JPS60192233A - Torque sensor - Google Patents

Torque sensor

Info

Publication number
JPS60192233A
JPS60192233A JP4790784A JP4790784A JPS60192233A JP S60192233 A JPS60192233 A JP S60192233A JP 4790784 A JP4790784 A JP 4790784A JP 4790784 A JP4790784 A JP 4790784A JP S60192233 A JPS60192233 A JP S60192233A
Authority
JP
Japan
Prior art keywords
torque
magnetic
detection
transmission shaft
torque transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4790784A
Other languages
Japanese (ja)
Other versions
JPH0522858B2 (en
Inventor
Tadahiko Kobayashi
忠彦 小林
Masashi Sahashi
政司 佐橋
Tomokazu Domon
土門 知一
Hironori Fukuda
福田 浩徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4790784A priority Critical patent/JPS60192233A/en
Priority to DE8484308792T priority patent/DE3481546D1/en
Priority to US06/682,269 priority patent/US4590807A/en
Priority to EP84308792A priority patent/EP0146382B1/en
Publication of JPS60192233A publication Critical patent/JPS60192233A/en
Publication of JPH0522858B2 publication Critical patent/JPH0522858B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To improve the S/N of a torque sensor and the perform stable detection, by using a gate pulse signal synchronized with the number of revolutions of a torque transmission shaft and obtaining the change in the magnetic characteristic of a specific section in the peripheral direction of a thin strap of a magnetic metal as detection signals in one detection signal per one rotation. CONSTITUTION:Annular magnetic cores 221 and 222 are fixed to the outer perriphery of a torque transmission shaft 21 made of a ferromagnetic substance and induced magnetic anisotropies are given in advance to the magnetic cores 221 and 222 in directions respectively inclined at angles +theta and -theta against the peripheral direction of the magnetic cores 221 and 222. Moreover, U-shaped magnetic cores 231 and 232 for detection made of an oxide magnetic substance are respectively arranged above the annular magnetic cores 221 and 222 in the peripheral direction of the magnetic cores 221 and 222 under non-contacting conditions. Torque detection is performed by using output voltages obtained from specific sections of the magnetic cores 221 and 222 as detection signals in one signal per one rotation by utilizing a gate pulse signal synchronized with the number of revolutions of the torque transmission shaft 21.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非接触でトルクを検出するトルクセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque sensor that detects torque without contact.

〔発明の技術的背景〕[Technical background of the invention]

トルクは回転駆動系の制御を行なう際の基本量の一つで
ある。トルクを精密に検出するためには、その検出機構
が非接触方式であることが必要である。
Torque is one of the basic quantities when controlling a rotational drive system. In order to accurately detect torque, the detection mechanism must be of a non-contact type.

近年、上述したような非接触方式のトルクセンサとして
アモルファス磁性合金の薄帯を利用したものが提案され
ている(電気学会マグネティックス研究会資料MAG 
−81−72)。
In recent years, a non-contact torque sensor as described above that uses a thin strip of amorphous magnetic alloy has been proposed (IEE of Japan Magnetics Study Group Materials MAG
-81-72).

このトルクセンサの概略構成は第1図に示すようなもの
である。図中1はトルクを検出すべき回転軸、すなわち
トルク伝達軸であシ、このトルク伝達軸1にはアモルフ
ァス磁性合金から形成された環状磁心2が巻回されて固
定されている。この環状磁心2には予めその周方向3に
対して角度θの傾き方向に誘導磁気異方性Ku’ 4が
付与されている。なお、前記環状磁心2の周囲には例え
ば図示しない検出コイルが近接して配設されており、更
にこの検出コイルは図示しない検出回路に接続されてい
る。
The general structure of this torque sensor is as shown in FIG. In the figure, reference numeral 1 denotes a rotating shaft on which torque is to be detected, that is, a torque transmission shaft.A ring-shaped magnetic core 2 made of an amorphous magnetic alloy is wound around and fixed to this torque transmission shaft 1. This annular magnetic core 2 is previously given an induced magnetic anisotropy Ku' 4 in a direction inclined at an angle θ with respect to its circumferential direction 3. Note that, for example, a detection coil (not shown) is disposed close to the annular magnetic core 2, and this detection coil is further connected to a detection circuit (not shown).

