置では、エンジンの低中速回転域においては、吸気弁の開閉タイミングを進角することにより、吸気弁をいわゆる早閉じとして吸気の押し戻しを減少し低中速トルクを増加し、またオーバーラップを大きくして内部EGRを増加し燃費を向上することが行われている。
【0004】
【発明が解決しようとする課題】
ところが上記従来の運転制御装置では、吸気弁の開閉タイミングを進角して早閉じとして吸気の押し戻しを減少しても、排気脈動の正圧波が吸気弁の開期間に排気ポートに到達する領域では掃気効果が低く、吸入空気量が増加せず、トルクの向上を図ることができない。また内部EGRを増加しても外部EGRに比べて燃費を向上することはできない。
【0005】
本発明は、上記従来の問題に鑑みてなされたもので、排気脈動の負圧波により掃気効果を向上して吸気量を増加でき、また燃費を向上できるエンジンの運転制御装置を提供することを課題としている。
【0006】
【課題を解決するための手段】
請求項1の発明は、吸気弁の開閉タイミングを可変制御する吸気タイミング可変機構と、排気弁の開閉タイミングを可変制御する排気タイミング可変機構と、吸気,排気タイミング可変機構による吸気弁,排気弁の開閉タイミングをエンジンの運転状態に応じて制御する可変機構制御手段とを備えたエンジンの運転制御装置において、上記可変機構制御手段は、吸気弁及び排気弁の両方が開いているオーバーラップ期間の中心時期が、エンジンの低速回転低負荷運転域(図1の運転域A)では上死点(TDC)に略一致し、残りの運転域(図1の運転域B1〜B4)の大部分においては、上死点後(ATDC)となり、上記残りの運転域の一部分である低中速回転高負荷運転域(図1の運転域B2)においては、吸気弁開タイミングの進角量を大、排気弁閉タイミングの遅角量を小〜大の間で可変とすることにより上死点前(BTDC)〜略上死点(TDC)の間で可変となるよう上記吸気,排気タイミング可変機構を制御することを特徴としている。
【0007】
削除
【0008】
請求項2の発明は、請求項1において、上記残りの運転域の大部分とは、低中速回転低中負荷運転域(図1の運転域B1)及び高速回転低中負荷運転域(図1の運転域B3)であることを特徴としている。
を特徴としている。
【0010】
請求項3の発明は、吸気弁の開閉タイミングを可変制御する吸気タイミング可変機構と、排気弁の開閉タイミングを可変制御する排気タイミング可変機構と、吸気,排気タイミング可変機構による吸気弁,排気弁の開閉タイミングをエンジンの運転状態に応じて制御する可変機構制御手段とを備えたエンジンの運転制御装置において、上記可変機構制御手段は、エンジンの運転域をA,及びB1〜B4に分割した場合にオーバーラップ期間の中心時期が各運転域において下記の如くなるように上記吸気,排気タイミング可変機構を制御することを特徴としている。
【0011】
A(低速回転低負荷運転域):吸気弁開タイミングの進角量を最小(最遅角)、排気弁閉タイミングの遅角量を最小(最進角)とすることにより上記中心時期をTDCに略一致させる。
B1(低中速回転低中負荷運転域):吸気弁開タイミングの進角量を小、排気弁閉タイミングの遅角量を大とすることにより上記中心時期をATDCとする。
B2(低中速回転高負荷運転域):吸気弁開タイミングの進角量を大、排気弁閉タイミングの遅角量を小〜大の間で可変とすることにより上記中心時期をBTDC〜略TDCの間で可変とする。
B3(高速回転低中負荷運転域):吸気弁開タイミングの進角量を最小(最遅角)、排気弁閉タイミングの遅角量を大とすることにより上記中心時期をATDCとする。
B4(高速回転高負荷運転域):吸気弁開タイミングの進角量を小、排気弁閉タイミングの遅角量を小とすることにより上記中心時期を略TDCとする。
【0012】
請求項4の発明は、請求項1ないし3の何れかにおいて、実質的な排気通路長を可変制御する排気制御弁と、該排気制御弁による実質的排気通路長をエンジンの運転状態に応じて制御する排気制御弁制御手段とを備え、上記排気制御弁制御手段は、排気脈動による負圧波が上記オーバーラップ時に排気ポートに達する実質的排気通路長となるよう上記排気制御弁を制御することを特徴としている。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
図1〜図4は請求項1〜4の発明の一実施形態によるエンジンの運転制御装置を説明するための図であり、図1,図2本実施形態装置の構成及び制御動作を説明するための図、図3は吸気弁,排気弁の開閉タイミング,オーバーラップ状態を示す模式図、図4は本実施形態装置の模式全体構成図である。
【0014】
図において、1は水冷式4サイクル4気筒4バルブエンジンであり、該エンジン1は各気筒当たり2本の吸気ポートを開閉する吸気弁2,2と、排気ポートを開閉する排気弁3,3とを備えている。該各吸気弁2,排気弁3はそれぞれ吸気カム軸4,排気カム軸5で開閉駆動される。そして該吸気カム軸4には吸気弁2の開閉タイミングを可変制御する吸気タイミング可変機構6が、また排気カム軸5には排気弁3の開閉タイミングを可変制御する排気タイミング可変機構7がそれぞれ配設されている。
【0015】
上記吸気,排気タイミング可変機構は、カム軸のクランク軸に対する位相角度を運転状態に応じて変化させるタイプのものであり、例えば吸気弁の開タイミングをθだけ進角させるとその閉タイミングも同時にθだけ進角し、同様に排気弁の閉タイミングをθだけ遅角させるとその開タイミングも同時にθだけ遅角するように構成されている。なお、この種のタイミング可変機構の具体的構造は従来周知であるから説明は省略する。また、カムノーズ形状の異なるカムを複数備え、運転状態に応じて何れかのカムを選択するタイプのタイミング可変機構を採用することも勿論可能である。
【0016】
上記エンジン1の排気装置8は、左,右端部の気筒の排気ポートを合流させる右マニホールド9aと、中央の2つの気筒の排気ポートを合流させる左マニホールド9bと、さらに該左,右マニホールド9a、9bを1つに合流させる合流管9とを備えている。なお9dは消音器である。
