JPH07279698A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JPH07279698A
JPH07279698A JP6066168A JP6616894A JPH07279698A JP H07279698 A JPH07279698 A JP H07279698A JP 6066168 A JP6066168 A JP 6066168A JP 6616894 A JP6616894 A JP 6616894A JP H07279698 A JPH07279698 A JP H07279698A
Authority
JP
Japan
Prior art keywords
valve
cylinder
intake
cylinder operation
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6066168A
Other languages
Japanese (ja)
Inventor
Isao Matsumoto
功 松本
Toshiyuki Takimoto
敏幸 滝本
Keiji Yotsueda
啓二 四重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6066168A priority Critical patent/JPH07279698A/en
Publication of JPH07279698A publication Critical patent/JPH07279698A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To enable the partial cylinder operation without using any an intake air cutoff valve, so as to decrease pumping loss of the stop cylinder by opening an exhaust valve as well as controlling an intake air control valve of a first cylinder group to be stopped in stopping of the partial cylinder so that the valve opening time may be zero in low loading. CONSTITUTION:In the partial cylinder operation, an intake valve is opened and closed similar to in the full cylinder operation, however intake control valves 5a, 5d on the stop cylinders 3a, 3d sides, out of four intake control valves are controlled so that the valve opening time may be zero, and new air flow is shut off. Moreover, electrification of an air bypass amount control valve 6V is shut off. That is, new air introducing into combustion chambers 3a, 3d is eliminated, the combustion operation is stopped. While, since a negative pressure atmospheric pressure passage switching valve 16 is electrified, negative pressure is transmitted to an exhaust recirculation valve 9, and a sluice valve in the exhaust recirculation valve 9 is released. Accordingly, exhaust gas discharged from the combustion chambers 3b, 3c of the operating cylinders is partially introduced into an exhaust recirculation passage 10 and returned downward from the intake control valves 5a, 5d.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関、特に部分気筒
運転と全気筒運転とを切り換えることができる内燃機関
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine, and more particularly to an internal combustion engine capable of switching between partial cylinder operation and full cylinder operation.

【0002】[0002]

【従来の技術】低負荷時に部分気筒運転を行う機関が公
知であり、その効率を向上させるための方法がいろいろ
と考案されている。例えば、特開昭57−181947
号公報に開示されたものがある。同公報の内燃機関で
は、休止気筒の吸気通路に吸気遮断弁を配設し、吸気遮
断弁の下流に排気ガスの還流通路出口を配設し、低負荷
の部分気筒運転時には前記吸気遮断弁を閉弁し、吸気遮
断弁の下流に排気ガスを還流させて休止気筒のポンピン
グロスを低減している。
2. Description of the Related Art Engines that perform partial cylinder operation at low load are known, and various methods have been devised to improve their efficiency. For example, JP-A-57-181947
There is one disclosed in the publication. In the internal combustion engine of the publication, an intake cutoff valve is arranged in an intake passage of a deactivated cylinder, an exhaust gas recirculation passage outlet is arranged downstream of the intake cutoff valve, and the intake cutoff valve is operated during operation of a low load partial cylinder. The valve is closed and exhaust gas is circulated downstream of the intake cutoff valve to reduce pumping loss in the idle cylinder.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記特開昭
57−181947号公報の吸気装置では、部分気筒運
転時に休止気筒のポンピングロスは低減されるが、スロ
ットル弁が絞られていることによって部分気筒運転時に
稼働している気筒のポンピングロスを低減するとができ
ないという問題点がある。本発明は上記問題に鑑み、部
分気筒運転時に稼働している気筒のポンピングロスを低
減することのできる内燃機関を提供することを目的とす
る。
However, in the intake system of Japanese Patent Laid-Open No. 57-181947, the pumping loss of the idle cylinder is reduced during the partial cylinder operation, but the partial throttle valve is throttled because the pumping loss is reduced. There is a problem that it is not possible to reduce the pumping loss of the cylinder operating during cylinder operation. In view of the above problems, it is an object of the present invention to provide an internal combustion engine that can reduce pumping loss of cylinders that are operating during partial cylinder operation.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1によれ
ば、各気筒の吸気通路に吸気制御弁を配設し、該吸気制
御弁の開弁時間を制御する吸気時間制御手段を具備する
内燃機関において、気筒を部分気筒運転時には休止する
第1気筒群と、部分気筒運転時にも稼働する第2気筒群
に分割し、前記第1気筒群の前記吸気制御弁の下流と排
気通路とを連結する排気還流通路内に排気還流弁を設
け、低負荷時には前記第1気筒群の前記吸気制御弁を開
弁時間をゼロに制御すると共に前記排気還流弁を開弁
し、且つ燃料の噴射を停止して作動を休止させ、前記第
2気筒群のみ稼働させて部分気筒運転し、高負荷時には
前記第1気筒群と第2気筒群の前記吸気制御弁を均等な
開弁時間で制御すると共に前記排気還流弁を閉弁して全
気筒運転することを特徴とする内燃機関が提供される。
請求項2によれば、さらに、全気筒運転と部分気筒運転
の切り換えにおいて、全気筒運転の場合の前記第2気筒
群の吸気制御弁の開弁時間を、部分気筒運転の場合より
も短くしたことを特徴とする内燃機関が提供される。請
求項3によれば、さらに、部分気筒運転から全気筒運転
への切り換え直後、前記第1気筒群の吸気制御弁は全気
筒運転時の所定の開弁時間とし、前期第2気筒群の吸気
制御の開弁時間は前記所定の開弁時間になるまで徐々に
短くすると共に、第1気筒群の燃料噴射量を全気筒運転
時の所定の値まで徐々に増加させ、第2気筒群の燃料噴
射量を全気筒運転時の所定の値まで徐々に減少させるこ
とを特徴とする前記請求項2に記載の内燃機関が提供さ
れる。
According to the first aspect of the present invention, the intake control valve is provided in the intake passage of each cylinder, and the intake control means controls the opening time of the intake control valve. In the internal combustion engine, the cylinders are divided into a first cylinder group that is inactive during partial cylinder operation and a second cylinder group that is active during partial cylinder operation, and the first cylinder group includes a downstream side of the intake control valve and an exhaust passage. An exhaust gas recirculation valve is provided in the exhaust gas recirculation passage, which controls the opening time of the intake control valve of the first cylinder group to zero, opens the exhaust gas recirculation valve, and injects fuel when the load is low. To stop the operation, operate only the second cylinder group to perform partial cylinder operation, and control the intake control valves of the first cylinder group and the second cylinder group at equal valve opening times during high load. In addition, the exhaust gas recirculation valve is closed to operate all cylinders. An internal combustion engine and is provided.
According to claim 2, in switching between the all cylinder operation and the partial cylinder operation, the opening time of the intake control valve of the second cylinder group in the all cylinder operation is set shorter than that in the partial cylinder operation. An internal combustion engine characterized by the above is provided. According to claim 3, further, immediately after switching from the partial cylinder operation to the all cylinder operation, the intake control valve of the first cylinder group is set to a predetermined valve opening time during the all cylinder operation, and the intake air of the second cylinder group in the previous period is set. The control valve opening time is gradually shortened until the predetermined valve opening time is reached, and the fuel injection amount of the first cylinder group is gradually increased to a predetermined value during all-cylinder operation. The internal combustion engine according to claim 2, wherein the injection amount is gradually reduced to a predetermined value during all-cylinder operation.

