JPS60195430A - Torque detecting device - Google Patents

Torque detecting device

Info

Publication number
JPS60195430A
JPS60195430A JP59051823A JP5182384A JPS60195430A JP S60195430 A JPS60195430 A JP S60195430A JP 59051823 A JP59051823 A JP 59051823A JP 5182384 A JP5182384 A JP 5182384A JP S60195430 A JPS60195430 A JP S60195430A
Authority
JP
Japan
Prior art keywords
magnetic
torque
shaft
circuit
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59051823A
Other languages
Japanese (ja)
Inventor
Yoshio Sekine
関根 義夫
Yasuyuki Makikawa
牧川 安之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59051823A priority Critical patent/JPS60195430A/en
Publication of JPS60195430A publication Critical patent/JPS60195430A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To execute a non-contact detection of a torque by constituting a self- oscillating circuit by winding a detecting coil at a gap to a magnetic layer stuck to the outside periphery of a driven shaft, and detecting a variation of magnetic permeability by a torque as an oscillation frequency of its circuit. CONSTITUTION:Plural slender magnetic layers 5 are stuck at an angle of 45 deg. against the axial direction, to the outside periphery of a driven shaft 1, a pair of detecting coils 7a, 7b are wound to the shaft 1 so as to surround the layer 5 through a coil bobbin 6 made of a non-magnetic material of a prescribed interval, and a self-oscillating circuit 8 in which the shaft 1 is a magnetic core is constituted. Also, the circuit 8 is constituted of transistors 9, 10, coupling resistances 11, 12, coupling capacitors 13, 14, etc., the coils 7a, 7b are used as a collector winding of the circuit 8, a driving power source VCC is supplied, and a collector voltage V0 of the transistors 9, 10 is fetched as an output. In this way, a variation of an oscillation frequency of the circuit 8, which is generated by a variation of magnetic permeability of the layer 5 in case when a torque is impressed can be detected.

Description

【発明の詳細な説明】 〔発明の技術分野」 この発明は1例えば回転軸などの受動軸の軸トルクを非
接触で測定するトルク検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque detection device that non-contactly measures the shaft torque of a passive shaft such as a rotating shaft.

〔従来技術〕[Prior art]

従来、受動軸例えば回転軸の軸トルクを測定する方法と
しては、ストレンゲージを回転軸に貼り付けて、トルク
による軸のねじれに起因するストレンゲージの抵抗値変
化によりトルクを検出する方法、既知のヤング率を有す
る中間軸を駆動側と負荷側との間に挿入して、その中間
軸のねじれを位相差として検出する方法、さらに外力つ
まりトルクにより磁性材軸即ち回転軸の透磁率が変化す
るいわゆる磁歪効果を利用する方法等がある。ストレン
ゲージを軸に貼りつける方法は、ストレンゲージの貼り
つけの良否如何により精度が左右されるという不都合が
あるうえ、加えて出力信号の取り出したスリップリング
、テレメータ等を取り付ける必要があり装置が大きくな
る0さらに加えて、高速回転、長時間運転t′(なると
、スリップリングの電気抵抗1+iが変化してノイズが
発生しやすいなどの欠点がある。中間軸のねじれによる
位相差を検出する方法は、電気回路が複雑となるため高
価であり、また回転軸の高速回転時と低速101転時の
検出が両立しがたいという不都合を持つ。磁性材軸を用
いて磁歪効果を利用する方法は、実際の軸が利用できる
という利点はあるが、しかし一方では通常の軸は強度に
その多くの注意が払われ。
Conventionally, methods for measuring the axial torque of a passive shaft, such as a rotating shaft, include a method in which a strain gauge is attached to the rotating shaft and the torque is detected by a change in resistance value of the strain gauge caused by twisting of the shaft due to torque. A method in which an intermediate shaft with a Young's modulus is inserted between the drive side and the load side, and the torsion of the intermediate shaft is detected as a phase difference, and the magnetic permeability of the magnetic material shaft, that is, the rotating shaft, changes due to external force or torque. There are methods that utilize the so-called magnetostrictive effect. The method of attaching the strain gauge to the shaft has the disadvantage that accuracy depends on whether or not the strain gauge is attached properly, and in addition, it is necessary to attach a slip ring, telemeter, etc. from which the output signal is taken, making the device large. In addition, there are drawbacks such as high-speed rotation and long-time operation t' (the electrical resistance 1+i of the slip ring changes and noise is likely to occur.The method for detecting the phase difference due to the twisting of the intermediate shaft is , the electrical circuit is complicated and expensive, and it is difficult to detect both high-speed rotation and low-speed 101 rotation of the rotating shaft.The method of utilizing the magnetostrictive effect using a magnetic material shaft is There is an advantage to having a real shaft available, but on the other hand, a lot of attention is paid to the strength of regular shafts.