【0017】
そして上記左,右マニホールド9a,9bの途中部分は連通管9cで連通されており、該連通管9cには該連通管9cを開閉する排気制御弁10が配設されている。排気装置8の実質的排気通路長は、上記排気制御弁10を閉にすると「長」となり、開にすると「短」となる。
【0018】
11はエンジン1の運転状態を制御するECUであり、該ECU11は、入力されたエンジン回転数,エンジン負荷(アクセルペダル踏み込み量)に応じて、上記吸気,排気タイミング可変機構6,7による吸気弁2,排気弁3の開閉タイミングを制御する可変機構制御手段としての機能と、上記排気制御弁10による上記連通管9cの開閉を制御する排気制御弁制御手段としての機能とを備えている。
【0019】
上記ECU11による可変機構制御機能は、吸気弁2の開タイミング及び排気弁3の閉タイミングを、低速回転低負荷運転域(アイドル回転域)を基準とし、エンジン回転数と負荷に基づいて、エンジントルクの向上,又は燃費低減,あるいは排気ガス性状の改善,さらには排気ガス温度の低減等の観点から、それぞれ進角側,遅角側に制御する。
【0020】
上記ECU11による排気制御弁制御機能は、排気脈動による負圧波が吸気弁,排気弁のオーバーラップ時に排気ポートに達する実質的排気通路長となるよう上記排気制御弁10を開閉制御する。通常、排気制御弁10は、実質的排気通路長を2段階に変化させるものであり、必ずしも各段階のエンジン回転数に対して上記負圧波をオーバーラップ時に排気ポートに達するよう同調させることは困難であるが、本実施形態では、排気弁3の閉タイミングを変化させることにより各エンジン回転数において上記同調を精度良く実現するものである。
【0021】
次に、本実施形態装置の作用効果について説明する。
本実施形態装置では、エンジンの運転状態に応じて吸気弁2,排気弁3の開閉タイミングが可変制御され、特に吸気弁2,及び排気弁3の両方が共に開いているオーバーラップの大きさ及びその中心時期が上死点前(BTDC)〜上死点後(ATDC)の間で可変制御され、また排気制御弁10が、排気脈動の負圧波が上記オーバーラップ時に排気ポートに達するように制御される。
【0022】
まず上記オーバーラップの大きさ,中心時期の位置の制御に関しては、エンジンの運転域を図1に示すようにA,B1〜B4に分割し、各運転域毎に以下のように制御される。
【0023】
A(低速回転低負荷運転域):吸気弁開タイミングの進角量を最小(図3のb1遅開き参照)、排気弁閉タイミングの遅角量を最小(同図のb1′早閉じ参照)とすることにより、図3に破線で示すように、上記オーバーラップの中心時期をTDC(上死点)に略一致させる。なお、この運転域Aにおける進角量,遅角量を制御の基準とする(図1のA(アイドリング)参照)。
【0024】
B1(低中速回転低中負荷運転域):吸気弁開タイミングの進角量を小(b3)、排気弁閉タイミングの遅角量を大(同図のb2′遅閉じ)とすることにより上記中心時期をATDC(上死点後)とする(図1のB1参照)。
【0025】
B2(低中速回転高負荷運転域):吸気弁開タイミングの進角量を大(同図のb2早開き)、排気弁閉タイミングの遅角量を小〜大(b3′〜b2′)の間で可変とすることにより上記中心時期をBTDC(上死点前)〜略TDCの間で可変とする。
【0026】
ここで上記運転域B2において、排気弁閉タイミングの遅角量を小〜大に変化させるのは、排気脈動の負圧波がオーバーラップ時に排気ポートに到達するようにするためである。
【0027】
B3(高速回転低中負荷運転域):吸気弁開タイミングの進角量を最小(b1)、排気弁閉タイミングの遅角量を大(b2′)とすることにより上記中心時期をATDCとする。
【0028】
B4(高速回転高負荷運転域):吸気弁開タイミングの進角量を小(b3)、排気弁閉タイミングの遅角量を小(b3′)とすることにより上記中心時期を略TDCとする。
【0029】
また、上記排気制御弁10の制御に関しては、エンジンの運転域を図2に示すようにエンジン回転数に基づいてN1〜N4に分割し、該各運転域N1,N2,N3,N4において上記排気制御弁10をそれぞれ閉,開,閉,開とする。
【0030】
このように本実施形態では、低中速回転高負荷運転域(B2)では、吸気弁2を開タイミングを大きく進角させることにより早閉じとするとともに、排気弁3の閉タイミングの遅角量を小〜大に変化させて、排気脈動の負圧波がオーバーラップ時に排気ポートに到達するようにしたので、吸気の押し戻しが少なくなるとともに、排気の負圧波により掃気効果が高まることから、低中速回転域でのトルクを増大できる。
【0031】
また低中速回転低中負荷運転域(B1),及び高速回転低中負荷運転域(B3)の両方というエンジン運転域の大部分において、排気弁閉タイミングを大きく遅角させることによりオーバーラップの中心位置をATDC側寄り、つまり吸気行程側寄りとしたので、吸気行程開始時におけるポンピングロスを低減でき、燃費の向上を図ることができる。
【0032】
さらにまた高速回転低中負荷運転域(B3)では、吸気弁開タイミングの進角量を最小にして吸気弁2を遅閉じとしたことにより、実圧縮比が低下してノッキングが回避されることから点火時期を大きく進角でき、また排気弁閉タイミングの遅角量を大きくして排気弁3を遅開きにしたことにより、実膨張比が増加して熱効率を向上でき、排気ガス温度を低減できる。
【0033】
また本実施形態では、排気弁3の閉タイミングを図1に示すように可変制御するとともに、排気制御弁10を図1及び図2に示すように開閉制御したので、大部分の運転域において、排気脈動による負圧波を吸排気弁のオーバーラップ時に同調させることができ、掃気効果が増大し、図2に破線のトルクカーブで示すように、特に低中速回転でのトルクを向上できる。
