JPS6050429A - Torque sensor - Google Patents

Torque sensor

Info

Publication number
JPS6050429A
JPS6050429A JP58158717A JP15871783A JPS6050429A JP S6050429 A JPS6050429 A JP S6050429A JP 58158717 A JP58158717 A JP 58158717A JP 15871783 A JP15871783 A JP 15871783A JP S6050429 A JPS6050429 A JP S6050429A
Authority
JP
Japan
Prior art keywords
torque
magnetic
detection
circuit
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58158717A
Other languages
Japanese (ja)
Other versions
JPH0333216B2 (en
Inventor
Tadahiko Kobayashi
忠彦 小林
Masashi Sahashi
政司 佐橋
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58158717A priority Critical patent/JPS6050429A/en
Priority to EP84305819A priority patent/EP0136086B1/en
Priority to DE8484305819T priority patent/DE3475831D1/en
Priority to US06/643,703 priority patent/US4627298A/en
Priority to CA000462058A priority patent/CA1225846A/en
Publication of JPS6050429A publication Critical patent/JPS6050429A/en
Publication of JPH0333216B2 publication Critical patent/JPH0333216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Abstract

PURPOSE:To perform stable torque detection, by detecting the phase difference caused by the change in magnetic characteristics of a magnetic metal thin belt, which is fixed to a rotary shaft, thereby obtaining a large output. CONSTITUTION:A sine wave from of an oscillator 26 is applied to an exciting coil 24, which is wound around a detecting magnetic core 23. When torque is applied to a torque transmitting shaft 21, the permeability of an annular core (magnetic metal thin belt) 22 is changed. The amount of change is converted into a sine wave voltage by a detecting coil 25, and a rectangular wave 28 is obtained by a Schmitt trigger circuit 27. Phase shift of + or -omegaDELTAL is generated in the sine wave voltage accompanied by the change in permeability. A reference rectangular wave 30 from a rectangular-wave oscillating circuit 29 and the rectangular wave 28 are overlapped in an EX-OR gate circuit 31, and a phase difference time (t) is generated. The time (t) is processed by a pulse modulation circuit 32 and a reference-time generator 33 and detected as a pulse number, which is proportional to the torque value, through a pulse counter 34. Thus the large output is obtained, and the stable detection of the torque is performed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非接触でトルクを検出するトルクセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque sensor that detects torque without contact.

〔発明の技術的背景〕[Technical background of the invention]

トルクは回転駆動系の制御を行なう際の基本量の一つで
ある。トルクを精密に検出するためには、その検出機構
が非接触方式であることが近年、上述したような非接触
方式のドルクセ/すとしてアモルファス磁性合金の薄帯
を利用したものが提案されている(電気学会マグネティ
ックス研究会資料MAG−81−72)。
Torque is one of the basic quantities when controlling a rotational drive system. In order to accurately detect torque, the detection mechanism must be a non-contact method.In recent years, a non-contact method using a thin strip of amorphous magnetic alloy has been proposed as the above-mentioned non-contact method. (IEEJ Magnetics Study Group Material MAG-81-72).

このトルクセンサの概略構成図は第1図に示すようなも
のである。図中1はトルクを検出すべき回転軸、すなわ
ちトルク伝達軸であり、このトルク伝達軸Iにはアモル
ファス磁性合金から形成された環状磁心2が巻回されて
固定されている。この環状磁心2には予めその周方向3
に対して角度0の傾き方向に誘導磁気異方性Ku’ 4
が付与されている。な詔、前記環状磁心2の周囲には例
えば図示しない検出コイルが近接して配設されており、
更にこの検出コイルは図示しない検出回路に接続されて
いる。
A schematic configuration diagram of this torque sensor is shown in FIG. In the figure, reference numeral 1 denotes a rotating shaft on which torque is to be detected, that is, a torque transmission shaft, and an annular magnetic core 2 made of an amorphous magnetic alloy is wound around and fixed to this torque transmission shaft I. This annular magnetic core 2 has a circumferential direction 3 in advance.
induced magnetic anisotropy Ku' in the direction of inclination at an angle of 0 to
has been granted. For example, a detection coil (not shown) is disposed close to the annular magnetic core 2,
Furthermore, this detection coil is connected to a detection circuit (not shown).

上記トルクセンサの原理を概略的に説明する。The principle of the torque sensor described above will be schematically explained.