【0005】[0005]

【作用】請求項1では部分気筒運転時の休止気筒が吸気
時期制御手段により吸入空気が遮断されると共に排気還
流弁が開弁されて排気ガスが還流されることによりポン
ピングロスが低減されると共に、稼働気筒が吸気時期制
御手段により吸気制御弁と吸気弁のオーバーラップ期間
が制御されてポンピングロスが低減される。また全気筒
運転時には吸気時期制御手段により吸気制御弁と吸気弁
のオーバーラップ期間が制御されてポンピングロスが低
減される。さらに請求項2の様に全気筒運転と部分気筒
運転の切り換えにおいて、全気筒運転の場合の吸気制御
弁の開弁時間を、部分気筒運転の場合よりも短くするこ
とによって全気筒運転と部分気筒運転の切り換え前後の
機関の出力の差が縮小されて、ショックが低減される。
また請求項3の様に部分気筒運転から全気筒運転への切
り換え直後、常時稼働する気筒群の吸気制御弁の開弁時
間を全気筒運転時の開弁時間になるまで段階的に短くす
ると共に、燃料噴射量も減らし、休止気筒側の制御弁の
開弁時間は全気筒運転時の開弁時間に設定し、燃料噴射
量を徐々に増加させることにより、空燃比を一定にしな
がらトルクを滑らかにつなげ、部分気筒運転から全気筒
運転への切り換えが滑らかに行われる。
According to the first aspect of the present invention, the pumping loss is reduced because the intake air is shut off by the intake timing control means and the exhaust gas recirculation valve is opened to recirculate the exhaust gas in the idle cylinder during the partial cylinder operation. In the operating cylinder, the intake timing control means controls the overlap period of the intake control valve and the intake valve to reduce pumping loss. Further, during all cylinder operation, the intake timing control means controls the overlap period of the intake control valve and the intake valve to reduce pumping loss. Further, in switching between the all-cylinder operation and the partial-cylinder operation as in claim 2, by making the opening time of the intake control valve in the all-cylinder operation shorter than in the partial-cylinder operation, the all-cylinder operation and the partial-cylinder operation are performed. The difference in the output of the engine before and after the operation switching is reduced, and the shock is reduced.
Immediately after switching from the partial cylinder operation to the all cylinder operation as in claim 3, the opening time of the intake control valve of the cylinder group that is always operating is shortened stepwise until it reaches the opening time during the all cylinder operation. The amount of fuel injection is also reduced, the opening time of the control valve on the deactivated cylinder side is set to the opening time for all cylinder operation, and the fuel injection amount is gradually increased to smooth the torque while keeping the air-fuel ratio constant. Therefore, the partial cylinder operation can be smoothly switched to the all cylinder operation.

【0006】[0006]

【実施例】以下添付図面を用いて本発明の実施例を説明
する。図1は本発明の第1の実施例の構成を模式的に現
した図である。1はスロットル弁であるが該スロットル
弁1は、負圧で制御する機器類を作動させる負圧を得た
り、あるいは吸気制御弁が故障して閉弁しなくなり必要
以上の空気が吸入され機関が暴走するのを防止するため
のものであって図2に示されるようにアクセルペダルが
ある程度以上に踏み込まれた後は全開とされ吸気量の制
御には基本的に関係しないものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing the configuration of the first embodiment of the present invention. Reference numeral 1 is a throttle valve, but the throttle valve 1 obtains a negative pressure for operating devices controlled by a negative pressure, or the intake control valve fails to close so that more air than necessary is sucked into the engine. This is to prevent runaway, and as shown in FIG. 2, it is fully opened after the accelerator pedal is depressed to a certain extent or more, and is basically unrelated to the control of the intake air amount.

【0007】2はサージタンク、3a、3b、3c、3
dは各気筒の燃焼室である。ここで、燃焼室3aと3d
が設けられているのが請求項における第1気筒群、燃焼
室3bと3cが設けられているのが第2気筒群である。
サージタンク2と各気筒の燃焼室3a、3b、3c、3
dは吸気通路4a、4b、4c、4dによって連結され
ており、その途中にはそれぞれ吸気制御弁5a、5b、
5c、5dが配設されている。6a、6b、6c、6d
はエアバイパス通路であって、それぞれサージタンク2
から少量の空気を吸気制御弁5a、5b、5c、5dを
迂回して各気筒の燃焼室3a、3b、3c、3dの直前
の吸気通路4a、4b、4c、4d内に導入するもので
ある。その内6aと6dは上流側で一本に集合されてい
て、その集合部分にはエアバイパス量制御弁6vが配設
されている。
2 is a surge tank, 3a, 3b, 3c, 3
d is the combustion chamber of each cylinder. Here, the combustion chambers 3a and 3d
Is provided in the first cylinder group, and the combustion chambers 3b and 3c are provided in the second cylinder group.
Surge tank 2 and combustion chambers 3a, 3b, 3c, 3 of each cylinder
d is connected by intake passages 4a, 4b, 4c, 4d, and intake control valves 5a, 5b, and
5c and 5d are provided. 6a, 6b, 6c, 6d
Is an air bypass passage, and each is a surge tank 2
To introduce a small amount of air into the intake passages 4a, 4b, 4c, 4d immediately before the combustion chambers 3a, 3b, 3c, 3d of each cylinder by bypassing the intake control valves 5a, 5b, 5c, 5d. . Among them, 6a and 6d are gathered together on the upstream side, and an air bypass amount control valve 6v is arranged at the gathering portion.

