JP2000045878A - Exhaust recirculation device for engine - Google Patents

Exhaust recirculation device for engine

Info

Publication number
JP2000045878A
JP2000045878A JP10211433A JP21143398A JP2000045878A JP 2000045878 A JP2000045878 A JP 2000045878A JP 10211433 A JP10211433 A JP 10211433A JP 21143398 A JP21143398 A JP 21143398A JP 2000045878 A JP2000045878 A JP 2000045878A
Authority
JP
Japan
Prior art keywords
egr
passage
egr gas
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10211433A
Other languages
Japanese (ja)
Other versions
JP4099868B2 (en
Inventor
Yasuhide Yano
康英 矢野
Tomoaki Saito
智明 斎藤
Hiroshi Hayashibara
寛 林原
Keiji Araki
啓二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP21143398A priority Critical patent/JP4099868B2/en
Publication of JP2000045878A publication Critical patent/JP2000045878A/en
Application granted granted Critical
Publication of JP4099868B2 publication Critical patent/JP4099868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/12Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems characterised by means for attaching parts of an EGR system to each other or to engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/41Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories characterised by the arrangement of the recirculation passage in relation to the engine, e.g. to cylinder heads, liners, spark plugs or manifolds; characterised by the arrangement of the recirculation passage in relation to specially adapted combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the level of difference in concentration of EGR gas between cylinders. SOLUTION: Two exhaust introduction ports 31a, 32a are opened to an intake passage 10 common for a plurality of engine cylinders, in series in a flowing direction of intake air. The volumes of EGR gas introduced through the introduction ports 31a, 32a are periodically changed since the pressure differential between exhaust gas and intake air periodically varies. In the intake passage 10, a part of EGR gas having a high (low) at the position of the introduction port 31a merges into or interfered with a part of EGR gas having a low (high) concentration at the position of the introduction port 32a, and accordingly, the variation in the concentration of EGR gas becomes smaller downstream of the introduction port 32a. In order to effect the above-mentioned interference, the volume V of the intake air passage in a part having a distance L between the introduction ports 31a, 32a is set to be larger than n∼a+1/3α but smaller than n∼a+2/3α where α is an intake air charge volume per engine cylinder (the period of variation in the concentration of EGR gas between the introduction ports 31a, 32a is shifted by 1/3 to 2/3).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエンジンの排気還流
装置に関するものである。
The present invention relates to an exhaust gas recirculation device for an engine.

【0002】エンジン、特に自動車用ディ−ゼルエンジ
ンにおいては、NOxおよびパテキュレート成分を大幅
に低減することが望まれている。このため、基本的にN
X低減のために多量EGRを行ないつつ、実際の空燃
比が目標空燃比となるように、実際の吸入空気量と燃料
噴射量とに応じてEGRガス量を制御すること(EGR
バルブの開度制御)が提案されている(特開平8−14
4867号公報、特公平3−19376号公報参照)。
この点を詳述すると、空燃比がリッチになるほどNOX
が低減される一方、パテキュレート成分増大されるの
で、この両方の低減を十分満足するにように目標空燃比
が設定される。そして、EGRガス量の制御は、実際に
気筒内に供給される新気な空気の量が目標空燃比に対応
したものとなるように行われる。
[0002] In engines, especially in diesel engines for automobiles, it is desired to greatly reduce NOx and particulate components. Therefore, basically N
While performing a large quantity EGR for O X reduction, so that the actual air-fuel ratio becomes the target air-fuel ratio, controlling the EGR gas amount in accordance with the actual intake air amount and the fuel injection quantity (EGR
(Opening control of a valve) has been proposed (JP-A-8-14).
No. 4867, Japanese Patent Publication No. 3-19376).
To explain this point in detail, the richer the air-fuel ratio, the more NO x
Is reduced, while the particulate component is increased. Therefore, the target air-fuel ratio is set so as to sufficiently satisfy both reductions. The control of the EGR gas amount is performed so that the amount of fresh air actually supplied into the cylinder corresponds to the target air-fuel ratio.

【0003】[0003]

【発明が解決しようとする課題】ところで、EGR用の
排気ガスは、排圧と吸気圧との差圧に基づいて吸気通路
に導入されるが、排圧および吸気圧はそれぞれ脈動を有
するため、上記差圧も脈動を有することになる。この結
果、吸気通路に導入された排気ガス濃度つまりEGRガ
ス濃度は、差圧の脈動に起因して必然的に脈動を有する
変動を有することになる。そして、このようなEGRガ
ス濃度の変動は、気筒間でのEGRガス濃度の相違を発
生させる原因となる。
The exhaust gas for EGR is introduced into the intake passage on the basis of the differential pressure between the exhaust pressure and the intake pressure. However, since each of the exhaust pressure and the intake pressure has a pulsation, The differential pressure also has a pulsation. As a result, the concentration of the exhaust gas introduced into the intake passage, that is, the concentration of the EGR gas, naturally has a fluctuation having a pulsation due to the pulsation of the differential pressure. Such a change in the EGR gas concentration causes a difference in the EGR gas concentration between the cylinders.

【0004】上述のように、吸気通路内でのEGRガス
濃度変動に起因して気筒間でEGRガス濃度が相違して
しまうことは、気筒間での燃焼性や排気ガス成分の相違
をもたらすこととなって好ましくない。とりわけ、前述
のようにEGRガス量を目標空燃比となるように制御す
る場合は、気筒間で実際の空燃比が目標空燃比から大き
くずれてしまう事態を発生させてしまう。
As described above, the difference in the EGR gas concentration between the cylinders due to the variation in the EGR gas concentration in the intake passage causes a difference in the combustibility and the exhaust gas component between the cylinders. It is not preferable. In particular, when the EGR gas amount is controlled to be the target air-fuel ratio as described above, a situation occurs in which the actual air-fuel ratio between the cylinders greatly deviates from the target air-fuel ratio.

【0005】本発明は以上のような事情を勘案してなさ
れたもので、その目的は、気筒間でのEGRガス濃度の
相違を大幅に低減できるようにしたエンジンの排気還流
装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust gas recirculation device for an engine capable of greatly reducing the difference in EGR gas concentration between cylinders. It is in.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明はその第1の解決手法として次のようにして
ある。すなわち、特許請求の範囲における請求項1に記
載のように、複数の気筒に対して吸気を供給するための
吸気通路に、第1EGRガス導入口が開口されると共
に、吸気通路の吸気流れ方向下流側において第2EGR
ガス導入口が開口され、前記第1EGRガス導入口と第
2EGRガス導入口との間の吸気通路方向距離が、該第
1EGRガス導入口でのEGRガス濃度の変動と該第2
EGRガス導入口でのEGRガス濃度の変動との干渉に
よって、該第2EGRガス導入口より下流側におけるE
GRガス濃度の変動が低減されるように設定されてい
る、ようにしてある。上記第1の解決手法を前提とした
好ましい態様は、特許請求の範囲における請求項2およ
び請求項17以下に記載のとおりである。
In order to achieve the above object, the present invention has a first solution as follows. That is, as described in claim 1 of the claims, the first EGR gas inlet is opened in the intake passage for supplying intake air to the plurality of cylinders, and the intake passage is located downstream of the intake passage in the intake flow direction. Second EGR on the side
A gas inlet is opened, and the distance between the first EGR gas inlet and the second EGR gas inlet in the direction of the intake passage is determined by the change in the EGR gas concentration at the first EGR gas inlet and the second EGR gas.
Due to interference with fluctuations in the EGR gas concentration at the EGR gas inlet, E at the downstream side of the second EGR gas inlet is reduced.
It is set so that the fluctuation of the GR gas concentration is reduced. Preferred embodiments based on the first solution are as described in claims 2 and 17 and the following claims.