ここで、説明を簡単にするためにθ〉45°、飽和磁歪
定数J8〉0とする。いま、トルク伝達軸1にトルク5
が加わると、トルク伝達軸1に発状磁心2には+45°
の方向に張力σが、−45゜の方向に圧縮応力−σがそ
れぞれ発生する。これに伴い、環状磁心2には磁気ひず
み効果により+45°方向に誘導磁気異方性Ku″6 
(=3λS・σ)が誘導される。この結果、Ku’とK
u″の合成として誘導磁気異方性はKu 7へ変化する
。一般に、磁性体の透磁率は励磁方向に対する誘導磁気
異方性の方向によって変化する。したがって、環状磁心
2の誘導磁気異方性の方向の変化に伴う透磁率の変化を
1列えば検出コイル及びこれに接続された検出回路によ
り電圧の変化として測定することができ、その値からト
ルク伝達軸lに加えられたトルク5を検出することがで
きる。
Here, in order to simplify the explanation, it is assumed that θ>45° and the saturation magnetostriction constant J8>0. Now, torque 5 is applied to torque transmission shaft 1.
is applied to the torque transmission shaft 1 and the emitted magnetic core 2 is +45°
A tension force σ is generated in the direction of , and a compressive stress −σ is generated in the direction of −45°. Along with this, the annular magnetic core 2 has an induced magnetic anisotropy Ku″6 in the +45° direction due to the magnetostrictive effect.
(=3λS·σ) is induced. As a result, Ku' and K
The induced magnetic anisotropy changes to Ku 7 as a composite of u''. Generally, the magnetic permeability of a magnetic material changes depending on the direction of the induced magnetic anisotropy with respect to the excitation direction. Therefore, the induced magnetic anisotropy of the annular magnetic core 2 The change in magnetic permeability due to the change in direction can be measured as a change in voltage by a detection coil and a detection circuit connected to it in one row, and from that value the torque 5 applied to the torque transmission axis l can be detected. can do.

なお、上記トルクセンサの説明では環状磁心を構成する
磁性体としてアモルファス磁性合金を用いた場合につい
て述べたが、これに限らず軟質磁性を示すものであれば
、例えばパーマロイ(Fe−Ni合金)、センダスト(
Fe −Al−8+合金)、Fe−8i合金など他の磁
性体を用いることができる。
In addition, in the above description of the torque sensor, a case was described in which an amorphous magnetic alloy was used as the magnetic material constituting the annular magnetic core, but the present invention is not limited to this, and as long as it exhibits soft magnetism, for example, permalloy (Fe-Ni alloy), Sendust (
Other magnetic materials such as Fe-Al-8+ alloy) and Fe-8i alloy can be used.

ところで、上述したように磁性金属薄帯からなる環状磁
心の周囲に近接して検出コイルを配設すればトルクの検
出ができるが、その検出機構はトルクセンサの性能を左
右する重要な因子となる。
By the way, as mentioned above, torque can be detected by arranging a detection coil close to the annular magnetic core made of a thin magnetic metal strip, but the detection mechanism is an important factor that affects the performance of the torque sensor. .

従来、上述した検出機構としては第2図(a)及帯の環
状磁心12を固定し、ソレノイドコイル13を用いて環
状磁心12の周方向に励磁し、さらに検出巻線14を巻
いて出方を検出するものである。また、同図色)はトル
ク伝達軸11に磁性金属薄帯の環状磁心12を固定し、
その外周に巻かれたソレノイドコイル13′ヲ用いて環
状磁心12の中方向に励磁し、さらにその外側に検出巻
線14′を巻いて出方を検出するものである。
Conventionally, the above-mentioned detection mechanism fixed the annular magnetic core 12 as shown in FIG. This is to detect. In addition, in the same figure (color), an annular magnetic core 12 made of a magnetic metal ribbon is fixed to a torque transmission shaft 11.
A solenoid coil 13' wound around the outer periphery of the annular magnetic core 12 is used to excite the annular magnetic core 12 in the inward direction, and a detection winding 14' is further wound around the outside of the annular magnetic core 12 to detect its exit.

すなわち、第2図(al及び(b)図示の検出機構では
いずれも透磁率の変化をソレノイドコイルと検出巻線と
の相互誘導による電圧の変化としてとらえ、増幅回路を
経て出力を得るものである。
That is, in both the detection mechanisms shown in Figures 2 (al and 2), a change in magnetic permeability is interpreted as a change in voltage due to mutual induction between the solenoid coil and the detection winding, and an output is obtained via an amplifier circuit. .

C背景技術の問題点〕 上述したような検出機構で検出出力を実用レベルにする
ためにはトルク伝達軸に巻いて固定する環状磁心に予め
大きな誘導磁気異方性を付与しなければならず、また、
励磁用のソレノイドコイルには100 mA以上の励磁
電流を必要とするため磁気回路上不都合な点が生じる。
C. Problems with Background Art] In order to achieve a practical level of detection output with the detection mechanism described above, it is necessary to impart large induced magnetic anisotropy to the annular magnetic core that is wound and fixed around the torque transmission shaft in advance. Also,
Since the excitation solenoid coil requires an excitation current of 100 mA or more, there are disadvantages in terms of the magnetic circuit.

更に、透磁率の変化を電圧の変化としてとらえているた
めに、高倍率の増幅回路を必要とし、電気回路が複雑と
なる。
Furthermore, since changes in magnetic permeability are interpreted as changes in voltage, a high-magnification amplification circuit is required, making the electrical circuit complicated.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであり
、大きな出力を得ることができ、安定したトルク検出を
行えるトルクセンサを提供しようとするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide a torque sensor that can obtain a large output and perform stable torque detection.

〔発明の概要〕[Summary of the invention]

本発明のトルクセンサは、回転軸に固定されを位相差と
して検出することを特徴とするものである。
The torque sensor of the present invention is characterized in that it is fixed to a rotating shaft and detects it as a phase difference.

このように環状磁心の磁気特性(透磁率)の変化を位相
差として検出すれば、透磁率の変化を電圧の変化として
とらえる必要がないため高倍率の増幅回路が省略され、
また、励磁電流も大幅に低減できる。この結果、電気回
路を簡素化でき、Vf1気回路上の不都合も生じない。
If changes in the magnetic properties (magnetic permeability) of the annular magnetic core are detected as phase differences in this way, there is no need to detect changes in magnetic permeability as changes in voltage, so a high-magnification amplifier circuit can be omitted.
Furthermore, the excitation current can also be significantly reduced. As a result, the electric circuit can be simplified and no inconvenience occurs in the Vf1 air circuit.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図〜第5図を参照して説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 5.

第3図中21は直径55闘のトルク伝達軸であり、この
トルク伝達軸21には環状磁心22が固定されている。
Reference numeral 21 in FIG. 3 is a torque transmission shaft having a diameter of 55 mm, and an annular magnetic core 22 is fixed to this torque transmission shaft 21.

この環状磁心22は単ロール法により作製された幅5m
、厚さ3011mの(F’eo、6! Nio、s C
ro、os )ts 8itt B14 アモルファス
磁性合金の薄帯を前記トルク伝達軸21に一周巻いて固
定されている。この環状磁心22には予めその周方向に
対して角度θの傾き方向に誘状磁心22の上方には酸化
物磁性体からなるU型の検出用磁心23が非接触で周方
向に配設されている。この検出用磁心23には励磁用コ
イル24と検出用コイル25とが施されている。
This annular magnetic core 22 has a width of 5 m manufactured by a single roll method.
, 3011 m thick (F'eo, 6! Nio, s C
ro, os) ts 8itt B14 A thin ribbon of amorphous magnetic alloy is wound around the torque transmission shaft 21 and fixed thereto. In this annular magnetic core 22, a U-shaped detection magnetic core 23 made of an oxide magnetic material is arranged in advance in the circumferential direction in a non-contact manner above the dielectric magnetic core 22 at an angle θ with respect to the circumferential direction. ing. This detection magnetic core 23 is provided with an excitation coil 24 and a detection coil 25.

前記環状磁心22の磁気特性の変化により生じる位相差
を検出するための回路構成を第4図に示す。
FIG. 4 shows a circuit configuration for detecting a phase difference caused by a change in the magnetic properties of the annular magnetic core 22.

まず、発振器26より得られる正弦波を検出用磁心23
に施している励磁用コイル24に加える。いま、トルク
伝達軸21にトルクが加わると、それに伴い環状磁心2
2の透磁率も変化する。この変化量を検出用コイル25
で正弦波電圧に変換し、シュミット・トリガー回路27
で矩形波28を得る。ここで、透磁率の変化に伴う正弦
波電圧に±ωΔL の位相ずれを生じる。
First, a sine wave obtained from the oscillator 26 is transmitted to the detection magnetic core 23.
It is added to the excitation coil 24 installed in the Now, when torque is applied to the torque transmission shaft 21, the annular magnetic core 2
The magnetic permeability of 2 also changes. The coil 25 for detecting this amount of change
Convert it to a sine wave voltage with Schmitt trigger circuit 27
A square wave 28 is obtained. Here, a phase shift of ±ωΔL occurs in the sinusoidal voltage due to a change in magnetic permeability.

一方、矩形波発振回路29では苓準位相となる矩形波3
0を成形し、EX−ORゲート回路31で前記矩形波2
8と矩形波30とを重ね合せ、位相差時間tを生じざ′
せる。次いで、この位相差時間tをパルス変調回路32
と基準時間発生器33と1こより処理し、パルスカウン
タ34を経てトルク値と比例するパルス数として検出す
ることができる。
On the other hand, in the rectangular wave oscillation circuit 29, the rectangular wave 3 having a quasi-phase
0, and the EX-OR gate circuit 31 generates the rectangular wave 2.
8 and the rectangular wave 30 to produce a phase difference time t.
let Next, this phase difference time t is determined by the pulse modulation circuit 32.
and a reference time generator 33, and can be detected as a pulse number proportional to the torque value via a pulse counter 34.

上記トルクセンサを用いてトルク伝達軸21の動トルク
を検出したところ、第5図に示す如く極めて優れた線形
性を有していることが判明した。なお第5図の出力はパ
ルス数をDA変換器により電圧に変換したものである。
When the dynamic torque of the torque transmission shaft 21 was detected using the torque sensor, it was found that it had extremely excellent linearity as shown in FIG. Note that the output in FIG. 5 is the number of pulses converted into voltage by a DA converter.

また、従来のソレノイドコイルを用いて環状磁心の巾方
向に励磁するトルクセンサでは100 mA程度の励磁
電流を必要としていたのに対し、上記トルクセンサでは
励磁電流は5mA程度であり、磁気回路上の不都合は生
じない。しかも、励磁電流を小さくできることから、強
磁性体からなるトルク伝達軸の影響も大巾に低減するこ
とができる。更に、従来のトルクセンサと異なり、高倍
率の増幅回路を省略することができるので、電気回路を
簡゛素化することができる。しかも、デジタル処理によ
るため、出力はDA変換器により任意に行うことができ
、安定したトルク検出が可能となる。また、パルス数を
直接マイクロコンピュータに導入することができるので
、付加価値が大きい。
In addition, while a conventional torque sensor that uses a solenoid coil to excite the annular magnetic core in the width direction requires an excitation current of about 100 mA, the above-mentioned torque sensor requires an excitation current of about 5 mA. No inconvenience will occur. Moreover, since the excitation current can be reduced, the influence of the torque transmission shaft made of ferromagnetic material can also be greatly reduced. Furthermore, unlike conventional torque sensors, a high-magnification amplifier circuit can be omitted, so the electric circuit can be simplified. Moreover, since digital processing is used, the output can be arbitrarily performed using a DA converter, making stable torque detection possible. Furthermore, since the pulse number can be directly introduced into the microcomputer, there is great added value.

なお、上記実施例と同様な効果は環状磁心としてパーマ
ロイ、センダスト、Fe−8i合金、また検出用磁心と
してアモルファス合金、パーマロイ、センダス)、Fe
−8i合金を用いた場合にも得られた。
The same effect as in the above embodiment can be obtained by using permalloy, Sendust, Fe-8i alloy as the annular magnetic core, and amorphous alloy, permalloy, Sendust), Fe-8i alloy as the detection core.
It was also obtained when -8i alloy was used.

また、上記実施例のトルクセンサでは、トルクの正負反
転によって出力の線形性が悪くなるが、第6図及び第7
図に示すような構造にすれば、トルク\が正負反転して
も出力の線形性を改善することができる。
In addition, in the torque sensor of the above embodiment, the linearity of the output deteriorates due to the positive/negative reversal of the torque.
With the structure shown in the figure, the linearity of the output can be improved even if the torque is reversed.

第6図中41はトルク伝達軸で\磯v1このトルク伝達
軸41には上記実施例で用い葛れたのと同一のアモルフ
ァス磁性合金の薄帯からなる一対の環状磁心42..4
2.が巻回されて固定されている。これら環状磁心(z
l−,42,のうち一方の環状磁心42□には予めその
周方向に対42ヨにはその周方向に対して角度−lの傾
き方向にそれぞれ誘導磁気異方性が付与されている。ま
た、これら環状磁心42..42.の上方にはそれぞれ
酸化物磁性体からなるU形の検出用磁心4J、、43.
が非接触で周方向に配設されている。これら検出用磁心
431.4B。
Reference numeral 41 in FIG. 6 denotes a torque transmission shaft. This torque transmission shaft 41 has a pair of annular magnetic cores 42 made of a ribbon of the same amorphous magnetic alloy as that used in the above embodiment. .. 4
2. is wrapped and fixed. These annular magnetic cores (z
One of the annular magnetic cores 42 □ and 42 is provided with induced magnetic anisotropy in the direction of inclination at an angle -l with respect to the circumferential direction. Moreover, these annular magnetic cores 42. .. 42. Above the U-shaped detection cores 4J, 43., each made of an oxide magnetic material.
are arranged circumferentially in a non-contact manner. These detection magnetic cores 431.4B.

にはそれぞれ励磁用コイル44..44.及び検出用コ
イル”1e45Rが施されている。
are each provided with an excitation coil 44. .. 44. and a detection coil "1e45R".

前記環状磁心42m 、42.の磁気特性の変化により
生じる位相差を検出するための回路構成を第7図に示す
Said annular magnetic core 42m, 42. FIG. 7 shows a circuit configuration for detecting a phase difference caused by a change in the magnetic properties of the magnetic field.

まず、発振器46.より得られる正弦波を検出用磁心4
3mに施した励磁用コイル441に加え、発振器46.
により得られる正弦波を検出用磁心43.に施した励磁
用コイル44!に加える。いま、トルク伝達軸41にト
ルクが加わると、環状磁心42m 、42.の透磁率は
それぞれ増減の変化を生じる。この変化量を検出用コイ
ル45..45.で正弦波電圧に変換す王はそれぞれ±
ωΔLの位相差を生じる。すなわち、トルクが0の時検
出用コイル45、と検出用コイル45.との−間には位
相差を生じないが、Tなる値のトルクが加わった一場合
、検出用コイル45.は+ωΔLの進み位相となり、検
出用コイル45.は−ωΔLの遅れ位相となる。したが
って、検出用コイル4−5.と検出用コイル452との
間には2ωΔL(71)位相差が生じる。次に、得られ
た正弦波電圧をシュミット・トリガー回路47、.47
.により矩形波4B、、48tに変換する。次いで、E
X−OR回路49で矩形波48、と矩形波48.とを重
ね合せ、位相差時間tを生じさせる。更に、この位相差
時間tをパルス変調回路50と基準時間発生器51とに
より処理し、パルスカウンタ52を経てトルク値と比例
するパルス数として検出することができる。
First, the oscillator 46. Magnetic core 4 for detecting the sine wave obtained from
In addition to the excitation coil 441 installed at 3m, an oscillator 46.
The sine wave obtained by the detection magnetic core 43. Excitation coil 44 applied to! Add to. Now, when torque is applied to the torque transmission shaft 41, the annular magnetic cores 42m, 42. The magnetic permeability of each increases or decreases. This amount of change is detected by the detection coil 45. .. 45. Convert to sinusoidal voltage with ±
A phase difference of ωΔL is generated. That is, when the torque is 0, the detection coil 45 and the detection coil 45. Although there is no phase difference between the detection coil 45. and the detection coil 45. has an advanced phase of +ωΔL, and the detection coil 45. has a delayed phase of −ωΔL. Therefore, the detection coil 4-5. A phase difference of 2ωΔL(71) occurs between the detection coil 452 and the detection coil 452. Next, the obtained sinusoidal voltage is applied to Schmitt trigger circuits 47, . 47
.. is converted into a rectangular wave 4B, , 48t. Then E
The X-OR circuit 49 generates a rectangular wave 48, and a rectangular wave 48. are superimposed to generate a phase difference time t. Further, this phase difference time t can be processed by a pulse modulation circuit 50 and a reference time generator 51, and detected as a pulse number proportional to the torque value via a pulse counter 52.

上記トルクセンサを用いてトルク伝達軸4Iの動トルク
を検出したところ、第8図に示す如く、パルス数をDA
変換器で変換した出力電圧とトルク値とはトルクが正負
反転しても優れた線形性を有していることが判明した。
When the dynamic torque of the torque transmission shaft 4I was detected using the above torque sensor, as shown in Fig. 8, the number of pulses was DA
It was found that the output voltage and torque value converted by the converter had excellent linearity even when the torque was reversed.

また、上記実施例のトルクセンサと同様な効果が得られ
ることは勿論である。
Moreover, it goes without saying that the same effects as the torque sensor of the above embodiment can be obtained.

なお、第6図図示のトルクセンサでは一対のUgの磁心
を用いたが、これに限らず第9図(a)図示の磁心61
に同図(b)に示すように励磁用コイル62と検出用フ
ィル63を施したもの、あるいは、第10図体)図示の
磁心71に同図(b)に示すように励磁用コイル12と
検出用コイル73を施したものでも同様に精度の高いト
ルク検出を行なうことができる。
Although the torque sensor shown in FIG. 6 uses a pair of Ug magnetic cores, the present invention is not limited to this, and the magnetic core 61 shown in FIG.
The excitation coil 62 and the detection filter 63 are applied to the magnetic core 71 as shown in FIG. Similarly, highly accurate torque detection can be performed even with the one provided with the secondary coil 73.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、小さな励磁電流でト
ルク伝達軸の材質の影響を受けずに広範囲のトルク伝達
軸のトルクを高精度で検出することができる等工業上極
めて実用性の高いトルクセンサを提供することができる
ものである。
As described in detail above, according to the present invention, the torque of a wide range of torque transmission shafts can be detected with high accuracy with a small excitation current without being affected by the material of the torque transmission shaft, and is extremely practical in industry. It is possible to provide a torque sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非接触方式のトルクセンサの原理図、第2図(
al及び(blはそれぞれ従来のトルクセンサの構成図
、第3図は本発明の実施例におけるトルクセンサの構成
図、第4図は同トルクセンサの回路構成図、第5図は同
トルクセンサのトルク検出特性図、第6図は本発明の他
の実施例におけるトルクセンサの構成図、第7図は同ト
ルクセンサの回路構成図、第8図は同トルクセンサのト
ルク検出特性図、第9図ta)及び第10図(a)はそ
れぞれ本発明の更に他の実施例において用いられる磁心
の斜視図、第9図少)及び第10図向はそれぞれ第9図
(al及び第10図ca>の磁心の巻線の略記図である
。 21.41・・・トルク伝達軸、22.42+。 42!・・・環状磁心、2 J p 4 j 1 e 
” x #61.71・・・磁心、24,44. ・4
4! p石2,72・・・励磁用コイル、25,451
゜45t 、63.73・・・検出用コイル、26゜4
6、・46!・・・発振器、27,47..47!・・
・シュミット・トリガー回路、2B、30゜4B、、4
B、・・・矩形波、29・・・矩形波発振回路、31.
49・・・′EX−ORゲート回路、32゜50・・・
パルス変調回路、33,57.・・基準時間発生Ma、
s4.tsz・・・パルスカウンタ。 出願人代理人 弁理士 鈴 江 武 彦js9 (a) (a) (b) 図 (b)
Figure 1 shows the principle of a non-contact torque sensor, Figure 2 (
al and (bl are respectively block diagrams of conventional torque sensors, Fig. 3 is a block diagram of a torque sensor according to an embodiment of the present invention, Fig. 4 is a circuit block diagram of the same torque sensor, and Fig. 5 is a block diagram of the same torque sensor. Torque detection characteristic diagram; FIG. 6 is a configuration diagram of a torque sensor according to another embodiment of the present invention; FIG. 7 is a circuit configuration diagram of the same torque sensor; FIG. 8 is a torque detection characteristic diagram of the same torque sensor; Figure ta) and Figure 10 (a) are respectively perspective views of the magnetic core used in still other embodiments of the present invention, Figure 9 (a) and Figure 10 are respectively Figure 9 (al) and Figure 10 (ca). 21.41... Torque transmission shaft, 22.42+. 42!... Annular magnetic core, 2 J p 4 j 1 e
” x #61.71...Magnetic core, 24,44.・4
4! p stone 2,72... excitation coil, 25,451
゜45t, 63.73...Detection coil, 26゜4
6,・46! ...oscillator, 27, 47. .. 47!・・・
・Schmitt trigger circuit, 2B, 30° 4B,, 4
B, . . . rectangular wave, 29 . . . rectangular wave oscillation circuit, 31.
49...'EX-OR gate circuit, 32°50...
Pulse modulation circuit, 33, 57. ...Reference time occurrence Ma,
s4. tsz...Pulse counter. Applicant's agent Patent attorney Suzue Takehikojs9 (a) (a) (b) Figure (b)

Claims (1)

【特許請求の範囲】[Claims] 磁歪を有する磁性金属薄帯をトルク伝達軸に巻いて固定
し、該軸に加えられたトルクにより前記磁性金属薄帯の
磁気特性が変化することを利用してトルクの非接触検出
を行うトルクセンサにおいて、前記磁性金属薄帯の磁気
特性の変化により生じる位相差を検出することを特徴と
するトルクセンサ。
A torque sensor that performs non-contact detection of torque by winding and fixing a magnetostrictive magnetic metal ribbon around a torque transmission shaft and utilizing the fact that the magnetic properties of the magnetic metal ribbon change due to the torque applied to the shaft. A torque sensor, characterized in that it detects a phase difference caused by a change in the magnetic properties of the magnetic metal ribbon.
JP58158717A 1983-08-30 1983-08-30 Torque sensor Granted JPS6050429A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58158717A JPS6050429A (en) 1983-08-30 1983-08-30 Torque sensor
EP84305819A EP0136086B1 (en) 1983-08-30 1984-08-24 A torque sensor of the noncontact type
DE8484305819T DE3475831D1 (en) 1983-08-30 1984-08-24 A torque sensor of the noncontact type
US06/643,703 US4627298A (en) 1983-08-30 1984-08-24 Torque sensor of the noncontact type
CA000462058A CA1225846A (en) 1983-08-30 1984-08-29 Torque sensor of the noncontact type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158717A JPS6050429A (en) 1983-08-30 1983-08-30 Torque sensor

Publications (2)

Publication Number Publication Date
JPS6050429A true JPS6050429A (en) 1985-03-20
JPH0333216B2 JPH0333216B2 (en) 1991-05-16

Family

ID=15677805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158717A Granted JPS6050429A (en) 1983-08-30 1983-08-30 Torque sensor

Country Status (1)

Country Link
JP (1) JPS6050429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557974A (en) * 1993-08-26 1996-09-24 Matsushita Electric Industrial Co., Ltd. Torque sensor using magnetostrictive alloy and method of manufacturing the same
US6094995A (en) * 1997-08-29 2000-08-01 Kabushiki Kaisha Toyoda Torque sensor using power measurement
CN101871827A (en) * 2010-06-04 2010-10-27 重庆大学 Reading head of ring type spatial array torque sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557974A (en) * 1993-08-26 1996-09-24 Matsushita Electric Industrial Co., Ltd. Torque sensor using magnetostrictive alloy and method of manufacturing the same
US5675886A (en) * 1993-08-26 1997-10-14 Matsushita Electric Industrial Co. Ltd. Method of manufacturing a magnetostrictive alloy torque sensor
US6094995A (en) * 1997-08-29 2000-08-01 Kabushiki Kaisha Toyoda Torque sensor using power measurement
CN101871827A (en) * 2010-06-04 2010-10-27 重庆大学 Reading head of ring type spatial array torque sensor

Also Published As

Publication number Publication date
JPH0333216B2 (en) 1991-05-16

Similar Documents

Publication Publication Date Title
JPS6275328A (en) Torque sensor
JPS62249026A (en) Torque measuring instrument
JPH0769130B2 (en) Magnetic displacement sensor
JPH0326339B2 (en)
JPH0422830A (en) Torque sensor
US4590807A (en) Torque sensor of noncontact type
JPS6050429A (en) Torque sensor
US4616424A (en) Magnetic direction sensor
JP2005321272A (en) Magnetostrictive torque sensor
JPS6044839A (en) Torque detecting device
JPH1194658A (en) Torque sensor
JPS60192233A (en) Torque sensor
JP2540865B2 (en) Torque detector
JPH0522859B2 (en)
JPS6182126A (en) Torque sensor
JPH03297215A (en) Magneto-sensitive pulse generator using coaxial cylindrical composite magnetic body
JPS63172932A (en) Torque detector
JPH01292226A (en) Torque detector
JPS6055682A (en) Torque sensor
JPS60129634A (en) Torque sensor
JPH0477268B2 (en)
JPS6044840A (en) Torque detecting device
JPS6044841A (en) Torque detecting device
JPS61294322A (en) Torque detector
JPS61245032A (en) Torque detecting device