【0034】
【発明の作用効果】
以上のように、請求項1の発明によれば、吸気弁及び排気弁の両方が開いているオーバーラップ期間の中心時期が、エンジンの低速回転低負荷運転域(A)では上死点(TDC)に略一致し、残りの運転域(運転域B1〜B4)のうちの大部分、例えば請求項2の発明のように低中速回転中負荷運転域(B1)及び高速回転低中負荷運転域(B3)においては上死点後(ATDC)となるよう上記吸気弁,排気弁の開,閉タイミングを制御することにより、大部分の運転域排気弁の閉タイミングを遅くし、オーバーラップの中心時期をATDC側寄り、つまり吸気行程側寄りとしたので、吸気行程開始時期でのポンピングロスが低減し、燃費を向上できる効果がある。
【0036】
また上記高速回転低中負荷運転域(B3)では、吸気弁を遅閉じとしたことにより、実圧縮比が低下してノッキングが回避されることから点火時期を大きく進角でき、また排気弁閉タイミングの遅角量を大きくして排気弁を遅開きにしたことにより、実膨張比が増加して熱効率を向上でき、排気ガス温度を低減できる効果がある。
【0037】
さらにまた、上記オーバーラップ期間の中心時期低中速回転高負荷運転域(B2)においては上死点前(BTDC)から略上死点(TDC)の間で可変となるように上記吸気弁,排気弁の開,閉タイミングを可変制御したので、この一部運転域では、吸気弁が早閉じとなり、吸気の押し戻しを少なくできるとともに、排気の負圧波により排気効果が高まることから吸入空気量を増大してトルクを向上できる効果がある。
【0038】
請求項3の発明によれば、上記オーバーラップの中心時期を、低速回転低負荷運転域AではTDCに略一致させ、低中速回転中負荷運転域B1及び高速回転低中負荷運転域B3ではATDCとし、大部分の運転域で排気の閉タイミングを達し、オーバラップの中心時期をATDC側寄りとしたので、上記請求項1の発明における、吸気行程開始時でのポンピングロスを低減して燃費を向上でき、熱効率を向上して排気ガス温度を低減できるという効果を具体的に実現できる。また、低中速回転高負荷運転域B2ではBTDC〜略TDCの間で可変としたので、吸気弁が早閉じとなり、吸気の押し戻しを少なくできるとともに、排気の負圧波により排気効果が高まることから吸入空気量を増大してトルクを向上できる。
【0039】
請求項4の発明によれば、上記オーバーラップの中心位置をエンジンの運転状態に応じてBTDC〜ATDCの間で可変制御するとともに、排気制御弁により実質的排気通路長を排気脈動による負圧波が上記オーバーラップ時に排気ポートに達する長さとなるよう制御したので、大部分の運転域において、排気脈動による負圧波を吸排気弁のオーバーラップ時に同調させることができ、掃気効率を向上して吸入空気量を増加でき、特に低中速回転域でのトルクを向上できる効果がある。
【図面の簡単な説明】
【図1】請求項1〜4の発明の一実施形態によるエンジンの運転制御装置の構成及び動作を説明するための図である。
【図2】上記運転制御装置の構成及び動作を説明するための図である。
【図3】上記運転制御装置の吸,排気弁の開閉タイミング,オーバーラップ状態を説明するための図である。
【図4】上記運転制御装置の全体構成を示す模式図である。
【符号の説明】
1 エンジン
2 吸気弁
3 排気弁
6 吸気タイミング可変機構
7 排気タイミング可変機構
10 排気制御弁
11 ECU(可変機構制御手段,排気制御弁制御手段)
A 低速回転低負荷運転域
B1 低中速回転中負荷運転域
B2 低中速回転高負荷運転域
B3 高速回転低中負荷運転域
B4 高速回転高負荷運転域
ATDC 上死点後
BTDC 上死点前
TDC 上死点
O/L オーバーラップ期間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation control device that variably controls an intake valve opening / closing timing and an exhaust valve opening / closing timing in accordance with an operating state of an engine.
[0002]
[Prior art]
As an engine operation control device, conventionally, an intake timing variable mechanism that changes the opening / closing timing of an intake valve, and a variable mechanism control means that controls the opening / closing timing of the intake valve by the intake timing variable mechanism according to the operating state of the engine. There is something to prepare.
[0003]
In this conventional device, in the low and medium speed rotation range of the engine, by opening and closing the intake valve, the intake valve is closed so that the intake push-back is reduced and the low and medium speed torque is increased. Increasing the lap to increase the internal EGR and improving fuel efficiency is being carried out.