【0007】前記目的を達成するため、本発明はその第
2の解決手法として次のようにしてある。すなわち、特
許請求の範囲における請求項3に記載のように、
In order to achieve the above object, the present invention is as follows as a second solution. That is, as described in claim 3 of the claims,

【0008】エンジンに供給する燃料量を制御する燃料
制御手段と、吸入空気量を検出する吸入空気量検出手段
と、EGRガス量を調整するEGRバルブと、前記燃料
制御手段によってエンジンに実際に供給される燃料量と
前記吸入空気量検出手段で検出される実際の吸入空気量
とに基づいて得られる実際の空燃比が所定の目標空燃比
となるように、前記EGRバルブを制御するEGR制御
手段と、備えたエンジンの排気還流装置において、複数
の気筒に対して吸気を供給するための吸気通路に、第1
EGRガス導入口入開口されると共に、吸気通路の吸気
流れ方向下流側において第2EGRガス導入口が開口さ
れ、前記第1EGRガス導入口の中心と第2EGRガス
導入口の中心との間での中心間吸気通路容積をV、1つ
の気筒の吸気充填量をα、nを0を含む整数としたと
き、 n×α+α/3≦V≦n×α+2α/3 の関係式を満足するように設定されている、ようにして
ある。上記第2の解決手法を前提とした好ましい態様
は、特許請求の範囲における請求項4以下に記載のとお
りである。
Fuel control means for controlling the amount of fuel supplied to the engine, intake air amount detecting means for detecting the amount of intake air, an EGR valve for adjusting the amount of EGR gas, and actual supply to the engine by the fuel control means EGR control means for controlling the EGR valve such that an actual air-fuel ratio obtained based on the measured fuel amount and the actual intake air amount detected by the intake air amount detection means becomes a predetermined target air-fuel ratio. In the exhaust gas recirculation system for an engine provided with the first passage, an intake passage for supplying intake air to a plurality of cylinders is provided.
The EGR gas inlet is opened and the second EGR gas inlet is opened downstream of the intake passage in the direction of intake air flow, and the center between the center of the first EGR gas inlet and the center of the second EGR gas inlet is opened. Assuming that the inter-intake passage volume is V, the intake filling amount of one cylinder is α, and n is an integer including 0, it is set so as to satisfy the relational expression of n × α + α / 3 ≦ V ≦ n × α + 2α / 3. That's right. Preferred embodiments based on the second solution are as described in Claims 4 and the following claims.

【0009】[0009]

【発明の効果】請求項1によれば、両EGRガス導入口
から吸気通路へ導入されるEGRガス量のそれぞれの変
動を利用した干渉作用によって、第2EGRガス導入口
から下流側でのEGRガス濃度の変動を低減して、各気
筒間でのEGRガス濃度の相違を低減することができ
る。請求項2によれば、各気筒それぞれについて、実際
の空燃比が目標空燃比となるように正確に制御する上で
好ましいものとなる。
According to the first aspect of the present invention, the EGR gas downstream from the second EGR gas inlet is provided by an interference effect utilizing the respective fluctuations in the amount of the EGR gas introduced from both EGR gas inlets into the intake passage. The variation in the concentration can be reduced, and the difference in the EGR gas concentration between the cylinders can be reduced. According to the second aspect, it is preferable to accurately control each cylinder so that the actual air-fuel ratio becomes the target air-fuel ratio.

【0010】請求項3によれば、請求項2に対応した効
果を得るためのより具体的な解決手法が提供される。請
求項4によれば、請求項3よりもより具体的な解決手法
が提供される。
According to the third aspect, a more specific solution for obtaining the effect corresponding to the second aspect is provided. According to claim 4, a more specific solution than claim 3 is provided.

【0011】請求項5によれば、両EGRガス導入口か
らのEGRガス導入量をほぼ等しくして、干渉を利用し
たEGRガス濃度の変動を十分低減する上で好ましいも
のとなる。請求項6によれば、両EGRガス導入口から
のEGRガス量調整を、1つのEGRバルブを制御する
のみで行うことができる。請求項7によれば、EGRガ
スは吸気通路の上流側よりも下流側の方が導入され易い
ものとなるが、2つのEGRガス導入口の有効開口面積
の大小設定を行うという簡単な手法によりこの2つのE
GRガス導入口からのEGRガス導入量をほぼ等しくし
て、干渉を利用EGRガス濃度の変動を十分に低減する
上で好ましいものとなる。また、2つの接続管の管径を
互いに等しくすることによって、接続管を管径によて区
別する管理が不要となり、しかも接続管の接続間違えと
いう事態の発生も生じないものとなる。
According to the fifth aspect, the amount of EGR gas introduced from both EGR gas inlets is made substantially equal, which is preferable in that fluctuations in EGR gas concentration utilizing interference are sufficiently reduced. According to the sixth aspect, the adjustment of the EGR gas amount from both the EGR gas inlets can be performed only by controlling one EGR valve. According to the seventh aspect, the EGR gas is more easily introduced on the downstream side than on the upstream side of the intake passage, but by a simple method of setting the effective opening area of the two EGR gas introduction ports to be large or small. These two E
This is preferable in that the amount of EGR gas introduced from the GR gas inlet is made substantially equal and interference is utilized to sufficiently reduce fluctuations in EGR gas concentration. Further, by making the pipe diameters of the two connection pipes equal to each other, it is not necessary to manage the connection pipes according to the pipe diameters, and it is possible to prevent the connection pipe from being connected incorrectly.

【0012】請求項8によれば、EGRガスが導入され
易い下流側の第2EGRガス導入口に対して制御弁を設
けて、EGRガス量低減を応答よく行う上で好ましいも
のとなる。請求項9によれば、エンジン加速時において
応答よくEGRガスを低減して、加速性を十分満足させ
る上で、また加速時のパテキュレート成分増大を応答よ
く防止する上で好ましいものとなる。
According to the eighth aspect, a control valve is provided for the second EGR gas inlet on the downstream side where EGR gas is easily introduced, which is preferable in that the amount of EGR gas can be reduced with good response. According to the ninth aspect, it is preferable to reduce the EGR gas responsively when the engine is accelerated, to sufficiently satisfy the acceleration performance, and to prevent the increase in the particulate component during the acceleration responsively.

【0013】請求項10によれば、容積拡大室となるサ
−ジタンクを利用して、各気筒間でのEGRガス濃度の
相違をより一層低減することができる。請求項11によ
れば、2つのEGRガス導入口からの導入されたEGR
ガスの吸気通路内での偏在態様を吸気通路の周方向でほ
ぼ同一位置として、すなわち2つのEGRガス導入口か
ら導入されたEGRガスを互いに十分に混ざり合うよう
にして、EGRガス濃度の変動を低減する上で好ましい
ものとなる。
According to the tenth aspect, the difference in the EGR gas concentration between the cylinders can be further reduced by using the surge tank serving as the volume expansion chamber. According to claim 11, EGR introduced from two EGR gas inlets
The uneven distribution of the gas in the intake passage is set at substantially the same position in the circumferential direction of the intake passage, that is, the EGR gas introduced from the two EGR gas introduction ports is sufficiently mixed with each other to reduce the fluctuation of the EGR gas concentration. This is preferable in terms of reduction.

【0014】請求項12によれば、空燃比制御のために
1つのEGRバルブのみを制御しつつ、リフト量が小さ
くされて応答性の優れた制御弁を制御することにより全
体のEGRガス量を応答よく変化させることができる。
請求項13によれば、請求項9に対応した効果と同様の
効果を得ることができる。
According to the twelfth aspect, while controlling only one EGR valve for air-fuel ratio control and controlling a control valve having a small lift amount and excellent responsiveness, the total EGR gas amount can be reduced. It can be changed responsively.
According to the thirteenth aspect, the same effect as the effect corresponding to the ninth aspect can be obtained.

【0015】請求項14によれば、排圧の変動を極力小
さくして、EGRガス濃度の変動をより一層低減する上
で好ましいものとなる。請求項15によれば、EGRク
ーラの有する大きな容積を利用して、EGR通路内の圧
力変動を極力低減して、EGRガス濃度の変動をより一
層低減する上で好ましいものとなる。請求項16によれ
ば、レゾナンスチャンバを利用して、EGR通路内の圧
力変動を低減してEGRガス濃度の変動をより一層低減
しつつ、EGR通路全体の容積が実質的に大きく拡大さ
れるのを防止してEGRガス量を応答よく変化させる上
で好ましいものとなる。
According to the fourteenth aspect, it is preferable to minimize the fluctuation of the exhaust pressure to further reduce the fluctuation of the EGR gas concentration. According to the fifteenth aspect, the pressure fluctuation in the EGR passage is reduced as much as possible by utilizing the large volume of the EGR cooler, which is preferable for further reducing the fluctuation of the EGR gas concentration. According to the sixteenth aspect, the volume of the whole EGR passage is substantially greatly expanded while reducing the fluctuation of the pressure in the EGR passage by using the resonance chamber to further reduce the fluctuation of the EGR gas concentration. This is preferable in that the EGR gas amount is prevented from changing and the EGR gas amount is changed with good response.