【0008】7a、7b、7c、7dは燃料噴射弁であ
る。8a、8b、8c、8dは各気筒の排気通路であっ
て下流側では1本に集合されている。9は排気還流弁で
あり、10は排気通路8aと排気還流弁9を連通する排
気還流通路であり、11aは排気還流弁9と吸気通路4
aの吸気制御弁5a下流側とを連通する排気還流通路で
あり、11dは同じく排気還流弁9と吸気通路4dの吸
気制御弁5d下流側とを連通する排気還流通路である。
12は還流される排気ガスの温度を低下させるためのク
ーラーである。
Reference numerals 7a, 7b, 7c and 7d are fuel injection valves. Reference numerals 8a, 8b, 8c, and 8d denote exhaust passages of the cylinders, and the exhaust passages are grouped together on the downstream side. Reference numeral 9 is an exhaust gas recirculation valve, 10 is an exhaust gas recirculation passage that connects the exhaust gas passage 8a and the exhaust gas recirculation valve 9, and 11a is an exhaust gas recirculation valve 9 and the intake air passage 4
Reference numeral 11d is an exhaust gas recirculation passage communicating with the downstream side of the intake control valve 5a, and 11d is an exhaust gas recirculation passage communicating with the exhaust gas recirculation valve 9 and the intake control valve 5d downstream side of the intake passage 4d.
Reference numeral 12 is a cooler for lowering the temperature of the exhaust gas to be recirculated.

【0009】排気還流弁9は負圧によって内部の弁の位
置を動かして還流される排気ガスの量を調整する。負圧
はサージタンク2から、負圧通路13を通って負圧リザ
ーブタンク14に一旦貯えられてから負圧通路15を通
って排気還流弁9に伝えられるが、負圧通路15の途中
には負圧大気圧通路切替弁16が介装されていて該負圧
大気圧通路切替弁16への通電を断接することにより排
気還流弁9を開閉する。なお、17は電子制御ユニット
(以下ECUという)であって、請求項1における吸気
時間制御手段として運転条件に応じて吸気制御弁5a、
5b、5c、5dの開弁時間を制御する他に、エアバイ
パス量制御弁6v、負圧大気圧通路切替弁16の開弁量
の制御や、燃料噴射弁7a、7b、7c、7dの燃料噴
射量の制御、点火時期の制御等をおこなう。
The exhaust gas recirculation valve 9 adjusts the amount of exhaust gas recirculated by moving the position of the internal valve by negative pressure. The negative pressure is temporarily stored in the negative pressure reserve tank 14 from the surge tank 2 through the negative pressure passage 13 and then transmitted to the exhaust gas recirculation valve 9 through the negative pressure passage 15, but in the middle of the negative pressure passage 15. A negative pressure / atmospheric pressure passage switching valve 16 is interposed, and the exhaust gas recirculation valve 9 is opened / closed by connecting / disconnecting electricity to the negative pressure / atmospheric pressure passage switching valve 16. Reference numeral 17 denotes an electronic control unit (hereinafter referred to as an ECU), which serves as intake time control means according to claim 1, and the intake control valve 5a according to operating conditions.
In addition to controlling the valve opening time of 5b, 5c, 5d, the control of the valve opening amount of the air bypass amount control valve 6v, the negative pressure atmospheric pressure passage switching valve 16, and the fuel injection of the fuel injection valves 7a, 7b, 7c, 7d. It controls the injection amount and ignition timing.

【0010】次に、上記の様に構成された本発明の実施
例の作動について説明する。先ず、初めに全気筒運転領
域と部分気筒運転領域について説明する。図3は横軸に
エンジン回転速度、縦軸にスロットル開度をとった座標
面上に全気筒運転領域と部分気筒運転領域を現したもの
で、図中Aで示される部分が全気筒運転領域であり、B
で示される部分が部分気筒運転領域である。全気筒運転
と部分気筒運転の切り換えは基本的には吸気制御弁の開
弁時間を制御することによって行われ、それに燃料噴射
の制御が加わる。
Next, the operation of the embodiment of the present invention constructed as above will be described. First, the full cylinder operating range and the partial cylinder operating range will be described. FIG. 3 shows the entire cylinder operating region and the partial cylinder operating region on a coordinate plane in which the horizontal axis represents the engine speed and the vertical axis represents the throttle opening. The portion indicated by A in the figure is the entire cylinder operating region. And B
The portion indicated by is the partial cylinder operating region. Switching between full cylinder operation and partial cylinder operation is basically performed by controlling the opening time of the intake control valve, and fuel injection control is added thereto.