磁気特性についてはあまり考慮されていないので。Not much consideration was given to magnetic properties.

磁気的にはなはだ不均一である。このため、この軸の磁
気的不均一性による出力の回転角依存性すり なわち、軸の回転に伴なう出力のドラフトを持つ。
Magnetically it is extremely non-uniform. Therefore, the output has a rotation angle dependence due to the magnetic non-uniformity of this shaft, that is, there is a draft of the output as the shaft rotates.

換言すれば回転角によって出力が変動するという欠点を
持っている。もつともこの出力変動は、軸のまわりに複
数個の検出器を設けることなどによって補正することは
できるが、構造がそれだけ複雑になり、好ましい方法と
はいえない。
In other words, it has the disadvantage that the output varies depending on the rotation angle. Of course, this output fluctuation can be corrected by providing a plurality of detectors around the axis, but the structure becomes more complicated and this is not a preferable method.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来装置の欠点を除去するため
になされたものであり、受動軸の外周に軸方向に対し4
5°の角度をもって複数条の細長い磁性層を固着し、こ
の磁性層を包囲するように上記受動軸と所定のギャップ
を隔てて検出コイルを巻回し、この検出コイルを用いて
上記磁性層を磁心とした自励式発振回路を構成し、トル
ク印加時の上記磁性層の透磁率変化によって生ずる上記
発振回路の発振周波数の変化を検出することにより。
This invention was made in order to eliminate the drawbacks of the conventional device as described above.
A plurality of elongated magnetic layers are fixed at an angle of 5 degrees, a detection coil is wound around the magnetic layer with a predetermined gap from the passive shaft, and the detection coil is used to connect the magnetic layer to the magnetic core. By configuring a self-excited oscillator circuit, and detecting a change in the oscillation frequency of the oscillation circuit caused by a change in permeability of the magnetic layer when torque is applied.

印加されたトルクの大きさと方向を非接触で検出できる
トルク検出装置を提供するものである。
The present invention provides a torque detection device that can detect the magnitude and direction of applied torque in a non-contact manner.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の動作原理を説明するだめの図である
。一般に磁性材に応力を加えると、その磁気特性が変化
することはよく知られており、引張応力によって透磁率
は増加し、圧縮応力によって透磁率は減少する。ところ
で第1図に示すように受動軸(11にトルクTを印加す
ると、中心軸(2)に対し±45°方向に応力σが生じ
る。つまり中心軸(2)に対し+45°の角度をもつ線
上に引張応力σが発生し、−45°の角度をもつ線上に
圧縮応力−σが生じる。したがって受動軸(1)の外周
に高磁歪材からなる磁性層を固着し、トルクが加わった
時の磁気ひずみ効果を利用すれば、トルクの検出が11
能となる。
FIG. 1 is a diagram for explaining the operating principle of this invention. It is generally well known that when stress is applied to a magnetic material, its magnetic properties change; tensile stress increases magnetic permeability, and compressive stress decreases magnetic permeability. By the way, as shown in Fig. 1, when torque T is applied to the passive shaft (11), stress σ is generated in the direction of ±45° with respect to the central axis (2).In other words, it has an angle of +45° with respect to the central axis (2). Tensile stress σ is generated on the line, and compressive stress -σ is generated on the line with an angle of -45°. Therefore, a magnetic layer made of a high magnetostrictive material is fixed to the outer periphery of the passive shaft (1), and when torque is applied. If you use the magnetostrictive effect of
Becomes Noh.

第2図はこの発明の一実施例を示す構造図である。f1
1f′i中心4411 +21をもつ回転軸などの受動
軸(以下回転軸として説明を進める)でめり、軸受(3
)。
FIG. 2 is a structural diagram showing an embodiment of the present invention. f1
1f'i Center 4411 +21 A passive shaft such as a rotating shaft (hereinafter referred to as a rotating shaft) is bent, and the bearing (3
).

(4)により回転自在に支承さルている。この回転軸+
11はトルクに耐え得る充分な機械的強度をもつものと
する。(5)は高磁歪材からなる複数条の細長い形状の
磁性層であり、受動軸(1)の外周にその軸方向に対し
45°の角度をなして固着されている。この磁性層(5
)としては、軟磁性の非晶質金属が望ましい。何故なら
、非晶質金属は薄いシート状で得られ、高磁気ひずみ特
性を持ち、また機械的強度もすぐれているからである。
It is rotatably supported by (4). This rotation axis +
11 shall have sufficient mechanical strength to withstand torque. (5) is a plurality of elongated magnetic layers made of a highly magnetostrictive material, and is fixed to the outer periphery of the passive shaft (1) at an angle of 45° with respect to the axial direction. This magnetic layer (5
) is preferably a soft magnetic amorphous metal. This is because amorphous metals are obtained in the form of thin sheets, have high magnetostrictive properties, and also have excellent mechanical strength.

(6)は上記受動軸i11の外周と所定の間隔をおいて
設けられた。受動1lbf+1と同一の中心軸をもつ円
筒状のコイルボビンであり、非磁性材でできている。(
7a)、 (7b)は上記磁性層(5)全包囲するよう
にコイルボビン+a+を介して受動軸[11に巻回され
た一対の検出コイルである。
(6) is provided at a predetermined distance from the outer periphery of the passive shaft i11. It is a cylindrical coil bobbin having the same central axis as the passive 1lbf+1, and is made of non-magnetic material. (
7a) and (7b) are a pair of detection coils that are wound around the passive shaft [11] via a coil bobbin +a+ so as to completely surround the magnetic layer (5).

第3図はこの発明の一実施例を示す電気回路図である。FIG. 3 is an electrical circuit diagram showing one embodiment of the present invention.

この電気回路は、上記第2図における受動11+ f+
1への印加トルクを電気信号に変換するためのものであ
り、検出コイル(7a)、 (7b)を用いて構成され
た。磁性層(5)を固着した受動軸(11を磁心とする
自励式発振回路(8)である。この実施例では周知の抵
抗コンデンサ結合型インバータ、いわゆる磁気マルチバ
イブレータにより構成されている。図中+ t91+ 
unはトランジスタ、0υ、uzは結合抵抗。
This electric circuit consists of the passive 11+ f+ in FIG.
It is for converting the torque applied to 1 into an electrical signal, and was constructed using detection coils (7a) and (7b). This is a self-excited oscillator circuit (8) with a magnetic core fixed to a passive shaft (11) to which a magnetic layer (5) is fixed. In this embodiment, it is constructed of a well-known resistor-capacitor coupled inverter, a so-called magnetic multivibrator. +t91+
un is a transistor, 0υ and uz are coupling resistances.

03、Hは結合コンデンサ、 as、 beは抵抗+v
QQは駆動電源+vOは出力信号である。さて上記発振
回路(8)は、磁性層(5)を固着した受動軸(1)そ
のものを磁心として利用し、上記磁性層(5)を包囲す
る検出コイル(7a)、 (7b)を発振回路(8)の
コレクタ巻線として設ける構造となっているから、上記
発振回路(8)のトランジスタ+91.[1Gの導通時
間は、主にコレクタ巻線のインダクタンス、トランジス
タ等の定数で決まり、それはトランジスタがONL、て
からコレクタ電流が徐々に増加し、トランジスタの飽和
を維持できない値に達するまでの時間となる。ところで
、磁心の透磁率が変化すれば、コレクタ巻線のインダク
タンスはそれに比例して変化するので、その変化に応じ
て導通時間も変化する。したがって、この変化は発振回
路(8)のトランジスタ(9)または01のコレクタ電
圧voを出力として取り出せば1発振周波数の変化とl
工ってあられ扛る。今。
03, H is the coupling capacitor, as, be is the resistance +v
QQ is a drive power supply and +vO is an output signal. Now, the oscillation circuit (8) uses the passive shaft (1) to which the magnetic layer (5) is fixed as a magnetic core, and the detection coils (7a) and (7b) surrounding the magnetic layer (5) are used as the oscillation circuit. Since the structure is such that it is provided as the collector winding of the oscillation circuit (8), the transistor +91. [The conduction time of 1G is mainly determined by the inductance of the collector winding and constants of the transistor, etc., and it is the time from when the transistor is ONL until the collector current gradually increases and reaches a value that cannot maintain the saturation of the transistor. Become. By the way, if the magnetic permeability of the magnetic core changes, the inductance of the collector winding changes in proportion to it, so the conduction time also changes in accordance with the change. Therefore, if the collector voltage vo of the transistor (9) or 01 of the oscillation circuit (8) is taken out as the output, this change can be calculated as a change in one oscillation frequency.
It's a hailstorm. now.

第2図に示す方向にトルクが加わると、中心軸(2)に
対して45°方向に固着された磁性層(5)は十分細長
い形状をしているので、はとんど引張り応力のみを受け
てその透磁率が増加する。そのため検出コイル(7a)
、 (7b)のインダクタンスが増加し9発振回路の発
振周波数は低くなる。逆方向のトルクが加わると、今度
は磁性層(5)は圧縮応力を受けて。
When a torque is applied in the direction shown in Figure 2, the magnetic layer (5) fixed at 45 degrees with respect to the central axis (2) has a sufficiently elongated shape, so that only tensile stress is applied. As a result, its magnetic permeability increases. Therefore, the detection coil (7a)
, (7b) increases, and the oscillation frequency of the 9 oscillation circuit becomes lower. When a torque is applied in the opposite direction, the magnetic layer (5) is now subjected to compressive stress.

その透磁率が減少するので検出コイル(7a)、 (7
b)のインダクタンスは減少し1発振周波数は逆に高(
なる。いうまでもなく、この発振周波数の変化は印加ト
ルクの大きさに比例するので、この周波数変化を検出す
れば、印加トルクの大きさを検出することができる。こ
の周波数変化の検出は1図示しないが周知の周波数−電
圧変換器などを用いれば容易に検出できることはいうま
でもな(・。
Since its magnetic permeability decreases, the detection coil (7a), (7
The inductance of b) decreases, and the 1 oscillation frequency becomes high (
Become. Needless to say, this change in oscillation frequency is proportional to the magnitude of the applied torque, so by detecting this frequency change, the magnitude of the applied torque can be detected. Detection of this frequency change is not shown in the figure, but it goes without saying that it can be easily detected using a well-known frequency-voltage converter.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、受動軸外周に。 As described above, according to the present invention, on the outer periphery of the passive shaft.

その中心軸に対して45°の角度をなすように固着した
複数条の細長い形状の磁性層と、これらを包囲するよう
に所定のギャップをおいて巻回された検出コイルを用い
て自励式発振回路を構成し、受動軸そのものを発振回路
の帰還要素として用い。
Self-excited oscillation using multiple elongated magnetic layers fixed at an angle of 45° with respect to the central axis and a detection coil wound around them with a predetermined gap. The passive shaft itself is used as the feedback element of the oscillation circuit.

ト2レク印加時に生じる上記磁性層の透磁率変化を上記
発振回路の出力信号の発振周波数変化として検出してト
ルクを検出するようにしたので、非接触で静止時及び回
転時双方のトルクを方向を含めて検出できるという効果
を有する。さらに検出コイルは軸に回転対称に巻回しで
あるので、出力が軸の回転角依存性を持たないという効
果も有する。
Torque is detected by detecting the change in magnetic permeability of the magnetic layer that occurs when torque is applied as a change in the oscillation frequency of the output signal of the oscillation circuit, so the torque is detected in both the static and rotating directions without contact. It has the effect that it can be detected including Furthermore, since the detection coil is wound rotationally symmetrically around the shaft, the output has no dependence on the rotation angle of the shaft.

また検出部分が磁性層と、これを包囲する2個の検出コ
イルでこと足り、構成が簡単である。
In addition, the detection portion only requires a magnetic layer and two detection coils surrounding the magnetic layer, resulting in a simple configuration.

【図面の簡単な説明】 第1図はこの発明の動作原理を説明するための図、第2
図はこの発明の一実施例を示す構造図。 第3図はその電気同略図であり1図において、(1)は
受動軸、(5)は磁性層、 (7a)、 (7b)は検
出コイル。 (8)は自励式発振回路である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。 代理人 大 岩 増 雄 (ほか2名)菟 2 図
[Brief Description of the Drawings] Figure 1 is a diagram for explaining the operating principle of this invention, Figure 2 is a diagram for explaining the operating principle of this invention,
The figure is a structural diagram showing an embodiment of the present invention. Figure 3 is a schematic electrical diagram of the same. In Figure 1, (1) is the passive shaft, (5) is the magnetic layer, and (7a) and (7b) are the detection coils. (8) is a self-excited oscillation circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (and 2 others) Figure 2

Claims (1)

【特許請求の範囲】 (1)トルクを受ける受動軸の外周に、軸方向に対して
45°方向に固着された複数条の細長(・磁性層、この
磁性層を包囲するように上記受動軸に所定のギャップを
隔てて巻回された検出コイル、この検出コイルを用いて
構成された。」二記磁性層を固着した受動軸を磁心とす
る自励式発振回路を備え、トルクによる」二記磁性層の
透磁率変化を−に記発振回路の発振周波数として検出す
るようにしたことを特徴とするトルク検出装置。 +21 検出−’イルが、一対のコレクタ巻線からなり
、自励式発振回路が抵抗結合型インバータ[四路からな
ることを特徴とする特許請求の範囲第1fA記載のトル
ク検出装置。 (3)磁性層が、軟磁性の非晶質金属であることを特徴
とする特許請求の範囲第1項記載のトルク検出装置。
[Scope of Claims] (1) On the outer periphery of the passive shaft that receives torque, a plurality of elongated magnetic layers (magnetic layers) are formed on the passive shaft so as to surround this magnetic layer. It was constructed using a detection coil wound with a predetermined gap between the two.It was equipped with a self-excited oscillation circuit whose magnetic core was a passive shaft to which a magnetic layer was fixed, and A torque detection device characterized in that a change in magnetic permeability of a magnetic layer is detected as an oscillation frequency of an oscillation circuit. A torque detection device according to claim 1fA, characterized in that the resistance-coupled inverter [consists of four paths]. Torque detection device according to scope 1.
JP59051823A 1984-03-17 1984-03-17 Torque detecting device Pending JPS60195430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051823A JPS60195430A (en) 1984-03-17 1984-03-17 Torque detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051823A JPS60195430A (en) 1984-03-17 1984-03-17 Torque detecting device

Publications (1)

Publication Number Publication Date
JPS60195430A true JPS60195430A (en) 1985-10-03

Family

ID=12897609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051823A Pending JPS60195430A (en) 1984-03-17 1984-03-17 Torque detecting device

Country Status (1)

Country Link
JP (1) JPS60195430A (en)

Similar Documents

Publication Publication Date Title
JP4357841B2 (en) Magnetoelastic torque sensor
JP2992351B2 (en) Circumferential magnetization non-contact torque / power detection device and torque / power measurement method using the same
JPS6275328A (en) Torque sensor
JPS6228413B2 (en)
JPS60173434A (en) Torque detector
JP4305271B2 (en) Magnetostrictive torque sensor
JPS60173433A (en) Torque detector
JPS60195430A (en) Torque detecting device
JPS6044839A (en) Torque detecting device
JP2540865B2 (en) Torque detector
JP3692494B2 (en) Torque sensor
JPS59166827A (en) Magnetostriction type torque sensor by differential system
JPS6044841A (en) Torque detecting device
JPH1194658A (en) Torque sensor
JPS6161026A (en) Shaft torque meter
JP2545317Y2 (en) Torque detection device for wave gear transmission
JPS60236041A (en) Torque detecting device
JPS59188968A (en) Torque sensor made of double layer structural amorphous magnetic thin band
JP3078111B2 (en) Speed sensor
JPS6044842A (en) Torque detecting device
Barton et al. Industrial torque measurement using magneto-strictive torquemeters
JPS60192233A (en) Torque sensor
JPS61190838U (en)
JPS5963539A (en) Torque detector
JPS6050429A (en) Torque sensor