【0016】請求項17によれば、燃費向上の上で有利
となる直噴式ディ−ゼルエンジンにおいて、各気筒毎の
EGRガス濃度の相違を低減することができる。請求項
18によれば、高圧燃料噴射を行いつつ、燃料噴射時期
と燃料噴射量とを精度よく制御することができる。請求
項19によれば、2つのEGRガス導入口から導入され
るEGRガスの干渉を有効に利用して、EGRガス濃度
の変動をより十分に防止する上で好ましいものとなる。
According to the seventeenth aspect, in the direct injection diesel engine which is advantageous in improving fuel efficiency, it is possible to reduce the difference in the EGR gas concentration for each cylinder. According to the eighteenth aspect, it is possible to accurately control the fuel injection timing and the fuel injection amount while performing high-pressure fuel injection. According to the nineteenth aspect, it is preferable to effectively utilize the interference of the EGR gas introduced from the two EGR gas introduction ports to more sufficiently prevent the fluctuation of the EGR gas concentration.

【0017】[0017]

【発明の実施の形態】図1において、1はエンジンで、
2はその燃焼室、3はピストン、4は吸気ポ−ト、5は
吸気弁、6は排気ポ−ト、7は排気弁である。エンジン
1は、実施形態では、直列4気筒の4サイクル直噴式デ
ィ−ゼルエンジンとされている。このため、燃焼室2に
直接燃料を噴射する燃料噴射弁8が設けられている。こ
の各気筒の燃料噴射弁8はそれぞれ、コモンレール9に
個々独立して接続されて、このコモンレール9内は、燃
料噴射ポンプPからの高圧燃料が常時貯溜されている。
燃料噴射弁8は、電子式にその開弁タイミングと開弁量
とが制御されるもので、開弁タイミングを制御すること
によって燃料噴射時期が制御され、開弁量を制御するこ
とによって燃料噴射量が制御される。なお、燃料噴射量
は、例えばエンジン回転数とエンジン負荷としての例え
ばアクセル開度とをパラメ−タとして決定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 denotes an engine,
2 is a combustion chamber, 3 is a piston, 4 is an intake port, 5 is an intake valve, 6 is an exhaust port, and 7 is an exhaust valve. In the embodiment, the engine 1 is an in-line four-cylinder four-cycle direct injection diesel engine. Therefore, a fuel injection valve 8 for directly injecting fuel into the combustion chamber 2 is provided. The fuel injection valves 8 of the respective cylinders are independently connected to a common rail 9, and the high pressure fuel from the fuel injection pump P is constantly stored in the common rail 9.
The fuel injection valve 8 has an electronically controlled valve opening timing and valve opening amount. The fuel injection timing is controlled by controlling the valve opening timing, and the fuel injection timing is controlled by controlling the valve opening amount. The amount is controlled. The fuel injection amount is determined using, for example, an engine speed and an accelerator opening as an engine load as parameters.

【0018】10は吸気通路であり、この吸気通路10
には、その上流側から下流側へ順次、エアクリーナ1
1、吸入空気量検出手段としてのエアフロ−メ−タ1
2、排気ターボ式過給機13のコンプレッサホイール1
3a、インタ−ク−ラ14、サ−ジタンク15が接続さ
れている。サ−ジタンク15と各気筒(の吸気ポ−ト
4)とは、個々独立した独立吸気通路16によって接続
されている。このように、吸気通路10は、エアクリー
ナ11からサ−ジタンク15に至るまでの部分が、各気
筒つまり複数の気筒に共通な1本の共通吸気通路とさ
れ、サ−ジタンク15よりもエンジン1側が各気筒に対
して個々独立して設けられた独立吸気通路(分岐吸気通
路)とされている。
Reference numeral 10 denotes an intake passage.
, The air cleaner 1 in order from the upstream side to the downstream side.
1. Air flow meter 1 as intake air amount detecting means
2. The compressor wheel 1 of the turbocharger 13
3a, an intercooler 14, and a surge tank 15 are connected. The surge tank 15 and each of the cylinders (the intake port 4) are connected by independent independent intake passages 16. As described above, the portion of the intake passage 10 from the air cleaner 11 to the surge tank 15 is a single common intake passage common to each cylinder, that is, a plurality of cylinders. Independent intake passages (branch intake passages) are provided independently for each cylinder.

【0019】20は排気通路であり、この排気通路には
10には、その上流側から順次、排気タ−ボ過給機13
のタービンホイール13b、排気ガス浄化触媒(実施形
態では酸化触媒)21が接続されている。排気通路10
のうち、タービンホイール13bよりも上流側つまりエ
ンジン1側において、1本のEGR通路(共通EGR通
路)30が導出されている。このEGR通路30は、そ
の下流側において2本に分岐されて、各分岐EGR通路
31、32が、EGRガス導入口31aあるいは32a
として、インタ−ク−ラ14とサ−ジタンク15との間
の吸気通路に10に開口されている。分岐EGR通路3
1、32よりも上流側となる共通EGR通路30には、
排気通路20側より順次、EGRクーラ33、レゾナン
スチャンバ35、EGRバルブ34が接続されている。
Reference numeral 20 denotes an exhaust passage. The exhaust passage 10 has an exhaust turbocharger 13 sequentially from its upstream side.
And an exhaust gas purification catalyst (an oxidation catalyst in the embodiment) 21 are connected. Exhaust passage 10
Among them, one EGR passage (common EGR passage) 30 is led upstream of the turbine wheel 13b, that is, on the engine 1 side. The EGR passage 30 is branched into two at the downstream side, and each of the branched EGR passages 31 and 32 is connected to an EGR gas inlet 31a or 32a.
The opening 10 is provided in an intake passage between the intercooler 14 and the surge tank 15. Branch EGR passage 3
In the common EGR passage 30, which is located on the upstream side of the first and the second 32,
An EGR cooler 33, a resonance chamber 35, and an EGR valve 34 are sequentially connected from the exhaust passage 20 side.

【0020】図2にも示すように、吸気通路10のうち
EGRガス導入口31a、32aが開口されている部分
は、全体としてほぼ直線状(実施形態では完全な直線)
に形成されている。また、両EGRガス導入口31a、
32aは互いに、吸気通路10の周方向ほぼ同一位置
(実施形態では完全に同一位置)に形成されている。つ
まり、上流側のEGRガス導入口31aから導入された
EGRガスが、下流側のEGRガス導入口32aから導
入されるEGRガスと十分に混合されるようにされてい
る。
As shown in FIG. 2, the portion of the intake passage 10 where the EGR gas inlets 31a and 32a are open is substantially straight as a whole (completely straight in the embodiment).
Is formed. Also, both EGR gas inlets 31a,
32a are formed at substantially the same position in the circumferential direction of the intake passage 10 (completely the same position in the embodiment). That is, the EGR gas introduced from the upstream EGR gas inlet 31a is sufficiently mixed with the EGR gas introduced from the downstream EGR gas inlet 32a.

【0021】図2に、各分岐EGR通路31、32の詳
細が示される。この図2において、EGRガス導入口3
1a、32aは、吸気通路10の管壁に開口として形成
されている。導入口31a(32a)に対して、接続部
材41、42(44、45)を利用して接続管31A
(32A)を接続することにより、分岐EGR通路31
あるいは32が構成されている。すなわち、上記導入口
31aの内周に形成された雌ねじ部40に対して、接続
部材としての筒状の接続フランジ部材41が螺合され、
この接続フランジ部材41に形成された雄ねじ部41a
に螺合された接続用ナット部材42によって、上記接続
管31Aが接続用フランジ部材41に接続されている。
同様に、上記導入口32aの内周に形成された雌ねじ部
43に対して、接続部材としての筒状の接続フランジ部
材44が螺合され、この接続フランジ部材44に形成さ
れた雄ねじ部44aに螺合された接続用ナット部材45
によって、上記接続管31Bが接続用フランジ部材44
に接続されている。
FIG. 2 shows details of the branch EGR passages 31, 32. In FIG. 2, the EGR gas inlet 3
1 a and 32 a are formed as openings in the pipe wall of the intake passage 10. The connecting pipe 31A is connected to the inlet 31a (32a) by using the connecting members 41, 42 (44, 45).
(32A), the branch EGR passage 31
Alternatively, 32 is configured. That is, a cylindrical connection flange member 41 as a connection member is screwed to the female screw portion 40 formed on the inner periphery of the introduction port 31a,
Male thread portion 41a formed on this connection flange member 41
The connection pipe 31 </ b> A is connected to the connection flange member 41 by the connection nut member 42 screwed into the connection pipe 31.
Similarly, a cylindrical connection flange member 44 as a connection member is screwed into the female screw portion 43 formed on the inner periphery of the introduction port 32a, and the male screw portion 44a formed on the connection flange member 44 is screwed. Connection nut member 45 screwed
Thereby, the connection pipe 31B is connected to the connection flange member 44.
It is connected to the.