【0011】図4は吸気制御弁の作動を説明する図であ
って、図中破線で示されているのが吸気制御弁の開弁期
間であって、実線で示されているのが吸気弁の開弁期間
である。本実施例では、吸気弁の方には特に可変装置は
設けられていないので、吸気弁の開弁期間は一定で変化
しない。一方、吸気制御弁の方は、開き初め時期、閉じ
終わり時期を任意に変えることが出来るので、開弁期間
を自由に設定することが可能である。そして、吸気制御
弁の開弁期間と吸気弁の開弁期間がオーバーラップして
いる期間のみ実際に新気が導入されるので、逆にオーバ
ーラップしている期間を0(ゼロ)にすれば新気は導入
されず部分気筒運転にすることができる。また、全気筒
運転の場合、あるいは部分気筒運転の場合の稼働気筒に
ついて閉弁時期を遅らせることによってポンピングロス
を低減することが可能である。
FIG. 4 is a diagram for explaining the operation of the intake control valve. In the figure, the broken line indicates the opening period of the intake control valve, and the solid line indicates the intake valve. Is the valve opening period. In the present embodiment, since the intake valve is not provided with a variable device, the opening period of the intake valve is constant and does not change. On the other hand, in the intake control valve, the opening start timing and the closing end timing can be arbitrarily changed, so that the valve opening period can be freely set. Then, since fresh air is actually introduced only during the period in which the intake control valve opening period and the intake valve opening period overlap, if the overlapping period is set to 0 (zero), No fresh air is introduced and partial cylinder operation can be performed. Further, it is possible to reduce the pumping loss by delaying the valve closing timing for the operating cylinders in the all cylinder operation or in the partial cylinder operation.

【0012】部分気筒運転では、吸気弁は全気筒運転時
と同様に開閉されるが、4個の吸気制御弁の内5aと5
dは開弁時間が0(ゼロ)にされ、吸気通路4aと4d
を通る新気の流入は遮断され、また、エアバイパス量制
御弁6vの通電が遮断されるので6aと6dを通る新気
の流入も遮断される。したがって、燃焼室3aと3dに
は新気は一切導入されず、また、これら二つの燃焼室に
は燃料も噴射されず燃焼はおこなわれない。また、負圧
大気圧通路切替弁16には通電されるので、排気還流弁
9に負圧が伝えられ、排気還流弁9の内部の仕切り弁が
解放される。したがって、稼働している気筒の燃焼室3
bと3cから排出された排気ガスの一部が、排気還流通
路10に導入され、クーラー12で適温に冷却された
後、分岐された排気還流通路11aおよび11dを通っ
て吸気制御弁5aと5dの下流に還流される。
In the partial cylinder operation, the intake valve is opened and closed as in the full cylinder operation, but 5a and 5 of the four intake control valves are used.
d has the valve opening time set to 0 (zero), and the intake passages 4a and 4d
The inflow of fresh air passing through is also cut off, and since the energization of the air bypass amount control valve 6v is cut off, the inflow of fresh air passing through 6a and 6d is also cut off. Therefore, no fresh air is introduced into the combustion chambers 3a and 3d, and no fuel is injected into these two combustion chambers and combustion is not performed. Further, since the negative pressure / atmospheric pressure passage switching valve 16 is energized, a negative pressure is transmitted to the exhaust gas recirculation valve 9, and the sluice valve inside the exhaust gas recirculation valve 9 is released. Therefore, the combustion chamber 3 of the operating cylinder
Part of the exhaust gas discharged from b and 3c is introduced into the exhaust gas recirculation passage 10 and cooled to an appropriate temperature by the cooler 12, and then passes through the branched exhaust gas recirculation passages 11a and 11d to the intake control valves 5a and 5d. Is returned downstream.

【0013】これにより燃焼をおこなわない休止気筒の
燃焼室3aと3dには大気圧よりも高圧の排気ガスが導
入されるのでそのポンピングロスは小さい。一方、稼働
を続ける気筒の吸気制御弁は所要の量の空気量が吸入さ
れる様に開弁されるが、前述の様にスロットルによる絞
りは殆どなくポンピングロスは小さい。
As a result, the exhaust gas having a pressure higher than the atmospheric pressure is introduced into the combustion chambers 3a and 3d of the idle cylinder which does not perform combustion, so that the pumping loss is small. On the other hand, the intake control valve of the cylinder that continues to operate is opened so that a required amount of air is sucked in, but as described above, there is almost no throttling by the throttle and the pumping loss is small.

【0014】全気筒運転では、吸気制御弁5a、5b、
5c、5dは負荷に応じて均等に制御され、吸入される
新気の多くはサージタンク2から吸気通路4a、4b、
4c、4dを通って導入されるが、前述と同様にスロッ
トルによる絞りは殆どないことからポンピングロスは小
さい。エアバイパス量制御弁6vが通電されて開弁され
ており、サージタンク2の内部の新気の一部がエアバイ
パス通路6a、6b、6c、6dを通って各気筒の燃焼
室3a、3b、3c、3dの直前の吸気通路4a、4
b、4c、4d内に直接的に導入され、燃焼室内に乱れ
を生成し燃焼改善を行う。この時、負圧大気圧通路切替
弁16には通電されておらず、大気圧に保持されて排気
還流弁9内のリターンスプリングの働きにより閉じてお
り排気ガスは還流されない。
In all-cylinder operation, the intake control valves 5a, 5b,
5c and 5d are evenly controlled according to the load, and most of the fresh air drawn in from the surge tank 2 to the intake passages 4a, 4b,
Although it is introduced through 4c and 4d, the pumping loss is small because there is almost no throttle diaphragm as described above. The air bypass amount control valve 6v is energized and opened, and a part of the fresh air inside the surge tank 2 passes through the air bypass passages 6a, 6b, 6c, 6d, and the combustion chambers 3a, 3b of the respective cylinders. Intake passages 4a, 4 immediately before 3c, 3d
It is directly introduced into b, 4c and 4d to generate turbulence in the combustion chamber to improve combustion. At this time, the negative pressure / atmospheric pressure passage switching valve 16 is not energized, is kept at atmospheric pressure, and is closed by the function of the return spring in the exhaust gas recirculation valve 9, so that the exhaust gas is not recirculated.