[0004]
[Problems to be solved by the invention]
However, in the above conventional operation control device, even if the intake valve opening / closing timing is advanced to quickly close and the push back of the intake is reduced, the positive pressure wave of the exhaust pulsation reaches the exhaust port during the intake valve open period. The scavenging effect is low, the amount of intake air does not increase, and the torque cannot be improved. Further, even if the internal EGR is increased, the fuel efficiency cannot be improved as compared with the external EGR.
[0005]
The present invention has been made in view of the above-described conventional problems, and it is an object of the present invention to provide an engine operation control apparatus that can improve the scavenging effect by the negative pressure wave of the exhaust pulsation to increase the intake air amount and improve the fuel consumption. It is said.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided an intake timing variable mechanism for variably controlling the opening / closing timing of the intake valve, an exhaust timing variable mechanism for variably controlling the opening / closing timing of the exhaust valve, and an intake valve and an exhaust valve by the intake / exhaust timing variable mechanism. An engine operation control device comprising variable mechanism control means for controlling the opening / closing timing in accordance with the engine operating state, wherein the variable mechanism control means is a center of an overlap period in which both the intake valve and the exhaust valve are open. The timing is substantially the same as the top dead center (TDC) in the low-speed rotation and low-load operation region of the engine (operation region A in FIG. 1), and in most of the remaining operation regions (operation regions B1 to B4 in FIG. 1). , after top dead center (ATDC) becomes, in the remaining are part of the operating range low and medium speed rotation and high-load operating range (operating range B2 in FIG. 1), the advance amount of the intake valve opening timing Large, variable and so as the intake between the top dead center (BTDC) - substantially top-dead-center (TDC) by varying the retard amount of the exhaust valve closing timing between the small-sized, the exhaust timing adjustment It is characterized by controlling the mechanism.
[0007]
Delete [0008]
According to a second aspect of the present invention, in the first aspect of the present invention, the remaining operation range includes a low-medium speed rotation / low / medium load operation range (operation range B1 in FIG. 1) and a high-speed rotation / low / medium load operation range (FIG. 1 operating region B3).
It is characterized by.
[0010]
According to a third aspect of the present invention, there is provided an intake timing variable mechanism for variably controlling the opening / closing timing of the intake valve, an exhaust timing variable mechanism for variably controlling the opening / closing timing of the exhaust valve, and an intake valve and an exhaust valve by the intake / exhaust timing variable mechanism. In the engine operation control device comprising the variable mechanism control means for controlling the opening / closing timing according to the engine operating state, the variable mechanism control means is provided when the engine operating range is divided into A and B1 to B4. The intake and exhaust timing variable mechanism is controlled so that the center time of the overlap period is as follows in each operation region.
[0011]
A (low speed rotation and low load operation range): The above-mentioned central timing is set to TDC by setting the advance amount of the intake valve opening timing to the minimum (most retarded angle) and the retard amount of the exhaust valve closing timing to the minimum (most advanced angle). To approximately match.
B1 (low / medium speed rotation / low / medium load operation region): The above-mentioned central timing is set to ATDC by increasing the advance amount of the intake valve opening timing and increasing the retard amount of the exhaust valve closing timing.
B2 (low / medium speed rotation / high load operation region): By making the advance amount of the intake valve opening timing large and the delay amount of the exhaust valve closing timing variable between small and large, the above central timing is set to BTDC. It is variable between TDCs.
B3 (high-speed rotation low and medium load operation region): The central timing is set to ATDC by minimizing the advance amount of the intake valve opening timing (most retarded angle) and increasing the retard amount of the exhaust valve closing timing.
B4 (High-speed rotation high load operation region): The above-mentioned central timing is made substantially TDC by making the advance amount of the intake valve opening timing small and making the delay amount of the exhaust valve close timing small.
[0012]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the exhaust control valve that variably controls the substantial exhaust passage length, and the substantial exhaust passage length by the exhaust control valve is determined according to the operating state of the engine. An exhaust control valve control means for controlling, and the exhaust control valve control means controls the exhaust control valve so that a negative pressure wave due to exhaust pulsation becomes a substantial exhaust passage length reaching the exhaust port at the time of the overlap. It is a feature.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
1 to 4 are diagrams for explaining an engine operation control apparatus according to an embodiment of the invention of claims 1 to 4 , and FIGS. 1 and 2 are for explaining the configuration and control operation of the embodiment apparatus. FIG. 3 is a schematic diagram showing the opening and closing timings of the intake and exhaust valves and the overlap state, and FIG. 4 is a schematic overall configuration diagram of the apparatus of the present embodiment.
[0014]
In the figure, 1 is a water-cooled four-cycle four-cylinder four-valve engine. The engine 1 includes intake valves 2 and 2 for opening and closing two intake ports for each cylinder, and exhaust valves 3 and 3 for opening and closing an exhaust port. It has. The intake valves 2 and the exhaust valves 3 are driven to open and close by the intake cam shaft 4 and the exhaust cam shaft 5, respectively. The intake camshaft 4 is provided with an intake timing variable mechanism 6 for variably controlling the opening / closing timing of the intake valve 2, and the exhaust camshaft 5 is provided with an exhaust timing variable mechanism 7 for variably controlling the opening / closing timing of the exhaust valve 3. It is installed.