【0022】下流側のEGRガス導入口32aの有効開
口面積が、上流側のEGRガス導入口31aの有効開口
面積よりも小さく設定されている。また、両接続管31
Aと32Aとの管径は互いに等しくされている。これに
より、両EGRガス導入口31aと32aとからのEG
Rガス導入量が、互いにほぼ等しくされる。すなわち、
吸気通路10内の圧力は下流側ほど低くてEGRガスが
導入され易くなるが、上述のように下流側の導入口32
aの有効開口面積を小さく(下流側の分岐EGR通路3
2の通路抵抗を大きくする)ことにより、両EGRガス
導入口31aと32aとからのEGRガス導入量がほぼ
等しくされることになる。なお、下流側の接続管32A
の管径を上流側の接続管31Aの管径よりも小さくする
ことにより、その通路抵抗を相違させて、導入口31a
と32aとからのEGRガス導入量がほぼ等しくなるよ
うにすることも可能である。
The effective opening area of the downstream EGR gas inlet 32a is set smaller than the effective opening area of the upstream EGR gas inlet 31a. In addition, both connecting pipes 31
The pipe diameters of A and 32A are equal to each other. Thereby, EG from both EGR gas introduction ports 31a and 32a is
The R gas introduction amounts are made substantially equal to each other. That is,
The pressure in the intake passage 10 becomes lower toward the downstream side, so that the EGR gas is easily introduced.
a (a downstream EGR passage 3 on the downstream side)
2), the amounts of EGR gas introduction from the two EGR gas introduction ports 31a and 32a are made substantially equal. The downstream connection pipe 32A
Is made smaller than the pipe diameter of the upstream connection pipe 31A, so that the passage resistance is made different and the inlet port 31a is formed.
It is also possible to make the amounts of EGR gas introduction from and 32a substantially equal.

【0023】図4の(a)には、排圧および吸気圧の変
化する様子(変動つまり脈動)が示され、図4の(b)
にはEGRガスの吸引作用をなす排圧と吸気圧との差圧
が変化する様子が示される。このように、上記差圧はク
ランク角の変化に応じて周期的に変動されるが、これに
より、各EGRガス導入口31a、32aから導入され
るEGRガス量も変化され、この結果、各導入口31
a、32aから導入された直後のEGRガスの吸気通路
10内でのEGRガス濃度も、図5に示すようにかなり
大きく変動される。
FIG. 4A shows how the exhaust pressure and the intake pressure change (fluctuation, that is, pulsation), and FIG.
FIG. 7 shows a state in which the differential pressure between the exhaust pressure and the intake pressure that performs the suction action of the EGR gas changes. As described above, the differential pressure is periodically changed in accordance with the change in the crank angle. As a result, the amount of the EGR gas introduced from each of the EGR gas introduction ports 31a and 32a is also changed. Mouth 31
The EGR gas concentration in the intake passage 10 of the EGR gas immediately after being introduced from a and 32a also fluctuates considerably as shown in FIG.

【0024】いま、下流側のEGRガス導入口32a部
分でのEGRガス濃度が高い(濃い)タイミングのとき
に、上流側のEGRガス導入口31aからのEGRガス
濃度が低い(薄い)吸気が下流側導入口31a部分に丁
度到達すれば、下流側導入口32aよりも下流側のEG
Rガス濃度の変動は、図6に示すように小さいものとな
る。このことは、下流側導入口32aのEGRガス濃度
が低いタイミングのときに、上流側導入口31aからの
EGRガス濃度が高い吸気が下流側導入口31a部分に
丁度到達したときも同様である。つまり、上流側導入口
31aでのEGRガス濃度の変動と、下流側EGRガス
導入口32aでのEGRガス濃度の変動とを干渉させる
ことにより、下流側導入口32aよりも下流側でのEG
Rガス濃度の変動を小さくすることが可能となる。
At the time when the EGR gas concentration at the downstream EGR gas inlet 32a is high (high), the intake air having a low (thin) EGR gas concentration from the upstream EGR gas inlet 31a flows downstream. When the EG reaches the side inlet 31a, the EG downstream of the downstream inlet 32a.
The fluctuation of the R gas concentration becomes small as shown in FIG. This is the same when the intake air having a high EGR gas concentration from the upstream inlet 31a has just reached the downstream inlet 31a at the timing when the EGR gas concentration at the downstream inlet 32a is low. That is, by causing the fluctuation of the EGR gas concentration at the upstream inlet 31a and the fluctuation of the EGR gas concentration at the downstream EGR gas inlet 32a to interfere with each other, the EG at the downstream side of the downstream inlet 32a is interfered with.
It is possible to reduce the fluctuation of the R gas concentration.

【0025】EGRガス濃度変動を小さくするための上
記干渉を得るために、両導入口31aと32aとでのE
GRガス濃度の変動の周期をずらせばよい。すなわち、
両導入口31aと32aとの中心間の距離L部分に相当
する吸気通路10の容積が、1気筒あたりの吸気充填量
の1/3〜2/3の範囲となるように設定することによ
り、干渉によるEGRガス濃度の変動低減を十分得るこ
とが可能となる(周期のずれが小さすぎると、EGRガ
ス濃度変動の低減効果が小さいものとなってしまう)。
図7には、周期のずれと、EGRガス濃度の変動の振幅
との関係を示してあり、完全な干渉となる1/2周期の
ずれを理想のずれとして、EGRガス濃度の変動幅(振
幅)を半分に低減するには、ずれを1/3周期〜2/3
周期の範囲に設定すればよい。
In order to obtain the above-mentioned interference for reducing the EGR gas concentration fluctuation, E at both the inlets 31a and 32a is required.
What is necessary is just to shift the cycle of the fluctuation of the GR gas concentration. That is,
By setting the volume of the intake passage 10 corresponding to the distance L between the centers of the two inlets 31a and 32a to be in the range of 1/3 to 2/3 of the intake charge per cylinder, It is possible to sufficiently reduce the fluctuation of the EGR gas concentration due to the interference (if the shift of the cycle is too small, the effect of reducing the fluctuation of the EGR gas concentration will be small).
FIG. 7 shows the relationship between the period shift and the amplitude of the fluctuation of the EGR gas concentration. The deviation of the EGR gas concentration (the amplitude) ) Is reduced by half, the deviation is reduced from 1/3 period to 2/3.
What is necessary is just to set it in the range of a period.

【0026】前述した干渉によるEGRガス濃度の変動
低減を得るために必要な両導入口31aと32aとの中
心間距離Lの具体的な設定は、次のようにされる。ま
ず、エンジン1の1気筒あたりの吸気充填量をα(α=
1気筒あたりの行程容積×体積効率)とすると、周期を
1/2周期ずらすためには、両導入口31aと32aと
の間の中心間容積Vが、『V=α/2』関係を満足すれ
ばよく、1/3周期〜2/3周期をずらすには、『α/
3≦V≦2α/3』の関係を満足すればよい。
The specific setting of the center-to-center distance L between the two inlets 31a and 32a, which is necessary to obtain a reduction in the fluctuation of the EGR gas concentration due to the interference described above, is as follows. First, the intake charge amount per cylinder of the engine 1 is defined as α (α =
Assuming that (stroke volume per cylinder × volume efficiency), in order to shift the cycle by 周期 cycle, the center-to-center volume V between the two inlets 31a and 32a satisfies the relation “V = α / 2”. In order to shift from 1/3 cycle to 2/3 cycle, "α /
3 ≦ V ≦ 2α / 3 ”.

【0027】吸気通路10の直径をDとすれば、『V=
(πD2 /4)・L』となるので、1/2周期ずらすに
は、『L=2α/πD2 』とすればよく、1/3周期〜
2/3周期をずらすには、『4α/3πD2 ≦V≦8α
/3πD2 』の関係を満足すればよい。このような関係
を満足させると、通常のエンジンでは、中心間距離Lは
管径Dよりも大きいものとなる。
Assuming that the diameter of the intake passage 10 is D, "V =
Since the (πD 2/4) · L ", the shifted 1/2 period," L = 2α / πD 2 "Tosureba well, 1/3 cycle -
To shift the 2/3 cycle, "4α / 3πD 2 ≦ V ≦ 8α
/ 3πD 2 ”. When such a relationship is satisfied, the center distance L is larger than the pipe diameter D in a normal engine.

【0028】上記説明は、容積Vを最小容積とする場合
のものであり、『n・α+α/3≦V≦n・α+2α/
3』、『n・α+4α/3πD2 ≦V≦n・α+8α/
3πD2 』であればよい(n=0、1、2、3・・・
で、零を含む整数)。
The above description is for the case where the volume V is set to the minimum volume, and "n · α + α / 3 ≦ V ≦ n · α + 2α /
3], “n · α + 4α / 3πD 2 ≦ V ≦ n · α + 8α /
3πD 2 ”(n = 0, 1, 2, 3,...).
, With integers including zero).