【0015】以上が本実施例の請求項1に係わる部分の
構成とその作動であって、部分気筒運転時に休止気筒の
ポンピングロスを低減することを可能とするだけではな
く、稼働気筒のポンピングロスの低減も可能とし、また
全気筒運転時のポンピングロスの低減を可能としてい
る。また、全気筒運転時には、エアバイパス量制御弁6
vが通電されて開弁されて、サージタンク2の内部の新
気の一部が各気筒の燃焼室の直前の吸気通路内に直接的
に導入されるので燃焼室内に乱れが生成され燃焼改善が
おこなわれる。
The above is the structure and operation of the portion according to claim 1 of the present embodiment, which not only makes it possible to reduce the pumping loss of the idle cylinder during partial cylinder operation, but also the pumping loss of the operating cylinder. Can be reduced, and pumping loss during all cylinder operation can be reduced. Further, during all cylinder operation, the air bypass amount control valve 6
When v is energized and opened, a part of the fresh air inside the surge tank 2 is directly introduced into the intake passage immediately before the combustion chamber of each cylinder, so that turbulence is generated in the combustion chamber and combustion is improved. Is performed.

【0016】図5は、全気筒運転から部分気筒運転に切
り換える時の吸気制御弁の開弁時間と燃料噴射時間とを
示したものであって、図中、常時稼働している第2気筒
群については実線で、部分気筒運転時に作動休止する第
1気筒群については破線で示されている。図5には、2
つの特徴がある。第1の特徴は、常時稼働している第2
気筒群の吸気制御弁の、全気筒運転時の開弁時間が、部
分気筒運転時の開弁時間よりも短いことであり、第2の
特徴は、部分気筒運転から全気筒運転に切り換わる時に
第2気筒群の開弁時間が部分気筒運転の時から段階的に
短くなり、全気筒運転時の開弁時間になることである。
FIG. 5 shows the valve opening time of the intake control valve and the fuel injection time when switching from the full cylinder operation to the partial cylinder operation. In the figure, the second cylinder group is always operating. Is indicated by a solid line, and the first cylinder group that is deactivated during partial cylinder operation is indicated by a broken line. In FIG. 5, 2
There are two characteristics. The first feature is the second that is always operating
The opening time of the intake control valve of the cylinder group during all-cylinder operation is shorter than the opening time during partial-cylinder operation. The second feature is that when the partial-cylinder operation is switched to the all-cylinder operation. This means that the valve opening time of the second cylinder group is gradually reduced from the time of partial cylinder operation to reach the valve opening time of all cylinder operation.

【0017】上記第1の特徴は、本発明の請求項2に対
応するものであり、第2の特徴は請求項3に対応するも
のである。初めに、第1の特徴について説明する。部分
気筒運転をおこなう機関においては、部分気筒運転から
全気筒運転への切り換え、あるいは逆に全気筒運転から
部分気筒運転への切り換えの際のショックを抑制するこ
とが重要なことである。これは、図7に示す様に部分気
筒運転をおこなう領域において、全気筒運転の出力と、
部分気筒運転の出力を同じあるいは同等にすることによ
って得られる。
The first feature corresponds to claim 2 of the present invention, and the second feature corresponds to claim 3. First, the first feature will be described. In an engine that performs partial cylinder operation, it is important to suppress the shock when switching from partial cylinder operation to full cylinder operation, or conversely, from full cylinder operation to partial cylinder operation. This is the output of all cylinder operation in the region where partial cylinder operation is performed as shown in FIG.
It is obtained by making the output of the partial cylinder operation the same or equal.

【0018】同じ出力を得るためには機関は同じ仕事を
する必要があり、そのために必要な全体の空気量と燃料
の量は基本的にはほぼ同一である。したがって、本実施
例の様に部分気筒運転が全気筒運転時の半分の気筒数で
おこなわれるのであれば、基本的には部分気筒運転時の
各気筒の吸入空気量は、全気筒運転時の各気筒の吸入空
気量の約倍となる。実際には吸入空気量が多い場合と少
ない場合の燃焼効率の差や、部分気筒運転と全気筒運転
との摩擦損失の差等があるので必ずしも上述の通りには
ならないが、いずれにせよ部分気筒運転と全気筒運転と
の切り換えの際のショックを抑制するためには部分気筒
運転時の稼働気筒の吸入空気量を全気筒運転時の各気筒
の吸入空気量よりも多くすることが必要である。以上の
理由によって、常時稼働している第2気筒群の吸気制御
弁の、全気筒運転時の開弁時間が、部分気筒運転時の開
弁時間よりも短かくされており、全気筒運転と部分気筒
運転の切り換え前後の機関の出力を同等にさせショック
の発生を抑制している。
In order to obtain the same output, the engines need to do the same work, and the total amount of air and fuel required for that purpose is basically about the same. Therefore, if partial cylinder operation is performed with half the number of cylinders during full cylinder operation as in the present embodiment, the intake air amount of each cylinder during partial cylinder operation is basically It is about twice the amount of intake air for each cylinder. Actually, there is a difference in combustion efficiency when the intake air amount is large and small, and a friction loss difference between the partial cylinder operation and the all cylinder operation. In order to suppress the shock when switching between operation and full cylinder operation, it is necessary to make the intake air amount of the operating cylinder during partial cylinder operation larger than the intake air amount of each cylinder during full cylinder operation. . For the above reason, the valve opening time of the intake control valve of the second cylinder group, which is always operating, during the full cylinder operation is set shorter than the valve opening time during the partial cylinder operation. The output of the engine before and after the switching of the partial cylinder operation is made equal to suppress the occurrence of shock.

【0019】次に、第2の特徴について説明する。部分
気筒運転時には休止気筒の吸気制御弁の下流には排気ガ
スが還流されており、吸気制御弁と吸気弁の間の吸気通
路は排気ガスで充たされている。したがって部分気筒か
ら全気筒運転に切り換えた直後には、休止していた気筒
の燃焼室には前記吸気制御弁と吸気弁の間の吸気通路を
充たしていた排気ガスが導入される。この排気ガスは燃
焼を抑制する様に作用するので、直ちに常時稼働する気
筒と同じ出力を得ることはできない。そこで切り換え
時、休止気筒の排気還流ガスがなくなり、常時稼働気筒
と同等の出力が得られるまで常時稼働気筒の吸気制御弁
の開時間を段階的に短くする。燃料についても同様であ
る。上記の様にすることによって部分気筒運転から全気
筒運転への切り換えが滑らかにおこなわれる。
Next, the second feature will be described. During partial cylinder operation, exhaust gas is recirculated downstream of the intake control valve of the deactivated cylinder, and the intake passage between the intake control valve and the intake valve is filled with exhaust gas. Therefore, immediately after switching from the partial cylinder operation to the all cylinder operation, the exhaust gas that has filled the intake passage between the intake control valve and the intake valve is introduced into the combustion chamber of the cylinder that has been deactivated. Since this exhaust gas acts to suppress combustion, it is not possible to immediately obtain the same output as that of the cylinder that always operates. Therefore, at the time of switching, the exhaust recirculation gas in the deactivated cylinders is exhausted, and the opening time of the intake control valve of the constantly operating cylinders is shortened stepwise until an output equivalent to that of the always operating cylinder is obtained. The same applies to fuel. By the above, the switching from the partial cylinder operation to the all cylinder operation is smoothly performed.

【0020】図6は、全気筒運転から部分気筒運転に切
り換える時の吸気制御弁の開弁時間と燃料噴射時間とを
示したものであって、全気筒運転から部分気筒運転に移
行する時は、直ちに吸気制御弁の開時間と燃料噴射量と
を部分気筒運転時の常時稼働気筒条件にする。
FIG. 6 shows the valve opening time of the intake control valve and the fuel injection time when switching from the full cylinder operation to the partial cylinder operation. When shifting from the full cylinder operation to the partial cylinder operation, FIG. Immediately, the opening time of the intake control valve and the fuel injection amount are set to the always operating cylinder condition during the partial cylinder operation.

【0021】図8は本発明の第2の実施例の構成を模式
的に現した図であって6気筒の内燃機関に適用したもの
である。図1と同じ作用をする部分には同じ符号を付し
てある。18、19、20は触媒コンバータであり、1
8、19は排気ポートからの距離が短く、特に始動時の
エミッション低減に有効である。本第2の実施例では、
排気系を休止気筒群用と常時稼働気筒群用との2つに分
けている。したがって、常時稼働気筒群の排気ガスが休
止気筒群の側に入り込みにくいため、ガス温度が下がる
ので還流ガスを冷却するためのクーラーは不要である。
また、常時稼働気筒群の排気ガスが休止気筒群側に入り
込みにくいため、吸気制御弁や、吸気弁や、吸気通路等
へのデポジットの付着が低減される。さらに、部分気筒
運転への切り換え時に部分気筒群の燃料をカットし、排
気還流弁を開き、吸気制御弁を全閉にすれば、燃焼せず
吹き抜けた空気が排気還流通路を還流することとなり、
やはり吸気制御弁や吸気弁や吸気通路等へのデポジット
の付着が低減される。還流ガスが不足してきた場合は部
分気筒運転をしている気筒群の吸気行程中に空燃比が荒
れない程度に僅かに吸気制御弁を開弁して空気を供給し
てやることも考えられる。この様に、空気、あるいは空
気の割合が高い排気ガスが還流していれば、休止気筒群
が早く通常の稼働へと移行できるために全気筒運転への
切り換え時の応答性が良くなるという効果もある。
FIG. 8 is a diagram schematically showing the configuration of the second embodiment of the present invention, which is applied to a 6-cylinder internal combustion engine. Portions having the same functions as those in FIG. 1 are designated by the same reference numerals. 18, 19 and 20 are catalytic converters,
Nos. 8 and 19 have a short distance from the exhaust port and are particularly effective in reducing emissions at the time of starting. In the second embodiment,
The exhaust system is divided into two groups, one for the idle cylinder group and the one for the constantly operating cylinder group. Therefore, the exhaust gas of the constantly operating cylinder group does not easily enter the idle cylinder group side, and the gas temperature drops, so that a cooler for cooling the recirculation gas is unnecessary.
Further, since the exhaust gas of the constantly operating cylinder group does not easily enter the idle cylinder group side, adhesion of deposits to the intake control valve, the intake valve, the intake passage, etc. is reduced. Furthermore, if the fuel in the partial cylinder group is cut when switching to partial cylinder operation, the exhaust gas recirculation valve is opened, and the intake control valve is fully closed, the air that has blown through without recirculating will recirculate in the exhaust gas recirculation passage,
After all, deposits on the intake control valve, intake valve, intake passage, etc. are reduced. When the recirculation gas becomes insufficient, it may be considered that the intake control valve is slightly opened to supply air during the intake stroke of the group of cylinders operating in the partial cylinder so that the air-fuel ratio does not become rough. In this way, if air or exhaust gas with a high proportion of air is recirculating, the idle cylinder group can quickly shift to normal operation, so that the responsiveness at the time of switching to all-cylinder operation is improved. There is also.

【0022】[0022]

【発明の効果】本発明は、上記の様に構成され作用する
ので、吸気制御弁によって吸入空気の遮断をおこなうの
で吸入空気遮断弁を用いることなく部分気筒運転がで
き、逆に吸気制御弁によって部分気筒運転をおこなうこ
とによって部分気筒運転時に休止気筒のポンピングロス
を低減することが可能となるだけではなく、稼働気筒の
ポンピングロスの低減も可能とし、また全気筒運転時の
ポンピングロスの低減が可能となっている。また、全気
筒運転と部分気筒運転の切り換えにおいて、全気筒運転
の場合の吸気制御弁の開弁時間を、部分気筒運転の場合
よりも短くすることによって全気筒運転と部分気筒運転
の切り換え前後のトルク段差が低減される。さらに部分
気筒運転と全気筒運転への切り換え直後の一定時間は常
時稼働する気筒群の吸気制御弁の開弁時間を部分気筒運
転時の開弁時間から段階的に短くして全気筒運転での開
弁時間にすることによって全気筒運転と部分気筒運転の
切り換えが滑らかにおこなわれる。
Since the present invention is configured and operates as described above, since intake air is shut off by the intake control valve, partial cylinder operation can be performed without using the intake air shutoff valve, and conversely by the intake control valve. By performing partial cylinder operation, it is possible not only to reduce pumping loss of idle cylinders during partial cylinder operation, but also to reduce pumping loss of operating cylinders, and also to reduce pumping loss during all cylinder operation. It is possible. Further, when switching between full-cylinder operation and partial-cylinder operation, the intake control valve opening time in the case of full-cylinder operation is made shorter than that in the partial-cylinder operation, so that before and after switching between full-cylinder operation and partial-cylinder operation. The torque step is reduced. Furthermore, for a certain period of time immediately after switching between partial cylinder operation and all cylinder operation, the valve opening time of the intake control valve of the cylinder group that always operates is shortened stepwise from the valve opening time during partial cylinder operation, and By setting the valve opening time, the switching between the full cylinder operation and the partial cylinder operation is smoothly performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の構成を模式的に示す図
である。
FIG. 1 is a diagram schematically showing a configuration of a first exemplary embodiment of the present invention.