上記トルクセンサの原理を概略的に説明する。The principle of the torque sensor described above will be schematically explained.

ここで、説明を簡単にするためにθ〉45°、飽和磁歪
定数λB〉0とする。いま、トルク伝達軸1にトルク5
が加わると、トルク伝達軸1に発生したひずみ応力が環
状磁心2に伝達され、環状磁心2には+45°の方向に
張力σが、−45゜の方向に圧縮応力−σがそれぞれ発
生する。これに伴い、環状磁心2には磁気ひずみ効果に
より+45°方向に誘導磁気異方性Ku“6(=3λB
・σ)が誘導される。この結果、Ku′とKu”の合成
として誘導磁気異方性はKu7へ変化する。一般に、磁
性体の透磁率は励磁方向に対する誘導磁気異方性の方向
によって変化する。したがって、環状磁心2の誘導磁気
異方性の方向の変化に伴う透磁率の変化を、例えば検出
コイル及びこれに接続された検出回路によシミ圧の変化
として測定することができ、その値からトルク伝達軸1
に加えられたトルク5を検出することができる。
Here, in order to simplify the explanation, it is assumed that θ>45° and the saturation magnetostriction constant λB>0. Now, torque 5 is applied to torque transmission shaft 1.
When , the strain stress generated in the torque transmission shaft 1 is transmitted to the annular magnetic core 2, and a tension force σ is generated in the annular magnetic core 2 in the +45° direction and a compressive stress -σ is generated in the -45° direction. Along with this, the annular magnetic core 2 has an induced magnetic anisotropy Ku"6 (=3λB) in the +45° direction due to the magnetostrictive effect.
・σ) is induced. As a result, the induced magnetic anisotropy changes to Ku7 as a combination of Ku' and Ku''. Generally, the magnetic permeability of a magnetic material changes depending on the direction of the induced magnetic anisotropy with respect to the excitation direction. Changes in magnetic permeability due to changes in the direction of induced magnetic anisotropy can be measured, for example, as changes in stain pressure using a detection coil and a detection circuit connected thereto, and from that value, the torque transmission axis 1 can be measured.
Torque 5 applied to can be detected.

なお、上記トルクセンサの説明では環状磁心を構成する
磁性体としてアモルファス磁性合金を用いた場合につい
て述べたが、これに限らず軟質磁性を示すものであれば
、例えばパーマロイ(Fe−Ni合金)、センダスト(
Fe −At−St金合金 、Fe−8t合金などの他
の磁性体を用いることができる。
In addition, in the above description of the torque sensor, a case was described in which an amorphous magnetic alloy was used as the magnetic material constituting the annular magnetic core, but the present invention is not limited to this, and as long as it exhibits soft magnetism, for example, permalloy (Fe-Ni alloy), Sendust (
Other magnetic materials such as Fe-At-St gold alloy and Fe-8t alloy can be used.

ところで、上述したように磁性金属薄帯からなる環状磁
心の周囲に近接して検出コイルを配設すればトルクの検
出ができるが、その検出機構はトルクセンサの性能を左
右する重要な因子となる。
By the way, as mentioned above, torque can be detected by arranging a detection coil close to the annular magnetic core made of a thin magnetic metal strip, but the detection mechanism is an important factor that affects the performance of the torque sensor. .

従来、上述した検出機構としては第2図(a)及び(b
)に示すようなものが知られている。
Conventionally, the above-mentioned detection mechanism is as shown in Figs. 2(a) and (b).
) are known.

第2図(a)は中空のトルク伝達軸11に磁性金属薄帯
の環状磁心12を固定し、ソレノイドコイル13を用い
て環状磁心12の周方向に励磁し、さらに検出巻線14
を巻いて出力を検出するものである。また、同図(b)
はトルク伝達軸11に磁性金属薄帯の環状磁心12を固
定し、その外周に巻かれたソレノイドコイル13′ヲ用
いて環状磁心12の巾方向に励磁し、さらにその外側に
検出巻線14′を巻いて出力を検出するものである。
In FIG. 2(a), an annular magnetic core 12 made of a magnetic metal ribbon is fixed to a hollow torque transmission shaft 11, and a solenoid coil 13 is used to excite the annular magnetic core 12 in the circumferential direction.
The output is detected by winding the wire. Also, the same figure (b)
An annular magnetic core 12 made of a thin magnetic metal strip is fixed to a torque transmission shaft 11, and a solenoid coil 13' wound around the outer circumference is used to excite the annular magnetic core 12 in the width direction, and a detection winding 14' is installed outside the annular magnetic core 12. The output is detected by winding the wire.

すなわち、第2図(a)及び(b)図示の検出機構では
いずれも透磁率の変化をソレノイドコイルと検出巻線と
の相互誘導による電圧の変化とし′てとらえ、増幅回路
を経て出力を得るものである。
In other words, in both the detection mechanisms shown in Figures 2 (a) and (b), changes in magnetic permeability are interpreted as changes in voltage due to mutual induction between the solenoid coil and the detection winding, and an output is obtained via an amplifier circuit. It is something.

〔背景技術の問題点〕[Problems with background technology]

しかし、第2図(b)のように環状磁心の巾方向や に励磁するものは小型が困難で、狭空間に収納すること
ができず、しかも励磁用のソレノイドコイルには100
mA以上の励磁電流を必要とするため、磁気回路上不都
合な点が生じる。
However, as shown in Fig. 2(b), it is difficult to make a device that excites the annular magnetic core in the width direction, making it small and unable to store it in a narrow space.
Since an excitation current of mA or more is required, there are disadvantages in terms of the magnetic circuit.

また、第2図(a)のように環状磁心の周方向に励磁す
るものは環状磁心の全周の透磁率を連続して検出するた
め、−周分の透磁率を一定値にする必要がある。ところ
が、トルク伝達軸としてFe系などの強磁性体を用いた
場合、材質の不均一性から一周のうちに透磁率変化が生
じる。
In addition, as shown in Fig. 2 (a), in the case where the annular magnetic core is excited in the circumferential direction, the magnetic permeability of the entire circumference of the annular magnetic core is continuously detected, so it is necessary to keep the magnetic permeability of the -circumference to a constant value. be. However, when a ferromagnetic material such as Fe-based material is used as the torque transmission shaft, magnetic permeability changes within one revolution due to non-uniformity of the material.

したがって、この透磁率変化に起因する出力変動がトル
クの検出出力に重畳されるため、眸が著しく劣化する。
Therefore, the output fluctuation caused by this change in magnetic permeability is superimposed on the torque detection output, resulting in significant deterioration of the eyes.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであシ
、小型で、必要とする励磁電流が小さく、シかもS/N
比を向上して安定したトルク検出を行なえるトルクセン
サを提供しようとするものである。
The present invention was made in order to eliminate the above-mentioned drawbacks.It is small in size, requires a small excitation current, and has low S/N
The present invention aims to provide a torque sensor that can perform stable torque detection by improving the ratio.

〔発明の概要〕[Summary of the invention]

本発明のトルクセンサは、トルク伝達軸の回転数に同期
させたダートパルス信号を用い、トルク伝達軸に固定さ
れている磁性金属薄帯の周方向の特定の一部分の磁気特
性変化を1回転に1つの検出信号として得ることによシ
トルク検出を行なうことを特徴とするものである。
The torque sensor of the present invention uses a dart pulse signal synchronized with the rotation speed of the torque transmission shaft to change the magnetic properties of a specific part of the circumferential direction of a magnetic metal ribbon fixed to the torque transmission shaft in one rotation. This is characterized in that torque detection is performed by obtaining one detection signal.

このようなトルクセンサによれば、回転数に同期させた
パルス周期及びパルス幅を有するケ゛−トパルス信号を
用いるので、回転中の磁性金属薄帯の特定の一部分の磁
気特性変化を、等価的に静止状態下で検出することがで
きる。したがって、磁性金属薄帯の透磁率がトルク伝達
軸の円周上で常に一定値でなくとも、正確にトルり検出
を行なうことができる。また、トルク伝達軸としてFe
系などの強磁性体を用いても、その透磁率変化に起因す
る出力変動がなくなυ、高S/N比で安定したトルク検
出を行なうことができる。
According to such a torque sensor, since a gate pulse signal having a pulse period and pulse width synchronized with the rotational speed is used, changes in the magnetic properties of a specific portion of a rotating magnetic metal ribbon can be equivalently detected. Can be detected under stationary conditions. Therefore, even if the magnetic permeability of the magnetic metal ribbon is not always a constant value on the circumference of the torque transmission shaft, accurate torque detection can be performed. In addition, Fe is used as the torque transmission shaft.
Even if a ferromagnetic material such as a ferromagnetic material is used, there is no output fluctuation caused by changes in magnetic permeability, and stable torque detection can be performed with a high S/N ratio.

またこのようなトルクセンサによれば、同じ出力を得る
のに低い励磁電流ですみ、周方向に励磁した場合でもS
/N比の良好な出力を得ることができる。すなわちトル
ク伝達軸に磁性金属薄帯を巻回した場合、巾方向に励磁
しようとすると反磁場係数の関係で周方向の場合に比べ
かなシの大励磁電流が必要となる。これに対して周方向
に励磁の場合は低励磁電流ですむが、磁性金属薄帯の透
磁率の均一性を保つことを考えると巾方向の場合に比べ
若干の問題が残る。しかしながら本発明によれば、その
均一性をも十分カバーでき、非常に有効である。又、こ
の磁性金属薄帯は、完全に巻回しなくても部分的に設け
てもよい。
Moreover, according to such a torque sensor, a low excitation current is required to obtain the same output, and S even when excited in the circumferential direction.
It is possible to obtain an output with a good /N ratio. In other words, when a magnetic metal ribbon is wound around a torque transmission shaft, excitation in the width direction requires a much larger excitation current than in the circumferential direction due to the demagnetizing field coefficient. On the other hand, in the case of excitation in the circumferential direction, a low excitation current is required, but when considering maintaining the uniformity of magnetic permeability of the magnetic metal ribbon, some problems remain compared to the case of excitation in the width direction. However, according to the present invention, this uniformity can be sufficiently covered and is very effective. Moreover, this magnetic metal ribbon may not be completely wound but may be provided partially.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図〜第5図を参照して説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 5.

第3図において、図示しないモータ等の駆動源によって
回転する直径55mの強磁性体からなるトルク伝達軸2
1の外周には環状磁心22□。
In FIG. 3, a torque transmission shaft 2 made of a ferromagnetic material with a diameter of 55 m is rotated by a drive source such as a motor (not shown).
1 has an annular magnetic core 22□ on its outer periphery.

222が固定されている。これら環状磁心221゜22
2は単ロール法によシ作製された巾5叫、厚さ30μm
の(FeO265Nio、3CrO105)75S11
1B14 アゝルファス磁性合金の薄帯を前記トルク伝
達軸2ノに一周巻いて固定したものである。これら環状
磁心221 r222には予めその周方向に対してそれ
ぞれ角度子〇及び角度−〇〇頌き方向に誘導磁気異方性
が付与されている。
222 is fixed. These annular magnetic cores 221°22
2 is manufactured by a single roll method with a width of 5 mm and a thickness of 30 μm.
(FeO265Nio, 3CrO105)75S11
A thin ribbon of 1B14 alphus magnetic alloy is wound around the torque transmission shaft 2 and fixed thereto. These annular magnetic cores 221 r222 are given in advance induced magnetic anisotropy in the direction of angle 〇 and angle -〇 in the circumferential direction, respectively.

これら環状磁心2”1 m 222の上方にはそれぞれ
酸化物磁性体からなるU型の検出用磁心231.232
が非接触で周方向に配設されている。これら検出用磁心
231.232にhそれぞれ励磁用コイル241.24
2及び検出用コイル251.252が施されている。
Above these annular magnetic cores 2”1 m 222 are U-shaped detection magnetic cores 231 and 232 made of oxide magnetic material, respectively.
are arranged circumferentially in a non-contact manner. These magnetic cores for detection 231 and 232 are connected to excitation coils 241 and 24, respectively.
2 and detection coils 251 and 252 are provided.

前記トルク伝達軸21の回転数に同期させたゲートパル
ス信号を用いて、環状磁心221 。
The annular magnetic core 221 is generated using a gate pulse signal synchronized with the rotation speed of the torque transmission shaft 21.

222の特定の一部分よシ得られる出力電圧を1回転に
つき1つの検出信号としてトルク検出を行なうための回
路構成を第4図に示す。
FIG. 4 shows a circuit configuration for detecting torque by using the output voltage obtained from a specific portion of the motor 222 as one detection signal per rotation.

捷ず、検出用磁心231.232に施した励磁用コイル
241.242は和動結合、また検出用コイル251.
252は差動結合とし、発振器26よシ得られる正弦波
を励磁用コイル241 g 242に加え、環状磁心;
! 21 * 222全トルク伝達軸210周方向に励
磁する。いま、トルク伝達軸21にトルクが加わると、
予め付与された誘導磁気異方性の方向に応じて、環状磁
心22! 、222の透磁率はそれぞれ増減の変化を生
じる。この変化量を検出用コイル251゜252で正弦
波電圧に変換し、検波回路27に加え、更に積分回路2
8及びA/Dコンバータ29を経てサンプルホールド回
路30に導入する〇 一方、トルク伝達軸21の別の位置には回転数センサ3
1が配設されてお9、この回転数センサ31により得ら
れる回転数信号をダートパルス発生回路32に送シ、更
に回転数に同期させたパルス周期及びパルス幅を有する
ダートパルス信号をサンプルホールド回路3θに導入す
る。
Instead, the excitation coils 241 and 242 attached to the detection cores 231 and 232 are summation-coupled, and the detection coils 251 and 251.
252 is a differential coupling, and the sine wave obtained from the oscillator 26 is applied to the excitation coils 241 and 242, and the annular magnetic core;
! 21*222 Energizes the entire torque transmission shaft 210 in the circumferential direction. Now, when torque is applied to the torque transmission shaft 21,
Depending on the direction of induced magnetic anisotropy given in advance, the annular magnetic core 22! , 222 respectively increase or decrease in magnetic permeability. This amount of change is converted into a sine wave voltage by the detection coils 251 and 252, and added to the detection circuit 27, and further to the integration circuit 2.
8 and the A/D converter 29 to the sample hold circuit 30. On the other hand, a rotation speed sensor 3 is installed at another position on the torque transmission shaft 21.
A rotation speed signal obtained by the rotation speed sensor 31 is sent to a dirt pulse generation circuit 32, and a dirt pulse signal having a pulse period and pulse width synchronized with the rotation speed is sampled and held. Introduced into circuit 3θ.

シタ力って、サンプルホールド回路30ではケ9−トパ
ルス信号により)ルク伝達軸2ノに固定されている環状
磁心221.222の日周上の特定の一部分の磁気特性
変化による出力電圧を、1回転につき1つのデジタル出
力値として得ることができる。更に、このデジタル出力
値’(r D/Aコンバータ33によ、9DCアナログ
出力電圧に変換することによシ、高Sハで、かつ安定し
たトルク検出を行なうことができる。
In the sample and hold circuit 30, the output voltage due to a change in the magnetic properties of a specific part of the diurnal cycle of the annular magnetic core 221, 222 fixed to the torque transmission shaft 2 is calculated by 1. It can be obtained as one digital output value per revolution. Furthermore, by converting this digital output value (r) into a 9DC analog output voltage using the D/A converter 33, stable torque detection with high S can be performed.

しかして、本発明のトルクセンサによれば、トルク伝達
軸21の回転数に同期させた・ぐルス周期及びパルス幅
を有するダートパルス信号を用いることによシ、環状磁
心221,222の周方向の特定の一部分の磁気特性変
化全等価的に静止状態下で検出することができる。した
がって、トルク伝達軸21の円周上に固定した磁性金属
薄帯221.222の透磁率が円周上に常に一定の値で
なくとも、正確にトルク検出を行なうことができる。ま
た、トルク伝達軸2ノとしてFe系などの強磁性体を用
いても、その透磁率変化に起因する出力変動がなくな9
、高Sハの安定したトルク検出を行なうことができる。
According to the torque sensor of the present invention, by using a dart pulse signal having a pulse period and a pulse width synchronized with the rotation speed of the torque transmission shaft 21, Changes in the magnetic properties of a particular part of the whole can be equivalently detected under stationary conditions. Therefore, even if the magnetic permeability of the magnetic metal ribbons 221 and 222 fixed on the circumference of the torque transmission shaft 21 is not always constant on the circumference, torque can be accurately detected. Furthermore, even if a ferromagnetic material such as Fe-based material is used as the torque transmission shaft 2, there is no output fluctuation caused by changes in its magnetic permeability.
, stable torque detection with high S can be performed.

更に、装置全体と小型化することができ、狭空間にも収
納することができる。
Furthermore, the entire device can be downsized and can be stored in a narrow space.

事実、上記トルクセンサを用いてトルク伝達軸21ON
= 200 Orpmにおける動トルクを検出したとこ
ろ、第5図に示す如く極めて優れた線形性を有している
ことが判明した。
In fact, using the above torque sensor, the torque transmission shaft 21 ON
When the dynamic torque was detected at = 200 Orpm, it was found that it had extremely excellent linearity as shown in FIG.

なお、第5図の出力はデジタル出力値をD/Aコンバー
タ33によシミ圧に変換したものであるが、任意のD/
Aコンバータによシ出力を可変とすることができる。ま
た、デジタル出力値を直接マイクロコンピュータに導入
することができるので付加価値が大きい。
Note that the output in Fig. 5 is the digital output value converted into stain pressure by the D/A converter 33, but any D/A converter can be used.
The A converter allows the output to be made variable. Furthermore, since the digital output value can be directly introduced into the microcomputer, there is great added value.

また、上記実施例ではデジタル信号処理を行なったが、
VDコンバータ29 及ヒD、/Aコンノ々−タ33を
省き、サンプルホールド回路30でアナログ信号を処理
しても同様の結果が得られた。
In addition, although digital signal processing was performed in the above embodiment,
Similar results were obtained even if the VD converter 29 and the D/A converter 33 were omitted and the sample and hold circuit 30 processed the analog signal.

なお、上記実施例と同様な効果は磁性金属薄帯トシてパ
ーマロイ、センダスト、Fe−3t合金を用いた場合、
また検出用磁心としてアモルファス合金、パーマロイ、
センダスト、Fe−8ノ合金を用いた場合にも得られた
Note that the same effect as in the above example can be obtained when permalloy, sendust, or Fe-3t alloy is used as a magnetic metal thin ribbon.
In addition, amorphous alloy, permalloy,
It was also obtained when Sendust and Fe-8 alloy were used.

また、上記実施例のトルクセンサではトルク伝達軸の全
周に環状磁心を固定したが、トルク伝達軸の周方向の一
部分にのみ磁性金属薄帯全固定して動トルクを検出した
場合でも、同様に高SlN比の安定した出力電圧を得る
ことができる。
In addition, in the torque sensor of the above embodiment, the annular magnetic core is fixed around the entire circumference of the torque transmission shaft, but even when dynamic torque is detected by fixing the entire magnetic metal thin strip only to a part of the circumferential direction of the torque transmission shaft, the same method can be used. A stable output voltage with a high SlN ratio can be obtained.

更に、上記実施例では2個の検出磁心を用い、励磁用コ
イルは和動結合、検出用コイルは差動結合としたが、ト
ルクの正負を知る必要がない場合には、検出磁心を1個
だけにしてもよい。
Furthermore, in the above embodiment, two detection cores were used, and the excitation coil was summatively coupled and the detection coil was differentially coupled, but if it is not necessary to know whether the torque is positive or negative, one detection core may be used. You can just do that.

また、2個の検出磁心を用いる場合でも、検出用コイル
を和動結合としてもよい。ただし、正負のトルク′ff
:、線形性よく、高出力で検出するには、上記実施例の
ような構成とすることが望ましい。
Further, even when two detection magnetic cores are used, the detection coil may be a summation coupling. However, positive and negative torque ′ff
:, In order to detect with good linearity and high output, it is desirable to have a configuration like the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、トルク伝達軸の材質
や磁性金属薄帯内での透磁率の変化の影q4Iを受けず
、広範囲の材質のトルク伝達軸のトルクを高S/N比で
安定して検出できる等工業上極めて実用性の高いトルク
センサを提供できるものである。
As detailed above, according to the present invention, the torque of the torque transmission shaft made of a wide range of materials can be transmitted with a high S/N ratio without being affected by changes in the material of the torque transmission shaft or the magnetic permeability within the magnetic metal ribbon. It is possible to provide a torque sensor that is industrially extremely practical, such as being able to stably detect the torque.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非接触方式のトルクセンサの原理図、第2図(
a)及び(b)はそれぞれ従来のトルクセンサの構成図
、第3図は本発明の実施例におけるトルクセンサの構成
図、第4図は同トルクセンサの回路構成図、第5図は同
トルクセンサによる動l・ルク検出特性図である。 2ノ・・・トルク伝達軸、221 m 222 ・・・
環状磁心、23..232・・・検出用磁心、241 
。 242・・・励磁用コイル、251.252・・・検出
用コイル、26・・・発振器、27・・・検波回路、2
8・・・積分回路、29・・・めコンバータ、30・・
・サンプルホールド回路、31・・・回転数センサ、3
2・・・ケゝ−トノクルス発生回路、33・・・D/A
コンバータ。 出願人代理人 弁理士 鈴 江 武 lま第1図 第3図 第4図 第5図 手続補正書 昭和 qO・6..13 目 特許庁長官 志 賀 学 殿 ■、事件の表示 特願昭59−47907号 2、発明の名称 1・ ル り セ ン サ 3、補正をする者 事件との関係 特許出願人 (307)株式会社 東芝 4、代理人 6、補正の対象 7、補正の内容 (1)特許請求の範囲を別紙の通り訂正する。゛(2)
明細書第6頁第11行から同頁第12行にかけて、「1
回転につき1つの」とあるを削除する。 (3)明細書第13頁第4行目の後に下記の文を加入す
る。 記 更に、上記実・施例では1回転につき1つの検出信号を
得る場合について説明したが、これに限らず1回転につ
き複数のゲートパルス信号を発生させることにより、1
回転につき複数の検出信号をfj)るようにしてもよい
。 2、特許請求の範囲 磁歪を有する磁性金属薄帯をト“ルク伝達軸に固定し、
該トルク伝達軸に加えられたトルクにより前記磁性金属
薄帯の磁気特性が変化することを利用してトルクの非接
触検出を行なうトルクセンサにおいて、前記トルク伝達
軸の回転数に同期させたゲートパルス信号を用い、前記
磁性金属薄帯の周方向の特定の一部分の磁気特性変化を
検出信号として得ることによりトルク検出を行なうこと
を特徴とするトルクセンサ。 出願人代理人 弁理士 鈴江 武彦
Figure 1 shows the principle of a non-contact torque sensor, Figure 2 (
a) and (b) are respectively configuration diagrams of conventional torque sensors, FIG. 3 is a configuration diagram of a torque sensor according to an embodiment of the present invention, FIG. 4 is a circuit configuration diagram of the same torque sensor, and FIG. 5 is a diagram of the same torque sensor. FIG. 3 is a characteristic diagram of dynamic l/lux detection by a sensor. 2...Torque transmission shaft, 221 m 222...
Annular magnetic core, 23. .. 232...Detection magnetic core, 241
. 242... Excitation coil, 251.252... Detection coil, 26... Oscillator, 27... Detection circuit, 2
8...Integrator circuit, 29...Member converter, 30...
・Sample hold circuit, 31... rotation speed sensor, 3
2... Keystone generation circuit, 33... D/A
converter. Applicant's representative Patent attorney Takeshi Suzue Figure 1 Figure 3 Figure 4 Figure 5 Procedural amendments Showa qO.6. .. 13th Commissioner of the Japan Patent Office Mr. Manabu Shiga■, Indication of Case Patent Application No. 1987-47907 2, Title of Invention 1. Ruli Sensor 3. Person making amendment Relationship with the case Patent Applicant (307) Shares Company Toshiba 4, Agent 6, Subject of amendment 7, Contents of amendment (1) The scope of claims will be corrected as shown in the attached sheet.゛(2)
From line 11 on page 6 of the specification to line 12 on the same page, “1
Delete "one per rotation". (3) Add the following sentence after the fourth line of page 13 of the specification. Furthermore, in the above embodiments, the case where one detection signal is obtained per rotation has been explained, but the invention is not limited to this, and by generating multiple gate pulse signals per rotation, one detection signal can be obtained.
A plurality of detection signals fj) may be generated per rotation. 2. Claims A magnetic metal ribbon having magnetostriction is fixed to a torque transmission shaft,
In a torque sensor that performs non-contact detection of torque by utilizing the change in the magnetic properties of the magnetic metal ribbon due to the torque applied to the torque transmission shaft, a gate pulse synchronized with the rotational speed of the torque transmission shaft. A torque sensor characterized in that torque is detected by using a signal to obtain a change in magnetic properties of a specific portion of the magnetic metal ribbon in a circumferential direction as a detection signal. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 磁歪を有する磁性金属薄帯をトルク伝達軸に固定し、該
トルク伝達軸に加えられたトルクによシ前記磁性金属薄
帯の磁気特性が変化することを利用してトルクの非接触
検出を行なうトルクセンサにおいて、前記トルク伝達軸
の回転数に同期させたダートパルス信号を用い、前記磁
性金属薄帯の周方向の特定の一部分の磁気特性変化を1
回転に1つの検出信号として得ることによりトルク検出
を行なうことを特徴とするトルクセンサ。
A magnetic metal ribbon having magnetostriction is fixed to a torque transmission shaft, and non-contact detection of torque is performed by utilizing the fact that the magnetic properties of the magnetic metal ribbon change due to the torque applied to the torque transmission shaft. In the torque sensor, a dart pulse signal synchronized with the rotational speed of the torque transmission shaft is used to detect changes in the magnetic properties of a specific portion of the magnetic metal ribbon in the circumferential direction.
A torque sensor characterized in that torque is detected by obtaining one detection signal for each rotation.
JP4790784A 1983-12-17 1984-03-13 Torque sensor Granted JPS60192233A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4790784A JPS60192233A (en) 1984-03-13 1984-03-13 Torque sensor
DE8484308792T DE3481546D1 (en) 1983-12-17 1984-12-17 TOUCH-FREE TORQUE PROBE.
US06/682,269 US4590807A (en) 1983-12-17 1984-12-17 Torque sensor of noncontact type
EP84308792A EP0146382B1 (en) 1983-12-17 1984-12-17 Torque sensor of noncontact type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4790784A JPS60192233A (en) 1984-03-13 1984-03-13 Torque sensor

Publications (2)

Publication Number Publication Date
JPS60192233A true JPS60192233A (en) 1985-09-30
JPH0522858B2 JPH0522858B2 (en) 1993-03-30

Family

ID=12788445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4790784A Granted JPS60192233A (en) 1983-12-17 1984-03-13 Torque sensor

Country Status (1)

Country Link
JP (1) JPS60192233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760745A (en) * 1986-12-05 1988-08-02 Mag Dev Inc. Magnetoelastic torque transducer
JPH02151739A (en) * 1988-12-02 1990-06-11 Nissan Motor Co Ltd Torque detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589034A (en) * 1981-07-09 1983-01-19 Kosuke Harada Torque sensor by thin amorphous magnetic strip
JPS60177231A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Torque detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589034A (en) * 1981-07-09 1983-01-19 Kosuke Harada Torque sensor by thin amorphous magnetic strip
JPS60177231A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Torque detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760745A (en) * 1986-12-05 1988-08-02 Mag Dev Inc. Magnetoelastic torque transducer
JPH02151739A (en) * 1988-12-02 1990-06-11 Nissan Motor Co Ltd Torque detector

Also Published As

Publication number Publication date
JPH0522858B2 (en) 1993-03-30

Similar Documents

Publication Publication Date Title
JPS6275328A (en) Torque sensor
JPH01187424A (en) Torque sensor
JPS62249026A (en) Torque measuring instrument
JPH0326339B2 (en)
JPH0422830A (en) Torque sensor
US4590807A (en) Torque sensor of noncontact type
Mohri et al. New extensometers using amorphous magnetostrictive ribbon wound cores
US4616424A (en) Magnetic direction sensor
JPS60192233A (en) Torque sensor
US5062307A (en) Strain detector
JP2005321272A (en) Magnetostrictive torque sensor
JPS59166827A (en) Magnetostriction type torque sensor by differential system
JPS6050429A (en) Torque sensor
JPH1194658A (en) Torque sensor
JPS6044839A (en) Torque detecting device
JPS60173433A (en) Torque detector
JPS6182126A (en) Torque sensor
JPH0522859B2 (en)
JP2540865B2 (en) Torque detector
JPS59180338A (en) Torque sensor
JPS60129634A (en) Torque sensor
JPS6141936A (en) Torque sensor
JPS6055682A (en) Torque sensor
JPS61294322A (en) Torque detector
JPH07113698A (en) Torque sensor