JPH1030446A - Supercharger for engine - Google Patents

Supercharger for engine

Info

Publication number
JPH1030446A
JPH1030446A JP8187689A JP18768996A JPH1030446A JP H1030446 A JPH1030446 A JP H1030446A JP 8187689 A JP8187689 A JP 8187689A JP 18768996 A JP18768996 A JP 18768996A JP H1030446 A JPH1030446 A JP H1030446A
Authority
JP
Japan
Prior art keywords
exhaust
valve
engine
passage
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8187689A
Other languages
Japanese (ja)
Inventor
Yuji Yajima
裕司 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP8187689A priority Critical patent/JPH1030446A/en
Publication of JPH1030446A publication Critical patent/JPH1030446A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To prevent the loss of suction and exhaust and the degradation of fuel consumption in a running region of gas flow rate exceeding a predetermined valve by connecting two turbines to a turbo coaxially with a compressor while making exhaust paths separatively formed into two systems communicate to each other through a communicating passage having a valve interposed therein. SOLUTION: During running of an engine, the detecting signals of a rotation sensor and load sensor are read in a controller 16 to judge whether or not it corresponds to a valve opening region on a control map on the basis of these signals. A valve 15 is closed in the running region of small gas flow rate to a turbine 4 and opened when the gas flow rate exceeds a predetermined value. When the valve 15 is closed to intercept a communicating passage 14, exhaust from No.1-3 cylinders and No.4-6 cylinders flows individually into turbines 4a, 4b respectively through exhaust passages 10, 11, so that the exhaust pressure is avoided from the mutual interference, and the rotation of the turbine with low speed is improved. On the other hand, when the valve 15 is opened, the respective exhaust joins together through the communicating passage 14, so that the exhaust pressure in the upstream of the turbines 4a, 4b is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はエンジンの過給装
置に関する。
The present invention relates to a supercharger for an engine.

【0002】[0002]

【従来の技術】エンジンの過給装置として、エンジンの
排気エネルギでタービンを回し、そのタービンがコンプ
レッサを駆動することにより、エンジンの吸入空気を過
給するターボを採用するものがよく知られている。この
うち、多気筒エンジンにおいて、排気脈動を利用して低
速でのタービン回転を向上させるため、ターボに2つの
タービンをコンプレッサと同軸に連結し、その下流側の
排気通路を2系統に分割形成し、排気の圧力が干渉する
のを防止するようにしたもの例がある(特開平8ー28
286号公報)。
2. Description of the Related Art As a supercharging device for an engine, there is well known a turbocharger in which a turbine is driven by exhaust energy of the engine and the turbine drives a compressor to supercharge the intake air of the engine. . Among them, in a multi-cylinder engine, in order to improve turbine rotation at low speed by using exhaust pulsation, two turbines are connected to a turbo coaxially with a compressor, and an exhaust passage on the downstream side is divided into two systems. There is an example in which the pressure of exhaust gas is prevented from interfering with each other (Japanese Patent Laid-Open No. Hei 8-28).
286).

【0003】[0003]

【発明が解決しようとする課題】ところで、このように
排気系をチューニングすると、図4のようなA特性が得
られる。チューニングを行わない場合に相当するB特性
と比較すると、タービンへのガス流量が少ない運転領域
では、排気の動的効果が生かされ、タービンへのエネル
ギ伝達が向上するため、エンジンの吸排気損失や燃費率
が改善されるものの、ガス流量が所定値を越える運転領
域に入ると、タービン上流の排圧が高くなり、タービン
のA/Rを調整しないと、逆にB特性よりも吸排気損失
や燃費率を悪化させる傾向が見られる。
When the exhaust system is tuned in this way, an A characteristic as shown in FIG. 4 is obtained. Compared with the B characteristic corresponding to the case where tuning is not performed, in the operating region where the gas flow rate to the turbine is small, the dynamic effect of the exhaust is utilized, and the energy transmission to the turbine is improved, so that the intake and exhaust loss of the engine and the Although the fuel efficiency is improved, the exhaust pressure upstream of the turbine increases when the gas flow rate exceeds a predetermined value when the gas flow rate exceeds a predetermined value. There is a tendency to worsen the fuel efficiency.

【0004】この発明はこのような問題点に着目してな
されたもので、タービンへのガス流量が所定値を越える
運転領域でも、吸排気損失が少なく、燃費の良いターボ
付き多気筒エンジンの実現を目的とする。
The present invention has been made in view of such problems, and realizes a multi-cylinder engine with a turbocharger which has a small intake and exhaust loss and good fuel efficiency even in an operation region where the gas flow rate to the turbine exceeds a predetermined value. With the goal.

【0005】[0005]

【課題を解決するための手段】第1の発明は、ターボ付
き多気筒エンジンにおいて、ターボに2つのタービンを
コンプレッサと同軸に連結し、各タービンへの排気の圧
力どうしが干渉しあうのを避けるべく排気通路を2系統
に分離形成し、これら排気通路を互いに連通する通路
と、この連通路を開閉するバルブと、その開閉をエンジ
ン運転状態に応じて制御する手段を設ける。
According to a first aspect of the present invention, in a multi-cylinder engine with a turbo, two turbines are connected to a turbo coaxially with a compressor to avoid interference between exhaust pressures of the turbines. For this purpose, an exhaust passage is formed separately in two systems, and a passage connecting these exhaust passages to each other, a valve for opening and closing this communication passage, and means for controlling the opening and closing according to the engine operating state are provided.

【0006】第2の発明は、ツインスクロールターボを
備える多気筒エンジンにおいて、ターボ下流側の排気通
路を2つのタービンスクロールへの排気の圧力どうしが
干渉しあうのを避けるべく2系統に分離形成し、これら
排気通路を互いに連通する通路と、この連通路を開閉す
るバルブと、その開閉をエンジン運転状態に応じて制御
する手段を設ける。
According to a second aspect of the present invention, in a multi-cylinder engine provided with a twin scroll turbo, an exhaust passage on the downstream side of the turbo is divided and formed into two systems in order to prevent interference between exhaust pressures of two turbine scrolls. A passage for communicating these exhaust passages with each other, a valve for opening and closing the communication passage, and a means for controlling the opening and closing of the passage in accordance with an engine operating state.

【0007】第3の発明は、第1の発明または第2の発
明におけるバルブの制御手段は、エンジン運転状態とし
てエンジンの回転速度と負荷を検出する手段と、これら
の検出信号に基づいて所定の高速高負荷領域でバルブを
開いてそれ以外の運転領域でバルブを閉じるように制御
するコントローラを備える。
According to a third aspect of the present invention, in the first or second aspect, the valve control means includes means for detecting an engine speed and a load as an engine operation state, and a predetermined means based on these detection signals. A controller is provided for controlling the valve to open in a high-speed high-load region and close the valve in other operation regions.

【0008】[0008]

【発明の実施の形態】図1はV型6気筒エンジンへの適
用例を表すもので、その吸気通路1にターボ2のコンプ
レッサ3が介装される。ターボ2はエンジンの排気エネ
ルギでタービン4を回してコンプレッサ3を駆動し、エ
ンジンの吸入空気を過給するもので、この例では2つの
タービン4a,4bがコンプレッサ3と同軸上に連結さ
れる。
FIG. 1 shows an example of application to a V-type six-cylinder engine. A compressor 3 of a turbo 2 is interposed in an intake passage 1 of the engine. The turbo 2 drives the compressor 3 by rotating the turbine 4 with the exhaust energy of the engine, and supercharges the intake air of the engine. In this example, two turbines 4 a and 4 b are connected coaxially with the compressor 3.

【0009】コンプレッサ3からの給気はアフタクーラ
5を通して吸気マニホールド6に供給され、両バンクの
各シリンダ7(気筒)へ導入される。なお、一方のバン
クに吸排気の干渉しない1番気筒〜3番気筒が、もう一
方のバンクに吸排気の干渉しない4番気筒〜6番気筒が
それぞれ配列される。
The supply air from the compressor 3 is supplied to an intake manifold 6 through an aftercooler 5, and is introduced into each cylinder 7 (cylinder) of both banks. It should be noted that cylinders # 1 to # 3 that do not interfere with intake and exhaust are arranged in one bank, and cylinders # 4 to # 6 that do not interfere with intake and exhaust are arranged in the other bank.

【0010】エンジンの排気系は各バンクに応じて2系
統の排気通路10,11に分割形成される。12は1番
気筒〜3番気筒の排気を集合する排気マニホールド、1
3は4番気筒〜6番気筒の排気を集合する排気マニホー
ルドで、これらマニホールド12,13はそれぞれター
ビン4a,4bに接続される。
The exhaust system of the engine is divided into two exhaust passages 10 and 11 corresponding to each bank. Reference numeral 12 denotes an exhaust manifold for collecting the exhaust of the first to third cylinders, and 1
Reference numeral 3 denotes an exhaust manifold for collecting the exhaust of the fourth to sixth cylinders, and these manifolds 12 and 13 are connected to turbines 4a and 4b, respectively.

【0011】タービン4の入り口付近で2つの排気通路
10,11を連通する通路14が形成され、この連通路
14を開閉するバルブ15が設けられる。バルブ15の
開閉を制御するのがコントローラ16で、マイクロコン
ピュータで構成され、エンジンの運転状態を代表する負
荷と回転速度とから、所定の高速高負荷領域でバルブ1
5を開いてそれ以外でバルブ15を閉じるように制御す
る。
A passage 14 communicating between the two exhaust passages 10 and 11 is formed near the entrance of the turbine 4, and a valve 15 for opening and closing the communication passage 14 is provided. The controller 16 controls the opening and closing of the valve 15 and is constituted by a microcomputer.
5 is opened and the valve 15 is closed otherwise.

【0012】図示しないが、エンジンの回転速度を検出
する回転センサと、エンジンの負荷(アクセル開度)を
検出する負荷センサが設けられる。コントローラ16の
メモリに図2のような制御マップが格納される。このマ
ップは図4のA特性とB特性との交点Pに対応するガス
流量を境にバルブ15の閉じ領域と開き領域を設定した
ものである。
Although not shown, a rotation sensor for detecting the rotation speed of the engine and a load sensor for detecting the load of the engine (accelerator opening) are provided. A control map as shown in FIG. 2 is stored in the memory of the controller 16. In this map, the closed area and the open area of the valve 15 are set based on the gas flow rate corresponding to the intersection P between the A characteristic and the B characteristic in FIG.

【0013】図3はコントローラ16の制御内容を説明
するフローチャートで、エンジンの回転センサと負荷セ
ンサの検出信号を読み込み、これらの検出信号に基づい
て制御マップ上の開弁領域に相当するかどうかを判定す
る(ステップ1,ステップ2)。開弁領域のときはバル
ブ15を開く一方、開弁領域でないときはバルブ15を
閉じるように制御する(ステップ3,ステップ4)。
FIG. 3 is a flow chart for explaining the control contents of the controller 16. In FIG. 3, the detection signals of the engine rotation sensor and the load sensor are read, and based on these detection signals, it is determined whether or not the engine corresponds to the valve opening area on the control map. A judgment is made (Step 1 and Step 2). Control is performed so that the valve 15 is opened when the valve is in the valve-opening region, and is closed when the valve is not in the valve-opening region (steps 3 and 4).

【0014】このように構成すると、タービン4へのガ
ス流量が少ない運転領域ではバルブ15が閉じられ、タ
ービン4へのガス流量が所定値(図4のA特性とB特性
との交点Pに対応するガス流量)を越えると、バルブ1
5は開かれる。
With this configuration, the valve 15 is closed in an operation region where the gas flow rate to the turbine 4 is small, and the gas flow rate to the turbine 4 is reduced to a predetermined value (corresponding to the intersection P between the A characteristic and the B characteristic in FIG. 4). Gas flow rate), the valve 1
5 is opened.

【0015】バルブ15が閉じて連通路14が遮断され
ると、1番気筒〜3番気筒と4番気筒〜6番気筒の排気
はそれぞれ排気通路10,11を通してタービン4a,
4bヘ別々に流れる。そのため、排気の圧力が干渉しあ
うのが避けられ、低速でのタービン回転が向上する。バ
ルブ15が開くと、1番気筒〜3番気筒と4番気筒〜6
番気筒の排気が連通路を介して合流するため、通路体積
の膨張や排気の干渉により、タービン4a,4b上流の
排圧が低下する。
When the valve 15 is closed and the communication passage 14 is shut off, the exhaust of the first to third cylinders and the exhaust of the fourth to sixth cylinders pass through the exhaust passages 10 and 11, respectively.
Flows separately to 4b. For this reason, it is possible to prevent the exhaust pressures from interfering with each other, thereby improving low-speed turbine rotation. When the valve 15 is opened, the first to third cylinders and the fourth to sixth cylinders
Since the exhaust of the cylinder No. joins through the communication passage, the exhaust pressure upstream of the turbines 4a and 4b decreases due to expansion of the passage volume and interference of the exhaust.

【0016】このため、タービン4へのガス流量が少な
い運転領域では、図4のA特性が選択され、タービン4
へのガス流量が所定値を越えると、図4のB特性に切り
替わるから、エンジンの広い運転領域において、その吸
排気損失を低減して燃費率を改善できる。
For this reason, in the operation region where the gas flow rate to the turbine 4 is small, the characteristic A in FIG.
When the gas flow rate exceeds the predetermined value, the characteristic is switched to the B characteristic shown in FIG. 4, so that the intake and exhaust loss can be reduced and the fuel efficiency can be improved in a wide operating range of the engine.

【0017】ターボ2については、タービンハウジング
のスクロールを2系統に分離した、ツインスクロール型
を採用しても良い。図5〜図6において、ツインスクロ
ールターボ20を備える多気筒エンジンへの適用例を説
明する。
The turbo 2 may be of a twin scroll type in which the scroll of the turbine housing is separated into two systems. 5 to 6, an example of application to a multi-cylinder engine including the twin scroll turbo 20 will be described.

【0018】図5の4気筒エンジンの場合、タービン2
2の一方のスクロールに1番気筒と4番気筒を集合する
排気通路10が、タービン22のもう一方のスクロール
に2番気筒と3番気筒を集合する排気通路11がそれぞ
れ接続され、これら排気通路10,11を互いに連通す
る通路14と、この連通路14を開閉するバルブ15が
設けられる。そして、図示しないコントローラにより、
バルブ15は図2と同じく制御される。
In the case of the four-cylinder engine shown in FIG.
An exhaust passage 10 that collects the first and fourth cylinders is connected to one of the two scrolls, and an exhaust passage 11 that collects the second and third cylinders is connected to the other scroll of the turbine 22. There is provided a passage 14 for communicating the passages 10 and 11 with each other, and a valve 15 for opening and closing the passage 14. Then, by a controller not shown,
The valve 15 is controlled as in FIG.

【0019】図6の直列6気筒エンジンの場合、タービ
ン22の一方のスクロールに1番気筒〜3番気筒を集合
する排気通路10が、タービン22のもう一方のスクロ
ールに4番気筒〜6番気筒11がそれぞれ接続される。
図示しないコントローラにより、図2と同じく排気通路
10,11の連通路14を開閉するようにバルブ15を
制御する。
In the case of the in-line six-cylinder engine shown in FIG. 6, an exhaust passage 10 for collecting the first to third cylinders is provided in one scroll of the turbine 22, and the fourth to sixth cylinders are provided in the other scroll of the turbine 22. 11 are respectively connected.
The valve 15 is controlled by a controller (not shown) so as to open and close the communication passage 14 of the exhaust passages 10 and 11 as in FIG.

【0020】図7のV型8気筒エンジンの場合、吸気系
もバンク毎の通路1に分離形成され、2機のターボ20
が配置される。左側のバンクにおいて、タービン22の
一方のスクロールに1番気筒と5番気筒を集合する排気
通路10が、タービン22のもう一方のスクロールに3
番気筒と7番気筒を集合する排気通路11がそれぞれ接
続される。右側のバンクにおいて、タービン22の一方
のスクロールに2番気筒と4番気筒を集合する排気通路
10が、タービン22のもう一方のスクロールに6番気
筒と8番気筒を集合する排気通路11がそれぞれ接続さ
れる。
In the case of the V-type 8-cylinder engine shown in FIG. 7, the intake system is also formed separately in the passage 1 for each bank, and the two turbochargers 20
Is arranged. In the left bank, the exhaust passage 10 that collects the first cylinder and the fifth cylinder in one scroll of the turbine 22 has the 3rd scroll in the other scroll of the turbine 22.
Exhaust passages 11 that collect the cylinder No. 7 and the cylinder No. 7 are connected respectively. In the right bank, an exhaust passage 10 that collects the second cylinder and the fourth cylinder in one scroll of the turbine 22, and an exhaust passage 11 that collects the sixth cylinder and the eighth cylinder in the other scroll of the turbine 22, respectively. Connected.

【0021】バンク毎の排気通路10,11を連通する
通路14と、その連通路14を開閉するバルブ15が設
けられ、図示しないコントローラにより、各バルブ15
は図2と同じく制御される。
A passage 14 for communicating the exhaust passages 10 and 11 of each bank and a valve 15 for opening and closing the communication passage 14 are provided.
Are controlled in the same manner as in FIG.

【0022】なお、図5〜図7において、1はエンジン
の吸気通路、21はターボのコンプレッサを表す。
5 to 7, reference numeral 1 denotes an intake passage of the engine, and 21 denotes a turbo compressor.

【0023】[0023]

【発明の効果】第1の発明によれば、ターボ付き多気筒
エンジンにおいて、ターボに2つのタービンをコンプレ
ッサと同軸に連結し、各タービンへの排気の圧力どうし
が干渉しあうのを避けるべく排気通路を2系統に分離形
成し、これら排気通路を互いに連通する通路と、この連
通路を開閉するバルブと、その開閉をエンジン運転状態
に応じて制御する手段を設けたので、エンジンの広い運
転領域でその吸排気損失を低減して燃費率を改善でき
る。
According to the first aspect of the present invention, in a multi-cylinder engine with a turbo, two turbines are connected to the turbo coaxially with the compressor, and the exhaust gas is exhausted to avoid interference between the exhaust pressures of the turbines. A passage is formed in two separate systems, and a passage for communicating these exhaust passages with each other, a valve for opening and closing this communication passage, and a means for controlling the opening and closing according to the engine operating state are provided. Thus, the intake and exhaust loss can be reduced and the fuel efficiency can be improved.

【0024】第2の発明によれば、ツインスクロールタ
ーボを備える多気筒エンジンにおいて、ターボ下流側の
排気通路を2つのタービンスクロールへの排気の圧力ど
うしが干渉しあうのを避けるべく2系統に分離形成し、
これら排気通路を互いに連通する通路と、この連通路を
開閉するバルブと、その開閉をエンジン運転状態に応じ
て制御する手段を設けたので、ターボのタービンを増や
すことなく、エンジンの広い運転領域でその吸排気損失
を低減して燃費率を改善できる。
According to the second aspect of the present invention, in a multi-cylinder engine provided with a twin scroll turbo, the exhaust passage on the downstream side of the turbo is divided into two systems in order to prevent interference between exhaust pressures to the two turbine scrolls. Forming
A passage communicating these exhaust passages with each other, a valve for opening and closing the communication passage, and a means for controlling the opening and closing of the passage in accordance with an engine operating condition are provided. The fuel consumption rate can be improved by reducing the intake and exhaust loss.

【0025】第3の発明によれば、第1の発明または第
2の発明において、バルブの制御手段は、エンジン運転
状態としてエンジンの回転速度と負荷を検出する手段
と、これらの検出信号に基づいて所定の高速高負荷領域
でバルブを開いてそれ以外の運転領域でバルブを閉じる
ように制御するコントローラを備えたので、バルブはエ
ンジン運転状態に応じて適正に開閉され、エンジンの広
い運転領域でその吸排気損失を低減して燃費率を改善で
きる。
According to a third aspect, in the first aspect or the second aspect, the valve control means includes means for detecting an engine speed and a load as an engine operation state, and based on these detection signals. The valve is controlled to open the valve in a predetermined high-speed and high-load region and close the valve in other operation regions. The fuel consumption rate can be improved by reducing the intake and exhaust loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施形態を表す構成図である。FIG. 1 is a configuration diagram illustrating an embodiment of the present invention.

【図2】同じく制御マップの特性図である。FIG. 2 is a characteristic diagram of a control map.

【図3】同じくコントローラの制御内容を説明するフロ
ーチャートである。
FIG. 3 is a flowchart illustrating the control contents of a controller.

【図4】バルブの開閉状態と吸排気損失および燃費率と
の関係を表す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between an opening / closing state of a valve, an intake / exhaust loss, and a fuel efficiency.

【図5】4気筒エンジンへの適用例を表す概略図であ
る。
FIG. 5 is a schematic diagram illustrating an example of application to a four-cylinder engine.

【図6】6気筒エンジンへの適用例を表す概略図であ
る。
FIG. 6 is a schematic diagram illustrating an example of application to a six-cylinder engine.

【図7】8気筒エンジンへの適用例を表す概略図であ
る。
FIG. 7 is a schematic diagram illustrating an example of application to an eight-cylinder engine.

【符号の説明】 1 吸気通路 2 2連タービン型ターボ 3 コンプレッサ 4,4a,4b タービン 6 吸気マニホールド 7 シリンダ(気筒) 10,11 排気通路 12,13 排気マニホールド 14 連通路 15 バルブ 16 コントローラ 20 ツインスクロールターボ[Description of Signs] 1 Intake passage 2 Dual turbine type turbo 3 Compressor 4, 4a, 4b Turbine 6 Intake manifold 7 Cylinder (cylinder) 10, 11 Exhaust passage 12, 13 Exhaust manifold 14 Communication passage 15 Valve 16 Controller 20 Twin scroll turbo

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ターボ付き多気筒エンジンにおいて、ター
ボに2つのタービンをコンプレッサと同軸に連結し、各
タービンへの排気の圧力どうしが干渉しあうのを避ける
べく排気通路を2系統に分離形成し、これら排気通路を
互いに連通する通路と、この連通路を開閉するバルブ
と、その開閉をエンジン運転状態に応じて制御する手段
を設けたことを特徴とするエンジンの過給装置。
In a multi-cylinder engine with a turbo, two turbines are connected to a turbo coaxially with a compressor, and an exhaust passage is formed in two systems so as to avoid interference between exhaust pressures of the turbines. A supercharger for an engine, comprising: a passage connecting the exhaust passages to each other; a valve for opening and closing the communication passage;
【請求項2】ツインスクロールターボを備える多気筒エ
ンジンにおいて、ターボ下流側の排気通路を2つのター
ビンスクロールへの排気の圧力どうしが干渉しあうのを
避けるべく2系統に分離形成し、これら排気通路を互い
に連通する通路と、この連通路を開閉するバルブと、そ
の開閉をエンジン運転状態に応じて制御する手段を設け
たことを特徴とするエンジンの過給装置。
2. In a multi-cylinder engine having a twin scroll turbo, an exhaust passage on the downstream side of the turbo is divided and formed into two systems so as to avoid interference between exhaust pressures of two turbine scrolls. And a valve for opening and closing the communication passage, and means for controlling the opening and closing of the communication passage in accordance with the engine operating state.
【請求項3】バルブの制御手段は、エンジン運転状態と
してエンジンの回転速度と負荷を検出する手段と、これ
らの検出信号に基づいて所定の高速高負荷領域でバルブ
を開いてそれ以外の運転領域でバルブを閉じるように制
御するコントローラを備えたことを特徴とする請求項1
または請求項2に記載の過給装置。
3. The valve control means includes means for detecting a rotational speed and a load of the engine as an engine operation state, and opening the valve in a predetermined high-speed and high-load area based on the detection signals and operating in other operation areas. A controller for controlling the valve to close the valve.
Or the supercharging device according to claim 2.
JP8187689A 1996-07-17 1996-07-17 Supercharger for engine Pending JPH1030446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8187689A JPH1030446A (en) 1996-07-17 1996-07-17 Supercharger for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8187689A JPH1030446A (en) 1996-07-17 1996-07-17 Supercharger for engine

Publications (1)

Publication Number Publication Date
JPH1030446A true JPH1030446A (en) 1998-02-03

Family

ID=16210432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8187689A Pending JPH1030446A (en) 1996-07-17 1996-07-17 Supercharger for engine

Country Status (1)

Country Link
JP (1) JPH1030446A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060831A1 (en) 2005-11-24 2007-05-31 Toyota Jidosha Kabushiki Kaisha Exhaust passage changeover valve
JP2008038657A (en) * 2006-08-02 2008-02-21 Yanmar Co Ltd Exhaust emission control method for internal combustion engine with supercharger
JP2010518305A (en) * 2007-02-10 2010-05-27 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Exhaust gas system for internal combustion engines
CN102444464A (en) * 2011-11-03 2012-05-09 上海交通大学 Twin-turbine single-voltage turbine supercharging system
JP2017521602A (en) * 2014-07-24 2017-08-03 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Device for regulating the amount of air introduced into a supercharged internal combustion engine and method of using such a device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060831A1 (en) 2005-11-24 2007-05-31 Toyota Jidosha Kabushiki Kaisha Exhaust passage changeover valve
JP2008038657A (en) * 2006-08-02 2008-02-21 Yanmar Co Ltd Exhaust emission control method for internal combustion engine with supercharger
JP2010518305A (en) * 2007-02-10 2010-05-27 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Exhaust gas system for internal combustion engines
CN102444464A (en) * 2011-11-03 2012-05-09 上海交通大学 Twin-turbine single-voltage turbine supercharging system
JP2017521602A (en) * 2014-07-24 2017-08-03 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Device for regulating the amount of air introduced into a supercharged internal combustion engine and method of using such a device

Similar Documents

Publication Publication Date Title
US7080635B2 (en) Intake and exhaust device for multi-cylinder engine
JPH03151519A (en) Multiple cylinder engine with turbo charger
JPH06257518A (en) Exhaust reflux device of engine with supercharger
JPH1030446A (en) Supercharger for engine
JPH0249925A (en) Car engine with exhaust turbosupercharger
JP2676300B2 (en) Exhaust gas recirculation system for turbocharged engine
JPH0240267Y2 (en)
JP2006022808A (en) Intake and exhaust device of multi-cylinder engine
JP2653483B2 (en) Exhaust structure of engine with exhaust turbocharger
JPH01195920A (en) Supercharger for engine
JP3014703B2 (en) Engine supercharger
JP3115078B2 (en) Engine intake system
JPS6129941Y2 (en)
JPS62189326A (en) Supercharger of engine
JP2787157B2 (en) Intake and exhaust system for turbocharged engines
JPH1130126A (en) Air charge amount controller of supercharging internal combustion engine
JPH0586990A (en) Exhaust gas reflex device for engine with mechanical type supercharger
JPS58170827A (en) Supercharging device for internal-combustion engine
JP2607624Y2 (en) Intake device for supercharged engine
JPH0540272Y2 (en)
JPH0563616B2 (en)
JPH0745829B2 (en) Engine supercharger
JPS62103419A (en) Turbosupercharged engine
JPH04119353U (en) Vehicle intake system
JPS61218720A (en) Intake device of engine with supercharger