【0029】次に、EGRバルブ3部分の詳細につい
て、図3を参照しつつ説明する。まず、EGRバルブ3
は、負圧作動式とされて、ダイヤフラム34aにより画
成された室34bを有する。室34bの負圧が大きいほ
ど、ダイヤフラム34aに連結された弁体34cの弁座
34eからの離間距離が大きくされ(開度大)、室34
bの負圧を解放することにより、リタ−ンスプリング3
4dによって弁体34cが弁座34eに着座される(閉
弁)。
Next, details of the EGR valve 3 will be described with reference to FIG. First, the EGR valve 3
Has a chamber 34b which is operated under negative pressure and is defined by a diaphragm 34a. As the negative pressure of the chamber 34b is larger, the distance between the valve body 34c connected to the diaphragm 34a and the valve seat 34e is increased (the degree of opening is larger).
By releasing the negative pressure of b, the return spring 3
The valve body 34c is seated on the valve seat 34e by 4d (closed).

【0030】室34bの圧力が、圧力制御弁51によっ
て制御される。圧力制御弁51は、弁体51aと、弁体
51aを駆動するコイル51bを有する。弁体51a
は、負圧源としてのバキュームポンプ38から伸びる負
圧通路39と、前記室34bから伸びる通路38との連
通度合いを調整する(通路38の通路39と大気への連
通割合の調整)。室34bに連なる通路38には、大気
圧または過給圧を導入するための通路53が接続され、
この通路53には開閉弁(ON/OFF弁)52が接続
されている。通路38のうち、通路53よりも圧力制御
弁51側の有効開口面積は、通路53の有効開口面積よ
りも十分小さくされている。
The pressure in the chamber 34b is controlled by a pressure control valve 51. The pressure control valve 51 has a valve element 51a and a coil 51b for driving the valve element 51a. Valve element 51a
Adjusts the degree of communication between the negative pressure passage 39 extending from the vacuum pump 38 as a negative pressure source and the passage 38 extending from the chamber 34b (adjustment of the ratio of the passage 38 of the passage 38 to the atmosphere). A passage 53 for introducing atmospheric pressure or supercharging pressure is connected to the passage 38 connected to the chamber 34b,
An on-off valve (ON / OFF valve) 52 is connected to the passage 53. The effective opening area of the passage 38 on the pressure control valve 51 side of the passage 53 is sufficiently smaller than the effective opening area of the passage 53.

【0031】開閉弁52を閉じた状態で、圧力制御弁5
1により通路38と39との連通度合いを調整すること
によって、EGRバルブ34の室34bの負圧の大きさ
が調整されて、EGRバルブ34の開度調整が行われ
る。圧力制御弁51によって通路38と39との連通を
遮断した状態で、開閉弁52を開くことにより、室34
bに応答よく大気圧以上の大きさの圧力(制圧)が導入
されて、EGRバルブ34が応答よく閉弁される。この
EGRバルブ34の応答のよい閉弁は、例えばエンジン
の加速時に行われる。
With the on-off valve 52 closed, the pressure control valve 5
By adjusting the degree of communication between the passages 38 and 39 by 1, the magnitude of the negative pressure in the chamber 34 b of the EGR valve 34 is adjusted, and the opening of the EGR valve 34 is adjusted. By opening the on-off valve 52 in a state where the communication between the passages 38 and 39 is interrupted by the pressure control valve 51, the chamber 34 is opened.
The pressure (pressure suppression) having a magnitude equal to or higher than the atmospheric pressure is introduced in response to b, and the EGR valve 34 is closed in response. The close of the EGR valve 34 with good response is performed, for example, when the engine is accelerated.

【0032】ここで、EGRバルブ34の開度は、エン
ジンに供給される吸気の実際の空燃比、つまり燃料噴射
弁8からの燃料噴射量に対する吸入空気量(EGRガス
を含まない新規な吸入空気量)の割合となる空燃比が、
所定の目標空燃比となるようにフィ−ドバック制御され
る。すなわち、吸気通路10には、吸入空気量を調整す
るためのスロットル弁が存在しないために、吸気通路1
0へのEGRガス導入量を調整することによって、実際
の空燃比が目標空燃比となるように制御される。なお、
目標空燃比は、エンジンの運転状態、例えばエンジン回
転数とアクセル開度とをパラメ−タとしてあらかじめマ
ップ化(記憶)されている。
Here, the opening degree of the EGR valve 34 is determined by the actual air-fuel ratio of the intake air supplied to the engine, that is, the amount of intake air with respect to the amount of fuel injected from the fuel injection valve 8 (new intake air not including EGR gas). Amount) is the air-fuel ratio
Feedback control is performed so as to achieve a predetermined target air-fuel ratio. That is, since there is no throttle valve for adjusting the amount of intake air in the intake passage 10, the intake passage 1
By adjusting the EGR gas introduction amount to zero, the actual air-fuel ratio is controlled so as to become the target air-fuel ratio. In addition,
The target air-fuel ratio is mapped (stored) in advance using the operating state of the engine, for example, the engine speed and the accelerator opening as parameters.

【0033】図8は、実際の空燃比を目標空燃比とする
ためのフィ−ドバック制御系の一例を示すものである
(燃料噴射量制御や目標空燃比とする制御を行うための
マイクロコンピュ−タを利用して構成されたコントロ−
ラの機能のうち、目標空燃比とするためのEGRバルブ
制御部分をブロック図的に示すもの)。すなわち、フィ
−ドバック制御によって、EGRバルブ34の目標開度
(目標開口面積)が、目標空燃比とするために必要な目
標吸気量とエアフロ−メ−タ12によって検出された実
際の吸気量との差分に応じて、PI制御によって演算さ
れる。このPI制御によって得られるEGRバルブ34
の開閉速度の特性が図9のように設定されており、これ
により、図10に示すように、EGRバルブの開口面積
の変化にかかわらず、吸入空気量変化速度に対するEG
Rバルブ開閉速度の割合となる速度比がほぼ一定とされ
る。ただし、EGRバルブ34の開度とこれを流れる吸
気量(EGRガス量)との関係が図11に示すように非
線形となっているため、EGRバルブ34の開度と上記
速度比との実際の対応関係は、図12に示すようにな
る。
FIG. 8 shows an example of a feedback control system for setting the actual air-fuel ratio to the target air-fuel ratio (a microcomputer for controlling the fuel injection amount and controlling the target air-fuel ratio). Control using data
A block diagram of an EGR valve control part for achieving the target air-fuel ratio among the functions of the above (a). That is, by the feedback control, the target opening degree (target opening area) of the EGR valve 34 is determined by the target intake air amount required for obtaining the target air-fuel ratio and the actual intake air amount detected by the air flow meter 12. Is calculated by PI control in accordance with the difference between. EGR valve 34 obtained by this PI control
The characteristics of the opening / closing speed of the EGR valve are set as shown in FIG. 9. As a result, as shown in FIG.
The speed ratio, which is the ratio of the R valve opening / closing speed, is substantially constant. However, since the relationship between the opening degree of the EGR valve 34 and the intake air amount (EGR gas amount) flowing therethrough is non-linear as shown in FIG. 11, the actual relationship between the opening degree of the EGR valve 34 and the above-mentioned speed ratio is obtained. The correspondence is as shown in FIG.

【0034】なお、燃料噴射弁8からの燃料噴射量制御
とEGRバルブ34の開度制御とは、マイクロコンピュ
−タを利用した図示を略す制御ユニット(コントロ−
ラ)によって行われ、この制御ユニットが、特許請求の
範囲におけ燃料制御手段(制御部)と、EGR制御手段
(制御部)とを構成することになり、図8はEGR制御
試飲をブロック図的に示したものである。
The control of the fuel injection amount from the fuel injection valve 8 and the control of the opening of the EGR valve 34 are performed by a control unit (controller, not shown) using a microcomputer.
This control unit constitutes a fuel control unit (control unit) and an EGR control unit (control unit) in the claims, and FIG. 8 is a block diagram showing the EGR control tasting. It is shown in a typical manner.

【0035】図13は、本発明の別の実施形態を示すも
のであり、前記実施形態と同一要素には同一符号を付し
てその重複した説明は省略する(このことは、以下のさ
らに別の実施形態についても同じ)。この図13は、図
2に対応したもので、図2との相違点は、下流側のEG
R通路32に対して、開閉制御弁55(第2EGRバル
ブと考えることもできる)を接続した点にある。この制
御弁55の全開リフト量が、負圧作動式のEGRバルブ
34の全開リフト量よりも小さくされて、全閉にすると
きの応答性に優れたものとなっている。すなわち、所定
運転状態、例えば大きなエンジン出力が要求される加速
時に、制御弁55を応答よく閉じることにより、応答よ
くEGRガス量を低減させることができる。勿論、加速
時に、EGRバルブ34も閉方向へ駆動することもでき
るが(全閉としても可)、制御弁55の応答のよい閉弁
作用によって、EGRガス量を応答よく低減させること
ができる。
FIG. 13 shows another embodiment of the present invention, in which the same elements as those of the above embodiment are denoted by the same reference numerals, and the duplicated description thereof will be omitted. The same applies to the embodiment described above.) FIG. 13 corresponds to FIG. 2, and the difference from FIG.
The point is that an opening / closing control valve 55 (which can be considered as a second EGR valve) is connected to the R passage 32. The fully open lift amount of the control valve 55 is made smaller than the fully open lift amount of the negative pressure operated EGR valve 34, so that the responsiveness when fully closed is excellent. That is, the EGR gas amount can be reduced responsively by closing the control valve 55 responsively in a predetermined operating state, for example, during acceleration requiring a large engine output. Of course, at the time of acceleration, the EGR valve 34 can also be driven in the closing direction (or may be fully closed). However, the responsive valve closing action of the control valve 55 can reduce the EGR gas amount with good response.

【0036】図14は、本発明のさらに別の実施形態を
示すものであり、図1のものに対応している。この図1
4のものにおいて、図1の場合に比して、排気タ−ボ過
給機13およびレゾナンスチャンバ35を有しないもの
となっている。また、図14のものでは、図12の場合
に比して、排気通路20のうちEGR通路30の導出位
置よりも上流側(エンジン1側)に、容積拡大室60を
設けたものとなっている。この容積拡大室60を設ける
ことによって、EGR通路30での排圧変動が小さいも
のとなって、排圧と吸気圧との差圧も小さいものとなり
(図15参照)、EGRガス濃度の変動を低減する上で
好ましいものとなる。。
FIG. 14 shows still another embodiment of the present invention, and corresponds to FIG. This figure 1
4, the exhaust turbocharger 13 and the resonance chamber 35 are not provided as compared with the case of FIG. Further, in the case of FIG. 14, the volume expansion chamber 60 is provided in the exhaust passage 20 on the upstream side (the engine 1 side) of the exhaust passage of the EGR passage 30 as compared with the case of FIG. I have. By providing the volume expansion chamber 60, the fluctuation of the exhaust pressure in the EGR passage 30 is reduced, the differential pressure between the exhaust pressure and the intake pressure is also reduced (see FIG. 15), and the fluctuation of the EGR gas concentration is reduced. This is preferable in terms of reduction. .

【0037】以上実施形態について説明したが、本発明
はこれに限らず、例えば次のような場合をも含むもので
ある。エンジン1としては、ディ−ゼルエンジンに限ら
ず、ガソリンエンジンで代表されるような火花点火式エ
ンジンであってもよい。吸気通路10へのEGRガスの
導入位置は、複数気筒共通用の吸気通路部分であれば任
意に選択することができる。
Although the embodiment has been described above, the present invention is not limited to this, and includes, for example, the following case. The engine 1 is not limited to a diesel engine, but may be a spark ignition engine represented by a gasoline engine. The introduction position of the EGR gas into the intake passage 10 can be arbitrarily selected as long as it is an intake passage portion for a plurality of cylinders.

【0038】EGRバルブを2つの分岐(独立)EGR
通路31、32の両方にそれぞれ設けて、各EGRバル
ブを個々独立して制御するようにしてもよい(EGRバ
ルブが小型となるため、応答性の点で有利となる)。本
発明の目的は、明記されたものに限らず、実質的に好ま
しいあるいは利点として表現されたものを提供すること
をも暗黙的に含むものである。さらに、本発明は、制御
方法として表現することも可能である。
The EGR valve is divided into two branch (independent) EGR
The EGR valves may be provided in both of the passages 31 and 32 so as to control the respective EGR valves individually (the EGR valves are reduced in size, which is advantageous in terms of responsiveness). The purpose of the present invention is not limited to what is explicitly specified, but also implicitly includes providing what is substantially preferred or expressed as an advantage. Further, the present invention can be expressed as a control method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す全体系統図図。FIG. 1 is an overall system diagram showing an embodiment of the present invention.

【図2】EGRガス導入口部分を示す要部拡大断面図。FIG. 2 is an enlarged cross-sectional view of a main part showing an EGR gas inlet portion.

【図3】EGRバルブ部分の拡大系統図。FIG. 3 is an enlarged system diagram of an EGR valve portion.

【図4】排圧と吸気圧とその差圧との変動の様子を示す
図。
FIG. 4 is a diagram showing a state of fluctuations of an exhaust pressure, an intake pressure, and a differential pressure thereof.

【図5】EGRガス濃度の変動の様子を示す図。FIG. 5 is a diagram showing a state of fluctuation of an EGR gas concentration.

【図6】EGRガス濃度の変動が低減された様子を示す
図。
FIG. 6 is a diagram showing a state in which fluctuations in EGR gas concentration are reduced.

【図7】EGRガス濃度の変動周期のずれ量とEGRガ
ス濃度の変動振幅との関係を示す図。
FIG. 7 is a diagram illustrating a relationship between a shift amount of a fluctuation cycle of an EGR gas concentration and a fluctuation amplitude of an EGR gas concentration.

【図8】目標空燃比とするためのフィ−ドバック制御系
統を示す図。
FIG. 8 is a diagram showing a feedback control system for setting a target air-fuel ratio.

【図9】図8の制御内容を図式的に説明するための特性
図。
FIG. 9 is a characteristic diagram for schematically explaining the control contents of FIG. 8;

【図10】図8の制御内容を図式的に説明するための特
性図。
FIG. 10 is a characteristic diagram for schematically explaining the control contents of FIG. 8;

【図11】図8の制御内容を図式的に説明するための特
性図。
FIG. 11 is a characteristic diagram for schematically explaining the control contents of FIG. 8;

【図12】図8の制御内容を図式的に説明するための特
性図。
FIG. 12 is a characteristic diagram for schematically explaining the control contents of FIG. 8;

【図13】本発明の別の実施形態を示すもので、図2に
対応した図。
FIG. 13 is a view showing another embodiment of the present invention and corresponding to FIG. 2;

【図14】本発明のさらに別の実施形態を示すもので、
図1に対応した図。
FIG. 14 illustrates yet another embodiment of the present invention.
The figure corresponding to FIG.

【図15】図14の実施形態での圧力変動を示すもの
で、図4に対応した図。
FIG. 15 is a view showing pressure fluctuations in the embodiment of FIG. 14 and corresponding to FIG. 4;

【符号の説明】[Explanation of symbols]

1:エンジン 2:燃焼室 8:燃料噴射弁 9:コモンレール 10:吸気通路 12:エアフロ−メ−タ(吸入空気量検出手段) 15:サ−ジタンク 20:排気通路 30:EGR通路 31:分岐EGR通路(上流側) 31a:EGRガス導入口(上流側) 31A:EGR接続管 32:分岐EGR通路(下流側) 32a:EGRガス導入口(下流側) 32A:EGR接続管 33:EGRクーラ 34:EGRバルブ 35:レゾナンスチャンバ 55:制御弁 60:容積拡大室 P:ポンプ 1: engine 2: combustion chamber 8: fuel injection valve 9: common rail 10: intake passage 12: air flow meter (intake air amount detection means) 15: surge tank 20: exhaust passage 30: EGR passage 31: branch EGR Passage (upstream side) 31a: EGR gas inlet (upstream side) 31A: EGR connection pipe 32: branch EGR passage (downstream side) 32a: EGR gas inlet (downstream side) 32A: EGR connection pipe 33: EGR cooler 34: EGR valve 35: Resonance chamber 55: Control valve 60: Volume expansion chamber P: Pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林原 寛 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 荒木 啓二 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 Fターム(参考) 3G062 AA01 AA03 AA05 BA02 BA04 BA05 CA04 DA04 EA08 EB15 ED05 ED08 ED11 FA04 FA06 FA11 GA01 GA04 GA06 GA15 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Hayashibara 3-1, Fuchi-machi, Shinchu, Aki-gun, Hiroshima Mazda Co., Ltd. (72) Keiji Araki 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd. F term (reference) 3G062 AA01 AA03 AA05 BA02 BA04 BA05 CA04 DA04 EA08 EB15 ED05 ED08 ED11 FA04 FA06 FA11 GA01 GA04 GA06 GA15