【図2】第1の実施例のアクセルペダルの開度とスロッ
トル弁の開度の関係を示す図である。
FIG. 2 is a diagram showing a relationship between an opening degree of an accelerator pedal and an opening degree of a throttle valve of the first embodiment.

【図3】第1の実施例の全気筒運転領域と部分気筒運転
領域を示す図である。
FIG. 3 is a diagram showing an all-cylinder operating region and a partial-cylinder operating region of the first embodiment.

【図4】第1の実施例の吸気制御弁の作動を説明する図
である。
FIG. 4 is a diagram for explaining the operation of the intake control valve of the first embodiment.

【図5】第1の実施例の部分気筒運転から全気筒運転へ
の切り換え前後の吸気制御弁の開弁時間と燃料噴射弁の
燃料噴射時間を示す図である。
FIG. 5 is a diagram showing a valve opening time of an intake control valve and a fuel injection time of a fuel injection valve before and after switching from a partial cylinder operation to an all cylinder operation in the first embodiment.

【図6】第1の実施例の全気筒運転から部分気筒運転へ
の切り換え前後の吸気制御弁の開弁時間と燃料噴射弁の
燃料噴射時間を示す図である。
FIG. 6 is a diagram showing a valve opening time of an intake control valve and a fuel injection time of a fuel injection valve before and after switching from full cylinder operation to partial cylinder operation in the first embodiment.

【図7】第1の実施例の部分気筒運転と全気筒運転の出
力特性を示す図である。
FIG. 7 is a diagram showing output characteristics of a partial cylinder operation and an all cylinder operation of the first embodiment.

【図8】本発明の第2の実施例の構成を模式的に示す図
である。
FIG. 8 is a diagram schematically showing a configuration of a second exemplary embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…スロットル弁 2…サージタンク 3a,3b,3c,3d…燃焼室 4a,4b,4c,4d…吸気通路 5a,5b,5c,5d…吸気制御弁 6a,6b,6c,6d…エアバイパス通路 6v…エアバイパス量制御弁 7a,7b,7c,7d…燃料噴射弁 8a,8b,8c,8d…排気通路 9…排気還流弁 10…排気還流通路 11a…排気還流通路 11d…排気還流通路 12…クーラー 13…負圧通路 14…負圧リザーブタンク 15…負圧通路 16…負圧大気圧通路切替弁 17…ECU 18,19,20…触媒コンバータ 1 ... Throttle valve 2 ... Surge tank 3a, 3b, 3c, 3d ... Combustion chamber 4a, 4b, 4c, 4d ... Intake passage 5a, 5b, 5c, 5d ... Intake control valve 6a, 6b, 6c, 6d ... Air bypass passage 6v ... Air bypass amount control valve 7a, 7b, 7c, 7d ... Fuel injection valve 8a, 8b, 8c, 8d ... Exhaust passage 9 ... Exhaust gas recirculation valve 10 ... Exhaust gas recirculation passage 11a ... Exhaust gas recirculation passage 12d ... Exhaust gas recirculation passage 12 ... Cooler 13 ... Negative pressure passage 14 ... Negative pressure reserve tank 15 ... Negative pressure passage 16 ... Negative pressure atmospheric pressure passage switching valve 17 ... ECU 18, 19, 20 ... Catalytic converter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 21/08 311 A F02M 25/07 550 R 570 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area F02D 21/08 311 A F02M 25/07 550 R 570 N

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各気筒の吸気通路に吸気制御弁を配設
し、該吸気制御弁の開弁時間を制御する吸気時間制御手
段を具備する内燃機関において、 気筒を部分気筒運転時には休止する第1気筒群と、部分
気筒運転時にも稼働する第2気筒群に分割し、前記第1
気筒群の前記吸気制御弁の下流と排気通路とを連結する
排気還流通路内に排気還流弁を設け、 低負荷時には前記第1気筒群の前記吸気制御弁を開弁時
間をゼロに制御すると共に前記排気還流弁を開弁し、且
つ燃料の噴射を停止して作動を休止させ、前記第2気筒
群のみ稼働させて部分気筒運転し、 高負荷時には前記第1気筒群と第2気筒群の前記吸気制
御弁を均等な開弁時間で制御すると共に前記排気還流弁
を閉弁して全気筒運転することを特徴とする内燃機関。
1. An internal combustion engine comprising an intake time control means for arranging an intake control valve in the intake passage of each cylinder and controlling the opening time of the intake control valve, wherein the cylinder is deactivated during partial cylinder operation. The first cylinder group and the second cylinder group that operates even during partial cylinder operation are divided into the first cylinder group and the first cylinder group.
An exhaust gas recirculation valve is provided in an exhaust gas recirculation passage connecting a downstream side of the intake air control valve of the cylinder group and an exhaust gas passage, and when the load is low, the intake control valve of the first cylinder group is controlled to have a valve opening time of zero. The exhaust gas recirculation valve is opened, fuel injection is stopped and operation is stopped, only the second cylinder group is operated to perform partial cylinder operation, and when the load is high, the first cylinder group and the second cylinder group An internal combustion engine in which all the cylinders are operated by controlling the intake control valve with an equal opening time and closing the exhaust gas recirculation valve.
【請求項2】 前記全気筒運転と部分気筒運転の切り換
えにおいて、全気筒運転の場合の前記第2気筒群の吸気
制御弁の開弁時間を、部分気筒運転の場合よりも短くし
たことを特徴とする前記請求項1に記載の内燃機関。
2. In switching between the full cylinder operation and the partial cylinder operation, the opening time of the intake control valve of the second cylinder group in the full cylinder operation is set shorter than that in the partial cylinder operation. The internal combustion engine according to claim 1, wherein:
【請求項3】 部分気筒運転から全気筒運転への切り換
え直後、前記第1気筒群の吸気制御弁は全気筒運転時の
所定の開弁時間とし、前期第2気筒群の吸気制御の開弁
時間は前記所定の開弁時間になるまで徐々に短くすると
共に、第1気筒群の燃料噴射量を全気筒運転時の所定の
値まで徐々に増加させ、第2気筒群の燃料噴射量を全気
筒運転時の所定の値まで徐々に減少させることを特徴と
する前記請求項2に記載の内燃機関。
3. Immediately after switching from the partial cylinder operation to the all cylinder operation, the intake control valve of the first cylinder group is set to a predetermined valve opening time during the all cylinder operation, and the intake control valve of the second cylinder group is opened in the previous period. The time is gradually shortened until the predetermined valve opening time is reached, and the fuel injection amount of the first cylinder group is gradually increased to a predetermined value during all-cylinder operation, so that the fuel injection amount of the second cylinder group is completely reduced. The internal combustion engine according to claim 2, wherein the internal combustion engine is gradually reduced to a predetermined value during cylinder operation.
JP6066168A 1994-04-04 1994-04-04 Internal combustion engine Pending JPH07279698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6066168A JPH07279698A (en) 1994-04-04 1994-04-04 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6066168A JPH07279698A (en) 1994-04-04 1994-04-04 Internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07279698A true JPH07279698A (en) 1995-10-27

Family

ID=13308062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6066168A Pending JPH07279698A (en) 1994-04-04 1994-04-04 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07279698A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055744A (en) * 2000-12-29 2002-07-10 이계안 Control method for load variable cylinder engine and device thereof
KR20030050259A (en) * 2001-12-18 2003-06-25 현대자동차주식회사 Variable cylinder engine structure and the control device and the method
US6935308B1 (en) 2004-03-09 2005-08-30 Mitsubishi Denki Kabushiki Kaisha Operation control device of multi-cylinder engine
US7121258B2 (en) 2004-08-31 2006-10-17 Mitsubishi Denki Kabushiki Kaisha Electronic throttle control device
WO2008059663A1 (en) * 2006-11-16 2008-05-22 Yanmar Co., Ltd. Method of controlling internal combustion engine
JP2008128018A (en) * 2006-11-16 2008-06-05 Yanmar Co Ltd Control method of internal combustion engine
CN100434677C (en) * 2006-12-18 2008-11-19 谭光荣 Secondary burning engine of automatic control power output waste gas according to demand for machine internal circulation
US8096286B2 (en) 2006-11-16 2012-01-17 Yanmar Co., Ltd. Method of controlling internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055744A (en) * 2000-12-29 2002-07-10 이계안 Control method for load variable cylinder engine and device thereof
KR20030050259A (en) * 2001-12-18 2003-06-25 현대자동차주식회사 Variable cylinder engine structure and the control device and the method
US6935308B1 (en) 2004-03-09 2005-08-30 Mitsubishi Denki Kabushiki Kaisha Operation control device of multi-cylinder engine
DE102004052389B4 (en) * 2004-03-09 2009-04-02 Mitsubishi Denki K.K. Operating control device of a multi-cylinder engine
US7121258B2 (en) 2004-08-31 2006-10-17 Mitsubishi Denki Kabushiki Kaisha Electronic throttle control device
DE102005016965B4 (en) * 2004-08-31 2020-12-03 Mitsubishi Denki K.K. Electronic throttle control device
WO2008059663A1 (en) * 2006-11-16 2008-05-22 Yanmar Co., Ltd. Method of controlling internal combustion engine
JP2008128018A (en) * 2006-11-16 2008-06-05 Yanmar Co Ltd Control method of internal combustion engine
US8096286B2 (en) 2006-11-16 2012-01-17 Yanmar Co., Ltd. Method of controlling internal combustion engine
CN100434677C (en) * 2006-12-18 2008-11-19 谭光荣 Secondary burning engine of automatic control power output waste gas according to demand for machine internal circulation

Similar Documents

Publication Publication Date Title
US6053154A (en) Exhaust gas recycling arrangement with individual cylinder throttling
US5562086A (en) Control device of a varable cylinder engine
CA1147829A (en) Internal combustion engine
US4462351A (en) Split type internal combustion engine
JPS5853182B2 (en) Exhaust recirculation device for engine with cylinder number control
US4484549A (en) 4-Cycle internal combustion engine
US4376426A (en) Split type internal combustion engine
US4364345A (en) Split type internal combustion engine
JPH07279698A (en) Internal combustion engine
JP3214720B2 (en) Exhaust gas recirculation system for internal combustion engine
JP2004124745A (en) Turbocharged engine
US5983872A (en) Engine intake system for controlling internal exhaust gas recirculation
JP6252006B2 (en) Engine control device
JP3538860B2 (en) Engine intake system
US4409936A (en) Split type internal combustion engine
JP2005201074A (en) Controller of internal combustion engine
JP3575370B2 (en) Fuel injection device for internal combustion engine
JPH0586847A (en) Exhaust emission control device for engine having mechanical supercharger
JP3204113B2 (en) Exhaust gas recirculation control device
JPH05223040A (en) Intake device for engine
JPH07310603A (en) Exhaust gas reflux device for engine
JP2000045878A (en) Exhaust recirculation device for engine
JPH0791326A (en) Exhaust gas refluxing device for engine having supercharger
JP3327940B2 (en) Engine combustion control device
JP3193476B2 (en) Engine intake system