[0015]
The intake / exhaust timing variable mechanism is of a type that changes the phase angle of the camshaft with respect to the crankshaft according to the operating state. For example, if the opening timing of the intake valve is advanced by θ, the closing timing is simultaneously θ Similarly, when the exhaust valve closing timing is retarded by θ, the opening timing is also retarded by θ at the same time. The specific structure of this type of variable timing mechanism is well known in the art and will not be described. Of course, it is also possible to employ a timing variable mechanism of a type in which a plurality of cams having different cam nose shapes are provided and any one of the cams is selected according to the operating state.
[0016]
The exhaust system 8 of the engine 1 includes a right manifold 9a for joining the exhaust ports of the left and right end cylinders, a left manifold 9b for joining the exhaust ports of the two central cylinders, and the left and right manifolds 9a, And a joining pipe 9 for joining 9b into one. In addition, 9d is a silencer.
[0017]
The middle portions of the left and right manifolds 9a and 9b are communicated with a communication pipe 9c, and an exhaust control valve 10 for opening and closing the communication pipe 9c is provided in the communication pipe 9c. The substantial exhaust passage length of the exhaust device 8 becomes “long” when the exhaust control valve 10 is closed and becomes “short” when it is opened.
[0018]
Reference numeral 11 denotes an ECU that controls the operating state of the engine 1. The ECU 11 controls the intake valves by the intake and exhaust timing variable mechanisms 6 and 7 according to the input engine speed and engine load (accelerator pedal depression amount). 2. A function as variable mechanism control means for controlling the opening / closing timing of the exhaust valve 3 and a function as exhaust control valve control means for controlling the opening / closing of the communication pipe 9c by the exhaust control valve 10 are provided.
[0019]
The variable mechanism control function by the ECU 11 is based on the engine torque based on the engine speed and the load, with the opening timing of the intake valve 2 and the closing timing of the exhaust valve 3 being based on the low speed rotation and low load operation range (idle rotation range). From the standpoints of improving fuel efficiency, reducing fuel consumption, improving exhaust gas properties, and further reducing exhaust gas temperature, control is made on the advance side and retard side, respectively.
[0020]
The exhaust control valve control function of the ECU 11 controls the opening and closing of the exhaust control valve 10 so that a negative pressure wave due to exhaust pulsation becomes a substantial exhaust passage length reaching the exhaust port when the intake valve and the exhaust valve overlap. Normally, the exhaust control valve 10 changes the substantial exhaust passage length in two stages, and it is not always easy to tune the negative pressure wave to reach the exhaust port at the time of overlap with the engine speed of each stage. However, in this embodiment, the above-described tuning is realized with high accuracy at each engine speed by changing the closing timing of the exhaust valve 3.
[0021]
Next, the function and effect of the present embodiment device will be described.
In the present embodiment, the opening / closing timing of the intake valve 2 and the exhaust valve 3 is variably controlled according to the operating state of the engine, and in particular, the size of the overlap where both the intake valve 2 and the exhaust valve 3 are open and The central timing is variably controlled between before top dead center (BTDC) and after top dead center (ATDC), and the exhaust control valve 10 is controlled so that the negative pressure wave of the exhaust pulsation reaches the exhaust port at the time of the overlap. Is done.
[0022]
First, regarding the control of the size of the overlap and the position of the central time, the engine operating range is divided into A, B1 to B4 as shown in FIG. 1, and the following control is performed for each operating range.
[0023]
A (low speed rotation and low load operation range): The advance amount of the intake valve opening timing is minimized (see b1 slow opening in FIG. 3), and the retard amount of the exhaust valve closing timing is minimized (see b1 ′ early closing in the same figure). By doing so, as shown by a broken line in FIG. 3, the center time of the overlap is made substantially coincident with TDC (top dead center). Note that the advance amount and retard amount in this operation area A are used as control standards (see A (idling) in FIG. 1).
[0024]
B1 (low / medium speed rotation / low / medium load operation region): By making the advance amount of the intake valve opening timing small (b3) and the delay amount of the exhaust valve closing timing being large (b2 'delay closing in the figure) The central time is assumed to be ATDC (after top dead center) (see B1 in FIG. 1).
[0025]
B2 (low / medium-speed rotation / high-load operation range): The advance amount of the intake valve opening timing is large (b2 early opening in the figure), and the retard amount of the exhaust valve closing timing is small to large (b3 ′ to b2 ′). The center time is made variable between BTDC (before top dead center) and approximately TDC.
[0026]
Here, the reason why the retard amount of the exhaust valve closing timing is changed from small to large in the operating range B2 is to allow the negative pressure wave of the exhaust pulsation to reach the exhaust port at the time of overlap.
[0027]
B3 (high-speed rotation low / medium load operation range): The advance timing amount of the intake valve opening timing is minimized (b1), and the retardation amount of the exhaust valve closing timing is increased (b2 '), whereby the above-mentioned central timing is set to ATDC. .
[0028]
B4 (High-speed rotation high load operation region): The above-mentioned central timing is set to approximately TDC by setting the advance amount of the intake valve opening timing to a small value (b3) and the delay amount of the exhaust valve closing timing to a small value (b3 '). .
[0029]
Further, with respect to the control of the exhaust control valve 10, the engine operating range is divided into N1 to N4 based on the engine speed as shown in FIG. 2, and the exhaust in each operating range N1, N2, N3, N4. The control valve 10 is closed, opened, closed, and opened, respectively.
[0030]
As described above, in the present embodiment, in the low / medium speed rotation / high load operation region (B2), the intake valve 2 is rapidly closed by greatly advancing the opening timing, and the delay amount of the closing timing of the exhaust valve 3 is set. Since the negative pressure wave of the exhaust pulsation reaches the exhaust port at the time of overlap, the push back of the intake is reduced and the scavenging effect is enhanced by the negative pressure wave of the exhaust. The torque in the high speed range can be increased.
[0031]
Also, in most of the engine operating range, that is, both the low / medium speed rotation / low / medium load operation range (B1) and the high speed rotation / low / medium load operation range (B3), the exhaust valve closing timing is greatly retarded. Since the center position is closer to the ATDC side, that is, closer to the intake stroke side, the pumping loss at the start of the intake stroke can be reduced, and fuel consumption can be improved.
[0032]
Furthermore, in the high-speed rotation low / medium load operation region (B3), the intake valve 2 is closed slowly by minimizing the advance amount of the intake valve opening timing, thereby reducing the actual compression ratio and avoiding knocking. The ignition timing can be greatly advanced, and the exhaust valve closing timing is increased to make the exhaust valve 3 open slowly, thereby increasing the actual expansion ratio and improving the thermal efficiency, and reducing the exhaust gas temperature. it can.
[0033]
In this embodiment, the closing timing of the exhaust valve 3 is variably controlled as shown in FIG. 1 and the exhaust control valve 10 is controlled to be opened and closed as shown in FIGS. 1 and 2. The negative pressure wave due to the exhaust pulsation can be synchronized when the intake and exhaust valves overlap, so that the scavenging effect is increased, and the torque can be improved particularly at low and medium speeds as shown by the broken torque curve in FIG.
[0034]
[Effects of the invention]
As described above, according to the first aspect of the present invention, the central timing of the overlap period in which both the intake valve and the exhaust valve are open is the top dead center (TDC) in the low-speed rotation low load operation region (A) of the engine. ), And most of the remaining operation regions (operation regions B1 to B4), for example, the low / medium-speed rotation / middle load operation region (B1) and the high-speed rotation / low / medium load operation as in the invention of claim 2 In the region (B3), the opening and closing timings of the intake valve and exhaust valve are controlled so that they are after top dead center (ATDC), thereby delaying the closing timing of the exhaust valve in most of the operating range and overlapping Since the center timing is closer to the ATDC side, that is, closer to the intake stroke side, the pumping loss at the intake stroke start timing is reduced, and the fuel consumption can be improved.
[0036]
Further, in the high-speed rotation low / medium load operation region (B3), the intake valve is closed late, so that the actual compression ratio is reduced and knocking is avoided, so that the ignition timing can be greatly advanced, and the exhaust valve is closed. By increasing the timing delay amount and opening the exhaust valve slowly, the actual expansion ratio is increased, so that the thermal efficiency can be improved and the exhaust gas temperature can be reduced.
[0037]
Furthermore , the intake valve is configured so that the central timing of the overlap period can be varied between the top dead center ( BTDC) and the substantially top dead center (TDC) in the low / medium speed high load operation range (B2). opening the exhaust valve, since the variable control of the closing timing, in this part operating region becomes the intake valve closing is quick, Rutotomoni possible to reduce the push-back of intake air, intake air from the increased exhaust effect by the negative pressure wave of the exhaust There is an effect that the torque can be improved by increasing the amount.
[0038]
According to the invention of claim 3 , the center timing of the overlap is made substantially coincident with TDC in the low speed rotation / low load operation area A, and in the low / medium speed rotation / intermediate load operation area B1 and the high speed rotation / low / medium load operation area B3. Since ATDC is used and the exhaust closing timing is reached in most of the operating range, and the center timing of the overlap is closer to the ATDC side , the pumping loss at the start of the intake stroke in the invention of claim 1 is reduced, and the fuel consumption is reduced. The effect of improving the thermal efficiency and reducing the exhaust gas temperature can be specifically realized. In addition, since the variable range between BTDC and substantially TDC is made variable in the low / medium speed rotation / high load operation region B2, the intake valve is quickly closed, the push back of the intake can be reduced, and the exhaust effect is enhanced by the negative pressure wave of the exhaust. Torque can be improved by increasing the amount of intake air.
[0039]
According to a fourth aspect of the present invention, the center position of the overlap is variably controlled between BTDC and ATDC in accordance with the operating state of the engine, and the exhaust pressure control valve substantially reduces the length of the exhaust passage by exhaust pulsation. Controlling the length to reach the exhaust port at the time of overlap, the negative pressure wave due to exhaust pulsation can be synchronized when the intake and exhaust valves overlap in most operating ranges, improving the scavenging efficiency and increasing the intake air The amount can be increased, and there is an effect that the torque can be improved particularly in a low and medium speed rotation region.
[Brief description of the drawings]
1 is a diagram for explaining the structure and operation of the operation control apparatus for an engine according to an embodiment of the present invention of claims 1 to 4.
FIG. 2 is a diagram for explaining the configuration and operation of the operation control device.
FIG. 3 is a view for explaining suction, opening / closing timing of an exhaust valve, and an overlap state of the operation control device.
FIG. 4 is a schematic diagram showing an overall configuration of the operation control apparatus.
[Explanation of symbols]
1 Engine 2 Intake valve 3 Exhaust valve 6 Intake timing variable mechanism 7 Exhaust timing variable mechanism 10 Exhaust control valve 11 ECU (variable mechanism control means, exhaust control valve control means)
A Low-speed rotation / low-load operation area B1 Low-medium-speed rotation / intermediate-load operation area B2 Low-medium-speed rotation / high-load operation area B3 High-speed rotation / low / medium-load operation area B4 High-speed rotation / high-load operation area ATDC After top dead center BTDC Before top dead center TDC Top dead center O / L Overlap period

Claims (4)

吸気弁の開閉タイミングを可変制御する吸気タイミング可変機構と、排気弁の開閉タイミングを可変制御する排気タイミング可変機構と、吸気,排気タイミング可変機構による吸気弁,排気弁の開閉タイミングをエンジンの運転状態に応じて制御する可変機構制御手段とを備えたエンジンの運転制御装置において、上記可変機構制御手段は、吸気弁及び排気弁の両方が開いているオーバーラップ期間の中心時期が、エンジンの低速回転低負荷運転域(図1の運転域A)では上死点(TDC)に略一致し、残りの運転域(図1の運転域B1〜B4)の大部分においては、上死点後(ATDC)となり、上記残りの運転域の一部分である低中速回転高負荷運転域(図1の運転域B2)においては、吸気弁開タイミングの進角量を大、排気弁閉タイミングの遅角量を小〜大の間で可変とすることにより上死点前(BTDC)〜略上死点(TDC)の間で可変となるよう上記吸気,排気タイミング可変機構を制御することを特徴とするエンジンの運転制御装置。The intake and output timing variable mechanism that variably controls the opening and closing timing of the intake valve, the exhaust timing variable mechanism that variably controls the opening and closing timing of the exhaust valve, and the opening and closing timing of the intake and exhaust valves by the intake and exhaust timing variable mechanism In the engine operation control device, the variable mechanism control means includes a variable mechanism control means for controlling the low speed rotation of the engine during the overlap period when both the intake valve and the exhaust valve are open. In the low-load operation region (operation region A in FIG. 1), it substantially coincides with the top dead center (TDC), and in most of the remaining operation regions (operation regions B1 to B4 in FIG. 1), after the top dead center (ATDC). ) and, in the remaining operating range portion low and medium speed rotation and high load range which is the (operation range B2 in FIG. 1), the large the advance amount of the intake valve opening timing, exhaust valve closing Thailand Variable and so as the intake between the top dead center (BTDC) - substantially top-dead-center (TDC) by varying the retardation amount ranging between small to large, by controlling the exhaust timing adjustment mechanism An engine operation control device. 請求項1において、上記残りの運転域の大部分とは、低中速回転低中負荷運転域(図1の運転域B1)及び高速回転低中負荷運転域(図1の運転域B3)であることを特徴とするエンジンの運転制御装置。  In claim 1, the majority of the remaining operating range is a low / medium speed low / medium load operating range (operating range B1 in FIG. 1) and a high speed rotating low / medium load operating range (operating range B3 in FIG. 1). An operation control device for an engine characterized by being. 吸気弁の開閉タイミングを可変制御する吸気タイミング可変機構と、排気弁の開閉タイミングを可変制御する排気タイミング可変機構と、吸気,排気タイミング可変機構による吸気弁,排気弁の開閉タイミングをエンジンの運転状態に応じて制御する可変機構制御手段とを備えたエンジンの運転制御装置において、上記可変機構制御手段は、エンジンの運転域をA,及びB1〜B4に分割した場合にオーバーラップ期間の中心時期が各運転域において下記の如くなるように上記吸気,排気タイミング可変機構を制御することを特徴とするエンジンの運転制御装置。
A(低速回転低負荷運転域):吸気弁開タイミングの進角量を最小(最遅角)、排気弁閉タイミングの遅角量を最小(最進角)とすることにより上記中心時期をTDCに略一致させる。
B1(低中速回転低中負荷運転域):吸気弁開タイミングの進角量を小、排気弁閉タイミングの遅角量を大とすることにより上記中心時期をATDCとする。
B2(低中速回転高負荷運転域):吸気弁開タイミングの進角量を大、排気弁閉タイミングの遅角量を小〜大の間で可変とすることにより上記中心時期をBTDC〜略TDCの間で可変とする。
B3(高速回転低中負荷運転域):吸気弁開タイミングの進角量を最小(最遅角)、排気弁閉タイミングの遅角量を大とすることにより上記中心時期をATDCとする。
B4(高速回転高負荷運転域):吸気弁開タイミングの進角量を小、排気弁閉タイミングの遅角量を小とすることにより上記中心時期を略TDCとする。
The intake and output timing variable mechanism that variably controls the opening and closing timing of the intake valve, the exhaust timing variable mechanism that variably controls the opening and closing timing of the exhaust valve, and the opening and closing timing of the intake and exhaust valves by the intake and exhaust timing variable mechanism In the engine operation control device having the variable mechanism control means for controlling the engine according to the variable mechanism control means, the variable mechanism control means has a central timing of the overlap period when the engine operating range is divided into A and B1 to B4. An engine operation control apparatus that controls the intake / exhaust timing variable mechanism so as to be as follows in each operation region.
A (low speed rotation and low load operation range): The above-mentioned central timing is set to TDC by setting the advance amount of the intake valve opening timing to the minimum (most retarded angle) and the retard amount of the exhaust valve closing timing to the minimum (most advanced angle). To approximately match.
B1 (low / medium speed rotation / low / medium load operation region): The above-mentioned central timing is set to ATDC by increasing the advance amount of the intake valve opening timing and increasing the retard amount of the exhaust valve closing timing.
B2 (low / medium speed rotation / high load operation region): By making the advance amount of the intake valve opening timing large and the delay amount of the exhaust valve closing timing variable between small and large, the above central timing is set to BTDC. It is variable between TDCs.
B3 (high-speed rotation low and medium load operation region): The central timing is set to ATDC by minimizing the advance amount of the intake valve opening timing (most retarded angle) and increasing the retard amount of the exhaust valve closing timing.
B4 (High-speed rotation high load operation region): The above-mentioned central timing is made substantially TDC by making the advance amount of the intake valve opening timing small and making the delay amount of the exhaust valve close timing small.
請求項1ないし3の何れかにおいて、実質的な排気通路長を可変制御する排気制御弁と、該排気制御弁による実質的排気通路長をエンジンの運転状態に応じて制御する排気制御弁制御手段とを備え、上記排気制御弁制御手段は、排気脈動による負圧波が上記オーバーラップ時に排気ポートに達する実質的排気通路長となるよう上記排気制御弁を制御することを特徴とするエンジンの運転制御装置。4. The exhaust control valve according to claim 1, wherein the exhaust control valve variably controls the substantial exhaust passage length, and the exhaust control valve control means for controlling the substantial exhaust passage length by the exhaust control valve in accordance with the operating state of the engine. And the exhaust control valve control means controls the exhaust control valve so that a negative pressure wave due to exhaust pulsation reaches a substantial exhaust passage length reaching the exhaust port at the time of the overlap. apparatus.
JP33844296A 1996-12-18 1996-12-18 Engine operation control device Expired - Fee Related JP3678861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33844296A JP3678861B2 (en) 1996-12-18 1996-12-18 Engine operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33844296A JP3678861B2 (en) 1996-12-18 1996-12-18 Engine operation control device

Publications (2)

Publication Number Publication Date
JPH10176558A JPH10176558A (en) 1998-06-30
JP3678861B2 true JP3678861B2 (en) 2005-08-03

Family

ID=18318202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33844296A Expired - Fee Related JP3678861B2 (en) 1996-12-18 1996-12-18 Engine operation control device

Country Status (1)

Country Link
JP (1) JP3678861B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084529A (en) * 2008-09-29 2010-04-15 Mazda Motor Corp Exhaust emission control device for engine
JP2010084530A (en) * 2008-09-29 2010-04-15 Mazda Motor Corp Exhaust emission control device for engine
US8919303B2 (en) 2010-08-21 2014-12-30 Mazda Motor Corporation Multi-cylinder spark ignition engine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355462A (en) 2000-06-09 2001-12-26 Denso Corp Variable valve timing control device for internal combustion engine
JP4877200B2 (en) 2007-11-06 2012-02-15 トヨタ自動車株式会社 Control device for internal combustion engine
JP4900333B2 (en) 2007-11-13 2012-03-21 トヨタ自動車株式会社 Control device for internal combustion engine
DE102008038735A1 (en) * 2008-08-12 2010-02-18 Man Nutzfahrzeuge Ag Method and device for operating a multi-cylinder internal combustion engine
JP5067331B2 (en) * 2008-09-29 2012-11-07 マツダ株式会社 Engine valve timing variable device
WO2010067427A1 (en) 2008-12-10 2010-06-17 トヨタ自動車株式会社 Control apparatus of internal combustion engine
JP5293639B2 (en) * 2010-02-25 2013-09-18 三菱自動車工業株式会社 Engine valve timing control device
JP5407992B2 (en) * 2010-03-31 2014-02-05 マツダ株式会社 Exhaust system for multi-cylinder engine
JP5471720B2 (en) * 2010-03-31 2014-04-16 マツダ株式会社 Exhaust system for multi-cylinder engine
JP6384390B2 (en) 2015-04-02 2018-09-05 アイシン精機株式会社 Internal combustion engine control unit
JP6384389B2 (en) * 2015-04-02 2018-09-05 アイシン精機株式会社 Internal combustion engine control unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084529A (en) * 2008-09-29 2010-04-15 Mazda Motor Corp Exhaust emission control device for engine
JP2010084530A (en) * 2008-09-29 2010-04-15 Mazda Motor Corp Exhaust emission control device for engine
US8919303B2 (en) 2010-08-21 2014-12-30 Mazda Motor Corporation Multi-cylinder spark ignition engine
DE112011102771B4 (en) 2010-08-21 2018-07-26 Mazda Motor Corp. Multi-cylinder spark ignition engine

Also Published As

Publication number Publication date
JPH10176558A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
KR0152101B1 (en) Supercharged engine
US7647159B2 (en) Control method and control apparatus for internal combustion engine
EP0319956B1 (en) Valve operating mechanism
JP3678861B2 (en) Engine operation control device
JPH06108858A (en) Intake device of engine
JP5116465B2 (en) Method for operating an internal combustion engine and internal combustion engine implementing the method
JP4666162B2 (en) Fuel injection control device for internal combustion engine
JP2005180285A (en) Control device for engine with supercharger
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JP4526795B2 (en) Valve unit for an engine with a supercharger
US20030140877A1 (en) Four-stroke gasoline engine with direct injection and method for valve control
JP4797868B2 (en) Turbocharged engine
JPH06108860A (en) Engine provided with supercharger
JPH1182074A (en) Variable valve system for internal combustion engine
JPH08218879A (en) Intake structure of four-cycle engine
JP4044625B2 (en) Combustion control device for internal combustion engine
JP3183560B2 (en) Control device for supercharged engine
JPH02119641A (en) Valve system of engine
JPH07102982A (en) Engine having supercharger
JP2568250B2 (en) Engine valve timing controller
JP4075614B2 (en) In-cylinder injection internal combustion engine control device
JP2803871B2 (en) Engine exhaust timing control device
JPH0717787Y2 (en) Supercharged engine
JPH06330776A (en) Intake device for engine with mechanical supercharger
JP2873499B2 (en) Engine intake system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees