JP2540865B2 - Torque detector - Google Patents

Torque detector

Info

Publication number
JP2540865B2
JP2540865B2 JP62154919A JP15491987A JP2540865B2 JP 2540865 B2 JP2540865 B2 JP 2540865B2 JP 62154919 A JP62154919 A JP 62154919A JP 15491987 A JP15491987 A JP 15491987A JP 2540865 B2 JP2540865 B2 JP 2540865B2
Authority
JP
Japan
Prior art keywords
coil
magnetostrictive film
circuit
film
passive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62154919A
Other languages
Japanese (ja)
Other versions
JPS63317732A (en
Inventor
和憲 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP62154919A priority Critical patent/JP2540865B2/en
Publication of JPS63317732A publication Critical patent/JPS63317732A/en
Application granted granted Critical
Publication of JP2540865B2 publication Critical patent/JP2540865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,例えば回転軸などの受動軸の軸トルクを非
接触で測定する,出力精度に優れた,磁歪式トルク検出
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a magnetostrictive torque detection device which measures the axial torque of a passive shaft such as a rotary shaft in a non-contact manner and has excellent output accuracy.

〔従来技術〕[Prior art]

従来,受動軸の軸トルクを測定する手段としては,回
転軸にストレンゲージを貼り付けて,その抵抗値変化に
よりトルクを検出する方法,駆動側と負荷側との間に既
知のヤング率を有する中間軸を配設して,その中間軸の
ねじれを位相差として検出する方法等がある。しかし,
ストレンゲージ法は、ゲージの貼り付けの良否如何が精
度を左右するし,テレメータ等を必要として装置が大き
くなる。また,中間軸のねじれによる位相差を検出する
方法は,特定の中間軸を必要とするため測定装置が複雑
となり,また電気回路も複雑であり,高価である。
Conventionally, as a means for measuring the shaft torque of a passive shaft, a method of sticking a strain gauge on the rotating shaft and detecting the torque by changing the resistance value has a known Young's modulus between the drive side and the load side. There is a method in which an intermediate shaft is provided and the twist of the intermediate shaft is detected as a phase difference. However,
In the strain gauge method, the accuracy depends on whether the gauge is attached or not, and a telemeter or the like is required, and the device becomes large. In addition, the method of detecting the phase difference due to the twist of the intermediate shaft requires a specific intermediate shaft, which complicates the measuring device and the electric circuit, which is expensive.

一方,受動軸の外周に複数条の細長い磁性層を固着し
て,その周囲に受動軸から離れて検出コイルを配置した
発振回路を用いたものが提案されている(特開昭60−19
5430)。
On the other hand, it has been proposed to use an oscillating circuit in which a plurality of elongated magnetic layers are fixed to the outer circumference of a passive shaft, and a detection coil is arranged around the thin magnetic layer (apart from JP-A-60-19).
5430).

このものは,第6図に示すごとく,受動軸1の外周に
軸方向に45度の角度をもって複数条の細長い磁性層90を
固着し,この磁性層90を包囲するように上記軸1と所定
のギャップXを隔てて検出コイル91,92を巻回したもの
である。そして,この検出コイル91,92を用いて,上記
磁性層90が固着された受動軸1を磁心とする自励式発振
回路(第7図)を構成し,トルク印加時の上記磁性層90
の透磁率変化によって生ずる上記発振回路の発振周波数
の変化を検出することにより,印加されたトルクの大き
さと方向を無接触で検出しようとするものである。
As shown in FIG. 6, a plurality of elongated magnetic layers 90 are fixed to the outer periphery of the passive shaft 1 at an angle of 45 degrees in the axial direction, and the magnetic layer 90 is surrounded by the predetermined axis 1 so as to surround the magnetic layer 90. The detection coils 91 and 92 are wound with a gap X therebetween. The detection coils 91 and 92 are used to form a self-excited oscillation circuit (FIG. 7) having the passive shaft 1 to which the magnetic layer 90 is fixed as a magnetic core, and the magnetic layer 90 when torque is applied.
By detecting the change in the oscillation frequency of the oscillation circuit caused by the change in magnetic permeability, the magnitude and direction of the applied torque are detected without contact.

しかして,印加トルクを電気信号に変換するための電
気回路は,第7図に示すごとく,磁性層90が固着された
受動軸1を磁心として,検出コイル91,92と共に構成さ
れた,磁励式発振回路9である。同図に示されるもの
は,抵抗コンデンサ型インバータである。また,周波数
変化の検出は,周知の周波数−電圧変換器などにより行
う。
Therefore, as shown in FIG. 7, the electric circuit for converting the applied torque into an electric signal is a magnetic excitation type, which is composed of the passive shaft 1 to which the magnetic layer 90 is fixed as a magnetic core and the detection coils 91 and 92. The oscillator circuit 9. What is shown in the figure is a resistance capacitor type inverter. The frequency change is detected by a known frequency-voltage converter or the like.

なお,同図においてVCCは駆動電源,VOは出力電圧であ
る。
In the figure, VCC is the drive power supply and VO is the output voltage.

この従来方法は,磁性層と検出コイルとの発振回路に
よって上記のごとくトルクの大きさと方向とを測定で
き,また装置も簡単である点で優れている。
This conventional method is superior in that the magnitude and direction of the torque can be measured as described above by the oscillation circuit of the magnetic layer and the detection coil, and the device is simple.

しかしながら,このトルク検出装置における発振回路
9は,受動軸1に固着した前記磁性層90と,これを包囲
するように配置した検出コイル91,92との間にギャップ
Xを有している。このギャップXは,空気層であると共
に受動軸が回転する際その若干の偏心,振動等によりそ
の間隔が変化することがある。そのため,磁性層におけ
る透磁率変化を検出コイルによって検出し,出力する発
振回路の発振周波数に,上記ギャップXの存在が影響
し,その出力VOの精度,感度が低下する。
However, the oscillation circuit 9 in this torque detection device has a gap X between the magnetic layer 90 fixed to the passive shaft 1 and the detection coils 91, 92 arranged so as to surround the magnetic layer 90. The gap X is an air layer, and when the passive shaft rotates, the gap may change due to slight eccentricity, vibration, or the like. Therefore, the presence of the gap X affects the oscillation frequency of the oscillation circuit that detects and outputs the change in permeability in the magnetic layer by the detection coil, and the accuracy and sensitivity of the output VO decrease.

〔解決すべき問題点〕[Problems to be solved]

本発明は,上記従来装置における透磁率変化の検出
が,回転側(回転軸)と固定側(検出コイル)の両者に
おいて行われ,両者間にギャップがあるため,検出精
度,感度が低いことを解明し,かかる問題を解決しよう
とするものである。
According to the present invention, the change in magnetic permeability in the above conventional device is detected on both the rotating side (rotating shaft) and the fixed side (detecting coil), and since there is a gap between the two, the detection accuracy and sensitivity are low. It is to clarify and solve such problems.

即ち,本発明は,発振回路を特定の構成とすることに
より,検出精度,感度に優れた磁歪式のトルク検出装置
を提供しようとするものである。
That is, the present invention aims to provide a magnetostrictive torque detection device having excellent detection accuracy and sensitivity by forming the oscillation circuit in a specific configuration.

〔問題点の解決手段〕 本発明は,トルクを受ける受動軸の外周に周回させて
固着した磁歪膜と,該磁歪膜の上に周回したソレノイド
コイルと,該ソレノイドコイルと直列に接続したコンデ
ンサとにより共振回路を構成し,該共振回路を前記受動
軸に固着すると共に,磁心とこれに巻回したコイルとか
らなる入力コイル及び出力コイルを1組とする検出部を
設け,該検出部の入力コイルと出力コイルとは前記受動
軸の両側に前記ソレノイドコイルに対向して空隙をもっ
てそれぞれ配置し,上記共振回路と検出部とにより上記
共振回路の共振周波数により発振する発振回路を構成
し,トルクによる磁歪膜の透磁率変化を発振周波数の変
化として検出することを特徴とするトルク検出装置にあ
る。
[Means for Solving Problems] According to the present invention, a magnetostrictive film that is fixed to the outer circumference of a passive shaft that receives a torque is provided, a solenoid coil that is wound on the magnetostrictive film, and a capacitor that is connected in series with the solenoid coil. A resonance circuit is constituted by the above, the resonance circuit is fixed to the passive shaft, and a detection unit having a set of an input coil and an output coil composed of a magnetic core and a coil wound around the magnetic core is provided, and an input of the detection unit is provided. A coil and an output coil are arranged on both sides of the passive shaft so as to face the solenoid coil with a gap therebetween, and the resonance circuit and the detection unit form an oscillation circuit that oscillates at the resonance frequency of the resonance circuit. A torque detection device is characterized by detecting a change in magnetic permeability of a magnetostrictive film as a change in oscillation frequency.

本発明において,上記磁歪膜は前記従来装置における
磁性層に対応するものである。しかして,本発明におい
て最も重要なことは,磁歪膜の上にソレノイドコイルを
周回し,該ソレノイドコイルとコンデンサとを直列に接
続して磁歪膜と共に共振回路を構成し,該共振回路を受
動軸に固定したことである。特に,前記従来技術の発振
回路に相当する回路は,磁歪膜とソレノイドコイル及び
コンデンサによる共振回路として構成し,この磁歪膜と
ソレノイドコイルとの間には,ギャップを設けず共振回
路を受動軸上に固着したことにある。そして,この共振
回路における共振周波数を受動軸外の検出部によって検
出するのである。
In the present invention, the magnetostrictive film corresponds to the magnetic layer in the conventional device. The most important thing in the present invention is that the solenoid coil is wound on the magnetostrictive film and the solenoid coil and the capacitor are connected in series to form a resonance circuit together with the magnetostrictive film. It is fixed to. In particular, the circuit corresponding to the above-mentioned oscillation circuit of the prior art is configured as a resonance circuit including a magnetostrictive film, a solenoid coil, and a capacitor, and the resonance circuit is provided on the passive axis without providing a gap between the magnetostrictive film and the solenoid coil. It has stuck to. Then, the resonance frequency in this resonance circuit is detected by the passive off-axis detector.

本発明において,受動軸に固着した磁歪膜の磁気異方
性の方向は,透磁率の変化量及び方向に影響を与える。
上記磁気異方性の方向を受動軸の軸方向と45度の角度に
した場合には,トルクの印加方向が逆転すると透磁率の
変化方向(増或いは減)に逆転し,その変化量もトルク
印加方向に対して対称となり好ましい。また,磁歪膜の
固着は,受動軸においてトルク測定を行おうとする位置
の全周に行う。
In the present invention, the direction of magnetic anisotropy of the magnetostrictive film fixed to the passive axis affects the amount and direction of change in magnetic permeability.
When the direction of the magnetic anisotropy is set at an angle of 45 degrees with the axial direction of the passive axis, when the direction of torque application reverses, the direction of magnetic permeability changes (increases or decreases) and the amount of change also changes. It is preferable because it is symmetrical with respect to the application direction. Also, the magnetostrictive film is fixed on the entire circumference of the position on the passive shaft where the torque is to be measured.

また,磁歪膜は,第2実施例に示すごとく,受動軸の
外周の一部分にのみ固着し,他の部分にはパーマロイ膜
等の高透磁率膜を配設することもできる。
Further, as shown in the second embodiment, the magnetostrictive film may be fixed to only a part of the outer circumference of the passive shaft, and a high magnetic permeability film such as a permalloy film may be provided on the other part.

磁歪膜としては,ニッケル箔,パーマロイ箔,非晶質
の磁性合金箔などを用いる。
As the magnetostrictive film, nickel foil, permalloy foil, amorphous magnetic alloy foil, or the like is used.

ソレノイドコイルは,上記磁歪膜の上に導線を巻回す
ることにより構成し,該導線はコンデンサと直列に接続
する。これにより閉じた共振回路を構成する。
The solenoid coil is constructed by winding a conducting wire on the magnetostrictive film, and the conducting wire is connected in series with the capacitor. This constitutes a closed resonant circuit.

また,共振回路における磁歪膜,ソレノイドコイル及
びコンデンサは軸上に固着等により配設する。
Further, the magnetostrictive film, solenoid coil and capacitor in the resonance circuit are fixedly mounted on the shaft.

また,本発明のトルク検出装置は,車両駆動系,ステ
アリング系,その他の回転系のトルクを非接触で測定す
る場合,更にはこれら回転系に実装してトルクを検出
し,回転系の制御を行わせる場合に特に優れた効果を発
揮する。
Further, when the torque of the vehicle drive system, steering system, and other rotary systems is measured in a non-contact manner, the torque detection device of the present invention is further mounted on these rotary systems to detect the torque and control the rotary system. When it is performed, it exerts a particularly excellent effect.

〔作 用〕[Work]

本発明においては,受動軸にトルクが加わると磁歪膜
に応力が加わり,その透磁率が変化する。その結果,ソ
レノイドコイルのインダクタンスが変化する。そのた
め,受動軸上に構成した共振回路の共振周波数が変化
し,受動軸外に設けた検出部における発振周波数が変化
する。透磁率の変化量は,トルク量に対応するため,発
振周波数の変化量から印加トルクが検出できる。
In the present invention, when torque is applied to the passive shaft, stress is applied to the magnetostrictive film and its magnetic permeability changes. As a result, the inductance of the solenoid coil changes. Therefore, the resonance frequency of the resonance circuit formed on the passive axis changes, and the oscillation frequency in the detection unit provided outside the passive axis changes. Since the amount of change in magnetic permeability corresponds to the amount of torque, the applied torque can be detected from the amount of change in oscillation frequency.

〔効 果〕[Effect]

本発明によれば,共振回路を受動軸上に配設したの
で,磁歪膜の透磁率変化はソレノイドコイルによって直
接キャッチされて共振周波数に変化を与える。それ故,
磁歪膜と検出コイルとの間にギャップを有する前記従来
技術に比して,その検出精度及び感度は極めて優れてい
る。
According to the present invention, since the resonance circuit is arranged on the passive shaft, the change in permeability of the magnetostrictive film is directly caught by the solenoid coil to change the resonance frequency. Therefore,
The detection accuracy and sensitivity are extremely excellent as compared with the above-mentioned conventional technique having a gap between the magnetostrictive film and the detection coil.

また,前記従来技術は,磁性層(磁歪膜)にギャップ
を介して検出コイルを対向させているため,回転方向に
沿って磁歪膜の不均一性,固着の不均一性がある場合,
軸の回転角度に対して出力変動が生ずる。しかし本発明
では,このような不均一性があっても全体の透磁率変化
で発振周波数が決定されるため,回転に対して出力の変
動を生じない。
Further, in the above-mentioned conventional technique, since the detection coil is opposed to the magnetic layer (magnetostrictive film) via the gap, when there is nonuniformity of the magnetostrictive film or nonuniformity of fixation along the rotation direction,
The output varies with the rotation angle of the shaft. However, in the present invention, even if there is such non-uniformity, the oscillation frequency is determined by the change in the overall magnetic permeability, so that the output does not fluctuate with respect to the rotation.

また,受動軸外に設けた検出部への信号伝達は,磁歪
膜とは別に設けたソレノイドコイルによって,周波数と
して伝送するので,S/N比が高く,検出部の励磁コイルの
パワーが少なくて良い。例えば,5ボルト程度のオペアン
プで直接駆動が可能である。
In addition, the signal transmission to the detector provided outside the passive axis is transmitted as frequency by the solenoid coil provided separately from the magnetostrictive film, so the S / N ratio is high and the power of the exciting coil of the detector is small. good. For example, it can be directly driven by an operational amplifier of about 5 volts.

〔実施例〕〔Example〕

第1実施例 本例にかかるトルク検出装置を第1ないし第3図を用
いて説明する。
First Embodiment A torque detection device according to this embodiment will be described with reference to FIGS.

第1図は,本例トルク検出装置の共振回路と検出部と
を示す概念図,第2は受動軸に直角方向の断面を示す
図,第3図は共振回路K,検出部L及び波形整形回路Nか
らなる発振回路図である。
FIG. 1 is a conceptual diagram showing a resonance circuit and a detection part of the torque detection device of this example, FIG. 2 is a view showing a cross section perpendicular to the passive axis, and FIG. 3 is a resonance circuit K, a detection part L and a waveform shaping. It is an oscillation circuit diagram which consists of circuit N.

本例における検出回路は,第1図に示すごとく,受動
軸1に固着した共振回路Kと,受動軸1の外に設けた検
出部Lとを1組とするもので,これによりトルクを検出
しようとするものである。
As shown in FIG. 1, the detection circuit in this example includes a resonance circuit K fixed to the passive shaft 1 and a detection unit L provided outside the passive shaft 1 as one set, and the detection circuit detects torque. Is what you are trying to do.

即ち,共振回路Kは,受動軸1の全周に接着剤により
固着した磁歪膜2と,その周囲に巻回したソレノイドコ
イル3及び該ソレノイドコイル3と直列に接続したコン
デンサ4とによって構成し,これらは受動軸1上に固定
する。また,上記共振回路Kから出力される共振周波数
を検出する検出部Lは,駆動電源Vに接続した入力コイ
ル5と検出した信号を発信する出力コイル6とからな
る。入力コイル5は磁心51とこれに巻回したコイル52と
からなり,出力コイル6は磁心61とこれに巻回したコイ
ル62とからなる。
That is, the resonance circuit K is composed of a magnetostrictive film 2 fixed to the entire circumference of the passive shaft 1 by an adhesive, a solenoid coil 3 wound around the magnetostrictive film 2, and a capacitor 4 connected in series with the solenoid coil 3. These are fixed on the passive shaft 1. Further, the detection unit L that detects the resonance frequency output from the resonance circuit K includes an input coil 5 connected to the driving power supply V and an output coil 6 that transmits the detected signal. The input coil 5 includes a magnetic core 51 and a coil 52 wound around the magnetic core 51, and the output coil 6 includes a magnetic core 61 and a coil 62 wound around the magnetic core 61.

前記,磁歪膜2の接着は,受動軸1の軸方向に対して
角度45度の磁気異方性を持つよう配置してある。上記入
力コイル5及び出力コイル6は,第2図に見られるごと
く,上記ソレノイドコイル3に対向してそれぞれ配置
し,両コイルとソレノイドコイル4との間には空隙Mを
有する。第1図に見られるごとく,上記入力,出力コイ
ルの磁心51,61の両端は,ソレノイドコイル3の両側に
はみ出した磁歪膜2の部分に対面している。
The adhesion of the magnetostrictive film 2 is arranged so as to have a magnetic anisotropy of 45 degrees with respect to the axial direction of the passive shaft 1. As shown in FIG. 2, the input coil 5 and the output coil 6 are arranged so as to face the solenoid coil 3, and a gap M is provided between both coils and the solenoid coil 4. As can be seen in FIG. 1, both ends of the magnetic cores 51 and 61 of the input and output coils face the portions of the magnetostrictive film 2 protruding on both sides of the solenoid coil 3.

次に,第3図は上記共振回路Kと検出部Lとを波形整
形回路Nに接続し,出力foを発信する発振回路を示すも
のである。なお,同図において,81は電流制限抵抗,82は
発振励起コンデンサ,83はコンパレータ,Vは駆動電源で
ある。
Next, FIG. 3 shows an oscillator circuit in which the resonance circuit K and the detecting section L are connected to a waveform shaping circuit N to generate an output fo. In the figure, 81 is a current limiting resistor, 82 is an oscillation excitation capacitor, 83 is a comparator, and V is a drive power supply.

しかして,第1ないし第3図より知られるごとく,受
動軸1にトルクが加わると透磁率が変化する応力が磁歪
膜に加わることになり,例えば磁歪膜2に引張応力が加
わると,その透磁率が増加する。そのため,該磁歪膜2
に巻回したソレノイドコイル3におけるインダクタンス
が増加する。そして,この共振回路における共振周波数
が低下する。また,上記とは逆に,磁歪膜2に圧縮応力
が働く方向にトルクが加わった場合には,上記とは逆に
共振周波数が高くなる。しかして,この共振成分は,検
出部に発信される。
Therefore, as is known from FIGS. 1 to 3, when a torque is applied to the passive shaft 1, a stress whose magnetic permeability changes is applied to the magnetostrictive film, and, for example, when a tensile stress is applied to the magnetostrictive film 2, the transmissivity is changed. Magnetic susceptibility increases. Therefore, the magnetostrictive film 2
The inductance of the solenoid coil 3 wound around the coil increases. Then, the resonance frequency in this resonance circuit decreases. On the contrary to the above, when torque is applied to the magnetostrictive film 2 in the direction in which the compressive stress acts, the resonance frequency becomes high contrary to the above. Then, this resonance component is transmitted to the detection unit.

検出部Lにおいては,入力コイル5と出力コイル6と
によって,上記ソレノイドコイル3からの出力信号をキ
ャッチし,前記のごとく波形整形回路Nへ出力する。
In the detecting section L, the input coil 5 and the output coil 6 catch the output signal from the solenoid coil 3 and output it to the waveform shaping circuit N as described above.

波形整形回路からの出力foは,前記従来技術でも説明
したごとく,周波数−電圧変換器等の周知の手段により
電圧信号として出力する。
The output fo from the waveform shaping circuit is output as a voltage signal by a well-known means such as a frequency-voltage converter as described in the above-mentioned prior art.

以上のごとく,本例によれば,共振回路を受動軸上に
配設したので,磁歪膜2の透磁率変化は,これに直接巻
回したソレノイドコイル3によってインダクタンスの変
化としてキャッチすることができ,磁歪膜と検出コイル
との間にギャップを有する前記従来技術に比して,その
検出精度及び感度は極めて優れている。
As described above, according to this example, since the resonance circuit is arranged on the passive shaft, the change in permeability of the magnetostrictive film 2 can be caught as the change in inductance by the solenoid coil 3 wound directly around the resonance circuit. The detection accuracy and sensitivity are extremely excellent as compared with the above-mentioned conventional technique having a gap between the magnetostrictive film and the detection coil.

また,本例によれば,前記のごとく,受動軸の回転方
向に沿って磁歪膜の不均一性,固着の不均一性がある場
合においても,全体の透磁率変化で発振周波数が決定さ
れるので,回転に対して出力の変動を生じない。また,
検出部への信号伝達は周波数として伝達するので,S/N比
が高い。
Further, according to the present example, as described above, even when the magnetostrictive film has nonuniformity or nonuniformity in fixation along the rotational direction of the passive shaft, the oscillation frequency is determined by the change in the entire magnetic permeability. Therefore, the output does not fluctuate with respect to rotation. Also,
Since the signal transmission to the detection section is transmitted as frequency, the S / N ratio is high.

第2実施例 本例は,第4及び第5図に示すごとく,磁歪膜20と高
透磁率膜7とをそれぞれ1/4周づつ交互に,受動軸1上
に周回し,固着したものである。
Second Embodiment In this embodiment, as shown in FIGS. 4 and 5, the magnetostrictive film 20 and the high-permeability film 7 are alternately wound around the passive shaft 1 every 1/4 turn and fixed. is there.

その他は,第1実施例と同様である。 Others are the same as those in the first embodiment.

上記,磁歪膜20としては,非晶質磁性合金箔を,また
高透磁率膜としてはパーマロイ膜を用いた。
An amorphous magnetic alloy foil was used as the magnetostrictive film 20, and a permalloy film was used as the high magnetic permeability film.

本例においても,磁歪膜の透磁率変化に基づくトルク
量の検出方法は第1実施例と同様である。
Also in this example, the method of detecting the torque amount based on the change in the magnetic permeability of the magnetostrictive film is the same as in the first example.

本例によれば,磁歪膜20を分割して配設すると共にそ
の間に高透磁率膜7を配設したので,ソレノイドコイル
3のインダクタンスを増加させることができる。それ
故,ソレノイドコイル3の巻数を減らすことができる。
また,磁歪膜20を分割して固着できるので受動軸1への
固着が容易である。また,前記従来装置では,磁歪膜か
ら直接に受動軸外の検出コイルへその透磁率変化を伝送
していたため,磁歪膜を受動軸上に分割して配設した場
合にはその位置によって出力が変わり,固定側(受動軸
外)での検出演算処理が複雑であった。これに対して,
本発明では磁歪膜の透磁率変化をこれと接続しているソ
レノイドコイルのインダクタンス変化としてキャッチし
ているので,磁歪膜を分割配設しても全体として発振周
波数が決定されるため,演算処理は複雑とならない。
According to this example, since the magnetostrictive film 20 is divided and the high magnetic permeability film 7 is arranged between them, the inductance of the solenoid coil 3 can be increased. Therefore, the number of turns of the solenoid coil 3 can be reduced.
Further, since the magnetostrictive film 20 can be divided and fixed, the fixing to the passive shaft 1 is easy. Further, in the above-mentioned conventional device, since the change in permeability is directly transmitted from the magnetostrictive film to the detection coil outside the passive axis, when the magnetostrictive film is divided and arranged on the passive axis, the output is output depending on the position. However, the detection calculation processing on the fixed side (outside the passive axis) was complicated. On the contrary,
In the present invention, the change in the magnetic permeability of the magnetostrictive film is caught as the change in the inductance of the solenoid coil connected to the magnetostrictive film. Therefore, even if the magnetostrictive film is divided and arranged, the oscillation frequency is determined as a whole. Not complicated.

【図面の簡単な説明】[Brief description of drawings]

第1ないし第3図は第1実施例を示し,第1図は受動軸
と共振回路,及び検出部の位置関係を示す概念図,第2
図は第1図の受動軸直径方向断面図,第3図は発振回路
図,第4及び第5図は第2実施例を示し,第4図は第1
図と同様の概念図,第5図は第4図の受動軸直接方向断
面図,第6及び第7図は従来装置を示し,第6図は発振
回路の配置を示す図,第7図はその電気回路である。 1……受動軸,2,20……磁歪膜, 3……ソレノイドコイル, 4……コンデンサ,5……入力コイル, 6……出力コイル, 7……高透磁率膜, K……共振回路,L……検出部,
1 to 3 show a first embodiment, and FIG. 1 is a conceptual diagram showing a positional relationship between a passive shaft, a resonance circuit, and a detection unit, and FIG.
FIG. 1 is a sectional view of the passive shaft in the diametrical direction of FIG. 1, FIG. 3 is an oscillation circuit diagram, FIGS. 4 and 5 are second embodiments, and FIG.
FIG. 5 is a conceptual diagram similar to that of FIG. 5, FIG. 5 is a sectional view of the passive shaft in the direct direction of FIG. 4, FIGS. 6 and 7 show a conventional device, FIG. 6 is a diagram showing the arrangement of an oscillating circuit, and FIG. The electric circuit. 1 ... Passive shaft, 2,20 ... Magnetostrictive film, 3 ... Solenoid coil, 4 ... Capacitor, 5 ... Input coil, 6 ... Output coil, 7 ... High permeability film, K ... Resonance circuit , L …… Detector,

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】トルクを受ける受動軸の外周に周回させて
固着した磁歪膜と,該磁歪膜の上に周回したソレノイド
コイルと,該ソレノイドコイルと直列に接続したコンデ
ンサとにより共振回路を構成し,該共振回路を前記受動
軸に固着すると共に, 磁心とこれに巻回したコイルとからなる入力コイル及び
出力コイルを1組とする検出部を設け, 該検出部の入力コイルと出力コイルとは前記受動軸の両
側に前記ソレノイドコイルに対向して空隙をもってそれ
ぞれ配置し,上記共振回路と検出部とにより上記共振回
路の共振周波数により発振する発振回路を構成し, トルクによる磁歪膜の透磁率変化を発振周波数の変化と
して検出することを特徴とするトルク検出装置。
1. A resonance circuit is constituted by a magnetostrictive film which is fixed to the outer periphery of a passive shaft which receives a torque by being wound, a solenoid coil which is wound on the magnetostrictive film, and a capacitor which is connected in series with the solenoid coil. The resonance circuit is fixed to the passive shaft, and a detection unit having a set of an input coil and an output coil composed of a magnetic core and a coil wound around the magnetic core is provided, and the input coil and the output coil of the detection unit are The passive circuit is arranged on both sides of the passive shaft so as to face the solenoid coil with a gap, and the resonance circuit and the detection unit form an oscillation circuit that oscillates at the resonance frequency of the resonance circuit. Is detected as a change in oscillation frequency.
【請求項2】磁歪膜は,受動軸の外周の一部分に固着
し,他の部分にはパーマロイ膜等の高透磁率膜を配設
し,磁歪膜及び高透磁率膜の上にはソレノイドコイルを
周回してなることを特徴とする特許請求の範囲第1項に
記載のトルク検出装置。
2. A magnetostrictive film is fixed to a part of the outer circumference of a passive shaft, a high permeability film such as a permalloy film is provided in the other part, and a solenoid coil is provided on the magnetostrictive film and the high permeability film. The torque detection device according to claim 1, characterized in that
JP62154919A 1987-06-22 1987-06-22 Torque detector Expired - Lifetime JP2540865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154919A JP2540865B2 (en) 1987-06-22 1987-06-22 Torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154919A JP2540865B2 (en) 1987-06-22 1987-06-22 Torque detector

Publications (2)

Publication Number Publication Date
JPS63317732A JPS63317732A (en) 1988-12-26
JP2540865B2 true JP2540865B2 (en) 1996-10-09

Family

ID=15594821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154919A Expired - Lifetime JP2540865B2 (en) 1987-06-22 1987-06-22 Torque detector

Country Status (1)

Country Link
JP (1) JP2540865B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062306A (en) * 1989-04-20 1991-11-05 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Apparatus for detecting torque of rotating shaft
DE19820882C1 (en) * 1998-05-09 1999-10-28 Daimler Chrysler Ag Noncontact torque measurement arrangement
JP6371453B2 (en) * 2017-08-29 2018-08-08 株式会社東栄科学産業 Magnetostriction measuring apparatus and magnetostriction measuring method

Also Published As

Publication number Publication date
JPS63317732A (en) 1988-12-26

Similar Documents

Publication Publication Date Title
US5591925A (en) Circularly magnetized non-contact power sensor and method for measuring torque and power using same
US4416161A (en) Method and apparatus for measuring torque
WO2002093121A9 (en) Magnetoelastic torque sensor
US5323659A (en) Multifunctional torque sensor
JP2540865B2 (en) Torque detector
JPS62184323A (en) Magneto-striction type torque sensor
JP3692494B2 (en) Torque sensor
JPS6044839A (en) Torque detecting device
JPS60173433A (en) Torque detector
JPH01284725A (en) Torque detecting device
JPH01285829A (en) Detecting device of torque
JP3067437B2 (en) Magnetostrictive stress sensor
JP2516489B2 (en) Force sensor and force measuring device
JP2566617B2 (en) Axis rotation speed detection device
JPH02304324A (en) Torque detector
JPS6044841A (en) Torque detecting device
JPS60195430A (en) Torque detecting device
JPS6161026A (en) Shaft torque meter
JPS63317731A (en) Torque detector
JPS60236041A (en) Torque detecting device
JPS6050429A (en) Torque sensor
JPH055661A (en) Torque sensor with multifunction
JPH0412635B2 (en)
JPH02281117A (en) Torque detecting apparatus for rotary shaft
JPH01107122A (en) Apparatus for detecting torque of rotary shaft