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】複数の気筒に対して吸気を供給するための
吸気通路に、第1EGRガス導入口が開口されると共
に、吸気通路の吸気流れ方向下流側において第2EGR
ガス導入口が開口され、 前記第1EGRガス導入口と第2EGRガス導入口との
間の吸気通路方向距離が、該第1EGRガス導入口での
EGRガス濃度の変動と該第2EGRガス導入口でのE
GRガス濃度の変動との干渉によって、該第2EGRガ
ス導入口より下流側におけるEGRガス濃度の変動が低
減されるように設定されている、ことを特徴とするエン
ジンの排気還流装置。
A first EGR gas inlet is opened in an intake passage for supplying intake air to a plurality of cylinders, and a second EGR gas is provided downstream of the intake passage in an intake flow direction.
A gas introduction port is opened, and the distance between the first EGR gas introduction port and the second EGR gas introduction direction in the intake passage is determined by the variation of the EGR gas concentration at the first EGR gas introduction port and the second EGR gas introduction port. E
An exhaust gas recirculation device for an engine, characterized in that fluctuations in EGR gas concentration downstream of the second EGR gas inlet are reduced by interference with fluctuations in GR gas concentration.
【請求項2】請求項1において、 エンジンに供給する燃料量を制御する燃料制御手段と、 吸入空気量を検出する吸入空気量検出手段と、 EGRガス量を調整するEGRバルブと、 前記燃料制御手段によってエンジンに実際に供給される
燃料量と前記吸入空気量検出手段で検出される実際の吸
入空気量とに基づいて得られる実際の空燃比が所定の目
標空燃比となるように、前記EGRバルブを制御するE
GR制御手段と、をさらに備えていることを特徴とする
エンジンの排気還流装置。
2. The fuel control system according to claim 1, wherein: fuel control means for controlling an amount of fuel supplied to the engine; intake air amount detection means for detecting an intake air amount; an EGR valve for adjusting an EGR gas amount; The EGR so that the actual air-fuel ratio obtained based on the fuel amount actually supplied to the engine by the means and the actual intake air amount detected by the intake air amount detecting means becomes a predetermined target air-fuel ratio. E to control the valve
An exhaust gas recirculation device for an engine, further comprising: a GR control unit.
【請求項3】エンジンに供給する燃料量を制御する燃料
制御手段と、 吸入空気量を検出する吸入空気量検出手段と、 EGRガス量を調整するEGRバルブと、 前記燃料制御手段によってエンジンに実際に供給される
燃料量と前記吸入空気量検出手段で検出される実際の吸
入空気量とに基づいて得られる実際の空燃比が所定の目
標空燃比となるように、前記EGRバルブを制御するE
GR制御手段と、 を備えたエンジンの排気還流装置において、 複数の気筒に対して吸気を供給するための吸気通路に、
第1EGRガス導入口が開口されると共に、吸気通路の
吸気流れ方向下流側において第2EGRガス導入口が開
口され、 前記第1EGRガス導入口の中心と第2EGRガス導入
口の中心との間での中心間吸気通路容積をV、1つの気
筒の吸気充填量をα、nを0を含む整数としたとき、 n×α+α/3≦V≦n×α+2α/3 の関係式を満足するように設定されている、ことを特徴
とするエンジンの排気還流装置。
A fuel control means for controlling an amount of fuel supplied to the engine; an intake air amount detecting means for detecting an intake air amount; an EGR valve for adjusting an EGR gas amount; Controlling the EGR valve so that the actual air-fuel ratio obtained based on the amount of fuel supplied to the intake air and the actual amount of intake air detected by the intake air amount detection means becomes a predetermined target air-fuel ratio.
And GR control means. An exhaust gas recirculation system for an engine, comprising: an intake passage for supplying intake air to a plurality of cylinders;
The first EGR gas inlet is opened, and the second EGR gas inlet is opened on the downstream side of the intake passage in the direction of intake air flow. The center of the first EGR gas inlet and the center of the second EGR gas inlet is opened. When the center-to-center intake passage volume is V, the intake charge amount of one cylinder is α, and n is an integer including 0, the relationship is set so as to satisfy the relational expression of n × α + α / 3 ≦ V ≦ n × α + 2α / 3. An exhaust gas recirculation device for an engine.
【請求項4】請求項3において、 前記両EGRガス導入口の中心間距離が、該中心間距離
における吸気通路の管径よりも大きくなるように設定さ
れている、ことを特徴とするエンジンの排気還流装置。
4. The engine according to claim 3, wherein a center-to-center distance between the two EGR gas introduction ports is set to be larger than a pipe diameter of the intake passage at the center-to-center distance. Exhaust gas recirculation device.
【請求項5】請求項3において、 前記第1EGRガス導入口を含む該第1EGRガス導入
口用の第1EGRガス通路の最小有効開口面積よりも、
前記第2EGRガス導入口を含む第2EGRガス導入口
用の第2EGRガス通路の最小有効開口面積の方が小さ
く設定されている、ことを特徴とするエンジンの排気還
流装置。
5. The method according to claim 3, wherein the first EGR gas passage for the first EGR gas inlet including the first EGR gas inlet is smaller than a minimum effective opening area.
An exhaust gas recirculation device for an engine, wherein a minimum effective opening area of a second EGR gas passage for a second EGR gas inlet including the second EGR gas inlet is set smaller.
【請求項6】請求項5において、 排気通路より伸びる1本の共通EGR通路が、途中で2
本に分岐されて、一方の分岐EGR通路が前記第1EG
Rガス導入口に連なる前記第1EGR通路とされると共
に、他方の分岐EGR通路が前記第2EGRガス導入口
に連なる前記第2EGR通路とされ、 前記EGRバルブが、前記共通EGR通路のみに配設さ
れている、ことを特徴とするエンジンの排気還流装置。
6. A vehicle according to claim 5, wherein one common EGR passage extending from the exhaust passage is provided with two common EGR passages.
And one branch EGR passage is connected to the first EG.
The first EGR passage is connected to the R gas inlet, and the other branch EGR passage is the second EGR passage connected to the second EGR gas inlet. The EGR valve is provided only in the common EGR passage. An exhaust gas recirculation device for an engine.
【請求項7】請求項5において、 前記第1EGR通路が、前記第1EGRガス導入口と、
該第1EGRガス導入口に接続された第1EGR用接続
管とから構成され、 前記第2EGR通路が、前記第2EGRガス導入口と、
該第2EGRガス導入口に接続された第2EGR用接続
管とから構成され、 前記第1EGRガス導入口の有効開口面積よりも前記第
2EGRガス導入口の有効開口面積の方が小さく設定さ
れ、 前記第1EGR用接続管と第2EGR用接続管との管径
が互いに等しく設定されている、ことを特徴とするエン
ジンの排気還流装置。
7. The air conditioner according to claim 5, wherein the first EGR passage includes: a first EGR gas inlet;
A first EGR gas connection port connected to the first EGR gas introduction port, wherein the second EGR passage includes the second EGR gas introduction port,
A second EGR gas inlet port connected to the second EGR gas inlet port, wherein the effective opening area of the second EGR gas inlet port is set smaller than the effective opening area of the first EGR gas inlet port. An exhaust gas recirculation device for an engine, wherein the first EGR connection pipe and the second EGR connection pipe have the same diameter.
【請求項8】請求項3において、 前記第1EGRガス導入口を含む該第1EGRガス導入
口用の第1EGRガス通路と、前記第2EGRガス導入
口を含む第2EGRガス導入口用の第2EGRガス通路
とのうち、該第2EGR通路に対してのみ、エンジンが
所定運転状態のときに閉弁される制御弁が設けられてい
る、ことを特徴とするエンジンの排気還流装置。
8. The first EGR gas passage for the first EGR gas introduction port including the first EGR gas introduction port, and the second EGR gas for the second EGR gas introduction port including the second EGR gas introduction port. An exhaust gas recirculation device for an engine, wherein a control valve that is closed when the engine is in a predetermined operation state is provided only in the second EGR passage among the passages.
【請求項9】請求項8において、 前記制御弁が閉弁される前記所定運転状態が、エンジン
の加速時とされている、ことを特徴とするエンジンの排
気還流装置。
9. The exhaust gas recirculation system according to claim 8, wherein the predetermined operation state in which the control valve is closed is a time when the engine is accelerating.
【請求項10】請求項3において、 前記第2EGRガス導入口の下流側の吸気通路に、サ−
ジタンクが設けられている、ことを特徴とするエンジン
の排気還流装置。
10. The intake passage according to claim 3, wherein a suction passage is provided downstream of the second EGR gas inlet.
An exhaust gas recirculation device for an engine, comprising a fuel tank.
【請求項11】請求項3において、 吸気通路のうちほぼ直線状とされている部分に前記両E
GRガス導入口が開口され、 前記吸気通路の周方向ほぼ同一位置において、前記両E
GRガス導入口が開口されている、ことを特徴とするエ
ンジンの排気還流装置。
11. The air intake passage according to claim 3, wherein the two E-shaped portions are formed in a substantially linear portion of the intake passage.
A GR gas inlet is opened, and the two Es are provided at substantially the same position in the circumferential direction of the intake passage.
An exhaust gas recirculation device for an engine, wherein a GR gas inlet is open.
【請求項12】請求項5または請求項7において、 排気通路より伸びる1本の共通EGR通路が、途中で2
本に分岐されて、一方の分岐EGR通路が前記第1EG
Rガス導入口に連なる前記第1EGR通路とされると共
に、他方の分岐EGR通路が前記第2EGR通路に連な
る前記第2EGR通路とされ、 前記EGRバルブが、前記共通EGR通路に配設され、 前記第2EGR通路に、該第2EGR通路からのEGR
ガス量を調整するための制御弁が配設され、 前記制御弁の全開リフト量が、前記EGRバルブの全開
リフト量よりも小さく設定されている、ことを特徴とす
るエンジンの排気還流装置。
12. A vehicle according to claim 5, wherein one common EGR passage extending from the exhaust passage is provided with two common EGR passages.
And one branch EGR passage is connected to the first EG.
The first EGR passage connected to the R gas introduction port, the other branch EGR passage is the second EGR passage connected to the second EGR passage, and the EGR valve is disposed in the common EGR passage. EGR from the second EGR passage to the 2EGR passage
An exhaust gas recirculation device for an engine, further comprising a control valve for adjusting a gas amount, wherein a fully opened lift amount of the control valve is set smaller than a fully opened lift amount of the EGR valve.
【請求項13】請求項12において、 エンジンの加速時に、前記制御弁が前記EGRバルブに
優先して閉弁される、ことを特徴とするエンジンの排気
還流装置。
13. An exhaust gas recirculation system for an engine according to claim 12, wherein said control valve is closed prior to said EGR valve when the engine is accelerated.
【請求項14】請求項3において、 エンジンの排気通路のうちEGRガス取出し口よりも上
流側に、容積拡大室が設けられている、ことを特徴とす
るエンジンの排気還流装置。
14. An exhaust gas recirculation system for an engine according to claim 3, wherein a volume expansion chamber is provided in the exhaust passage of the engine upstream of the EGR gas outlet.
【請求項15】請求項3において、 前記EGRバルブ上流側のEGR通路に、EGRクーラ
が設けられている、ことを特徴とするエンジンの排気還
流装置。
15. An exhaust gas recirculation system for an engine according to claim 3, wherein an EGR cooler is provided in an EGR passage upstream of said EGR valve.
【請求項16】請求項3において、 排気ターボ式の過給機を備え、 前記EGRバルブ上流側のEGR通路に、レゾナンスチ
ャンバが接続されている、ことを特徴とするエンジンの
排気還流装置。
16. An exhaust gas recirculation system for an engine according to claim 3, further comprising a turbocharger of an exhaust turbo type, wherein a resonance chamber is connected to an EGR passage upstream of said EGR valve.
【請求項17】請求項1ないし請求項16のいずれか1
項において、 エンジンが、気筒内に直接燃料を噴射する直噴式のディ
−ゼルエンジンとされている、ことを特徴とするエンジ
ンの排気還流装置。
17. The method according to claim 1, wherein:
3. The exhaust gas recirculation device for an engine according to claim 1, wherein the engine is a direct-injection diesel engine that injects fuel directly into a cylinder.
【請求項18】請求項17において、 燃料ポンプによって高圧の燃料が供給されるコモンレー
ルが設けられて、各気筒の燃料噴射弁が該コモンレール
に接続されており、 前記燃料噴射弁は、その開弁タイミングと開弁量とが電
子的に制御される電子制御式とされている、ことを特徴
とするエンジンの排気還流装置。
18. The fuel injection valve according to claim 17, wherein a common rail to which high-pressure fuel is supplied by a fuel pump is provided, and a fuel injection valve of each cylinder is connected to the common rail. An exhaust gas recirculation device for an engine, wherein an electronic control method in which a timing and a valve opening amount are electronically controlled.
【請求項19】請求項1または請求項3において、 前記各EGRガス導入口から導入されるEGRガス量
が、互いにほぼ等しくなるように設定されている、こと
を特徴とするエンジンの排気還流装置。
19. An exhaust gas recirculation system for an engine according to claim 1, wherein the amount of EGR gas introduced from each of the EGR gas introduction ports is set to be substantially equal to each other. .
JP21143398A 1998-07-27 1998-07-27 Engine exhaust gas recirculation system Expired - Fee Related JP4099868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21143398A JP4099868B2 (en) 1998-07-27 1998-07-27 Engine exhaust gas recirculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21143398A JP4099868B2 (en) 1998-07-27 1998-07-27 Engine exhaust gas recirculation system

Publications (2)

Publication Number Publication Date
JP2000045878A true JP2000045878A (en) 2000-02-15
JP4099868B2 JP4099868B2 (en) 2008-06-11

Family

ID=16605879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21143398A Expired - Fee Related JP4099868B2 (en) 1998-07-27 1998-07-27 Engine exhaust gas recirculation system

Country Status (1)

Country Link
JP (1) JP4099868B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119567A1 (en) * 2009-04-17 2010-10-21 トヨタ自動車株式会社 Controller of internal combustion engine
WO2011025586A1 (en) * 2009-08-24 2011-03-03 General Electric Company Systems and methods for exhaust gas recirculation
JP2013113093A (en) * 2011-11-24 2013-06-10 Toyota Motor Corp Control device of exhaust gas recirculation mechanism
EP2746563A1 (en) * 2012-12-18 2014-06-25 Deere & Company An exhaust gas recirculation mixer
WO2021065723A1 (en) * 2019-09-30 2021-04-08 いすゞ自動車株式会社 Exhaust gas recirculation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119567A1 (en) * 2009-04-17 2010-10-21 トヨタ自動車株式会社 Controller of internal combustion engine
CN102046943A (en) * 2009-04-17 2011-05-04 丰田自动车株式会社 Controller of internal combustion engine
JP5099233B2 (en) * 2009-04-17 2012-12-19 トヨタ自動車株式会社 Control device for internal combustion engine
WO2011025586A1 (en) * 2009-08-24 2011-03-03 General Electric Company Systems and methods for exhaust gas recirculation
JP2013113093A (en) * 2011-11-24 2013-06-10 Toyota Motor Corp Control device of exhaust gas recirculation mechanism
EP2746563A1 (en) * 2012-12-18 2014-06-25 Deere & Company An exhaust gas recirculation mixer
US9228539B2 (en) 2012-12-18 2016-01-05 Deere & Company Exhaust gas recirculation mixer
WO2021065723A1 (en) * 2019-09-30 2021-04-08 いすゞ自動車株式会社 Exhaust gas recirculation device

Also Published As

Publication number Publication date
JP4099868B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
US5562086A (en) Control device of a varable cylinder engine
US5325828A (en) Air intake arrangement for internal combustion engine
US4924840A (en) Fast response exhaust gas recirculation (EGR) system
US5261373A (en) Engine exhaust gas recirculation system
US4523560A (en) Intake device of an internal combustion engine
JP2009513875A (en) Exhaust gas recirculation system
US20080011279A1 (en) Spark ignition type multi-cylinder engine
JPH07103050A (en) Fuel injection device for internal combustion engine
US4484549A (en) 4-Cycle internal combustion engine
JP2004324428A (en) Variable valve type internal combustion engine and control method
US5682863A (en) Evaporated fuel recovery device for engines
US7198030B2 (en) Internal combustion engine
US6584962B2 (en) Engine control, apparatus for a multicylinder engine
JP4099868B2 (en) Engine exhaust gas recirculation system
JP2000282958A (en) Exhaust gas recirculating device for internal combustion engine
EP0992663B1 (en) Control system for supercharged engine
JPH09151805A (en) E.g.r. device for diesel engine
JPH11350966A (en) Fuel injection type internal combustion engine
JPH07279698A (en) Internal combustion engine
US4365598A (en) Internal combustion engine
GB2471840A (en) Supplying pressurised EGR in an i.c. engine
JP2001295712A (en) Intake system structure of internal combustion engine with egr device
JPH0740667Y2 (en) Split operation control device for two-cycle internal combustion engine
JPH0639050Y2 (en) Intake device for multi-cylinder internal combustion engine
JP2003161155A (en) Intake system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees