JPS60173433A - Torque detector - Google Patents

Torque detector

Info

Publication number
JPS60173433A
JPS60173433A JP3174584A JP3174584A JPS60173433A JP S60173433 A JPS60173433 A JP S60173433A JP 3174584 A JP3174584 A JP 3174584A JP 3174584 A JP3174584 A JP 3174584A JP S60173433 A JPS60173433 A JP S60173433A
Authority
JP
Japan
Prior art keywords
magnetic
torque
magnetic layers
shaft
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3174584A
Other languages
Japanese (ja)
Inventor
Yoshio Sekine
関根 義夫
Yasuyuki Makikawa
牧川 安之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3174584A priority Critical patent/JPS60173433A/en
Publication of JPS60173433A publication Critical patent/JPS60173433A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To detect torque without reference to ambient temperature by sticking two magnetic layers on the outer periphery of a passive shaft, constituting an oscillation circuit by use of a detection coil wound around it, and detecting the torque as a difference in duty ratio variation. CONSTITUTION:The 1st and the 2nd magnetic layers 5 and 6 made of high magnetostrictive materials are made magnetically anisotropic at +45 deg. and -45 deg. from a center axis 2. The 1st and the 2nd detection coils 8 and 9 are wound around the rotating shaft 1 through a coil bobbin 7 while covering the magnetic layers 5 and 6. Transistors (TR) 14 and 15 of a resistance coupling type inverter vary in conduction time with the magnetic permeability of a magnetic core because the inductance of a collector winding as the magnetic permeability of the magnetic core varies. Therefore, the duty ratio varies according to relative variation in the magnetic permeability of the magnetic layers 5 and 6 as magnetic cores of detection coils 8 and 9. Consequently, the value and direction of the applied torque are detected without the influence of bending stress nor the influence of variation in ambient temperature.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は例えば回転軸などの受動軸の軸]・ルクな非
接触で測定するトルク検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque detection device for measuring a passive shaft, such as a rotary shaft, in a non-contact manner.

〔従来技術〕[Prior art]

従来、受動軸例えば回転軸の軸トルクを測定する方法と
しては、ストレンゲージを回転軸に貼り付けて、トルク
による軸のねじれに起因するストレンゲージの抵抗値変
化によりトルクを検出する方法、既知のヤング率を有す
る中間軸を1駆動側と負荷側との間に挿入して、その中
間軸のねじれを位相差として検出する方法、さらに外力
つまルトルクにより磁性材軸即ち回転軸の透磁率が変化
するいわゆる磁歪効果を利用する方法等がある。ストレ
ンゲージを回転軸に貼り付ける方法は、ストレンゲージ
の貼υ付けの良否如(’=Jによシ稍度力玉左右される
という不都合があるうえ、 )Jllえて出力信号の取
り1]ルにスリップリング、テレメータ等を取りゃ■け
る必要があり、装置が大きくなる。さらに加えて、高速
回転、長時間運転になると、71ノツプリングの電気抵
抗値が変化してノイズが発生しやすいなどの欠点がある
。中間軸のねじれによる位相差を検出する方法は、電気
回路が複雑となるため同価でおり、また回転軸の高速回
転時と低速回転時の検出が両立しがたいという不@S合
を持つ。磁性材軸を用いて磁歪効果を利用する方法は。
Conventionally, methods for measuring the axial torque of a passive shaft, such as a rotating shaft, include a method in which a strain gauge is attached to the rotating shaft and the torque is detected by a change in resistance value of the strain gauge caused by twisting of the shaft due to torque. A method in which an intermediate shaft having a Young's modulus is inserted between the drive side and the load side, and the torsion of the intermediate shaft is detected as a phase difference, and the magnetic permeability of the magnetic material shaft, that is, the rotating shaft, changes due to external force or torque. There are methods that utilize the so-called magnetostrictive effect. The method of attaching the strain gauge to the rotating shaft has the disadvantage that the strength of the strain gauge depends on the quality of attachment of the strain gauge. It is necessary to attach a slip ring, telemeter, etc., which increases the size of the device. In addition, there is a drawback that when rotating at high speed and operating for a long time, the electrical resistance value of the 71 knob ring changes and noise is likely to be generated. The method of detecting the phase difference due to the torsion of the intermediate shaft is equivalent because the electric circuit is complicated, and there is also a disadvantage that it is difficult to detect both high-speed rotation and low-speed rotation of the rotating shaft. . How to utilize the magnetostrictive effect using a magnetic material shaft.

実際の軸が利用できるというオリ点はめるが、しかし−
万では通常の軸は強度にその多くの注意〃;払われ、磁
気特性圧ついてはあまり考慮されていないので、磁気的
にははなはだ不均一である。このため、この軸の磁気的
不均一性による出力の回転角依存性すなわち軸の回転に
伴なう出力のドリフトを持つ、換言すれはI!21転角
によって出力が変動するという欠点を持っている。もつ
ともこの出力のドリフトつま9出力変動は、−11のま
わりに複数個の検出器を設けることなどによって補正す
る仁とはできるが、構造がそれだけ複雑になり、好まし
い方法とはいえない。また、これら多くの方法は2曲げ
応力による誤差2周囲温度変化に伴なう材質の特性変化
による誤差を生じ、悪環境下例えば振動を伴なう環境、
高温、低温のもとての使用がむずかしいという欠点な有
している。
The starting point is that a real axis can be used, but -
In general, most attention is paid to the strength of ordinary shafts, and little consideration is given to the magnetic properties, so that they are highly non-uniform magnetically. Therefore, the output has a rotation angle dependence due to the magnetic non-uniformity of this axis, that is, there is a drift in the output as the axis rotates, in other words, I! It has the disadvantage that the output fluctuates depending on the rotation angle. Of course, this output drift or output fluctuation can be corrected by providing a plurality of detectors around -11, but the structure becomes more complicated and this is not a preferable method. In addition, many of these methods cause errors due to bending stress and changes in material properties due to changes in ambient temperature, and in adverse environments such as environments with vibration,
The disadvantage is that it is difficult to use at high or low temperatures.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたものであり、受動軸の外周に2つの磁性層
を固着し、この谷(磁性層をそハ、ぞれ包囲するように
上記受動軸に回転対称に2つの検出コイルを巻回し、こ
の谷・検出コイルを用いて自励式プッシュプル型発振回
路を構成し、各磁性層をもつ受動:Mそのものを発1辰
回路の磁心とすることにより帰還要素として用い、トル
り印刀口時の上記各磁性層の透磁率変化によって生ずる
上記発振回路からの一対の発振信号のデユーティ比変化
の差を検出することにより、印加されたトルクの大きさ
へ方向を1曲げ応力や周囲温度の影響を受けずに検出し
ようとするものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and consists of fixing two magnetic layers around the outer periphery of a passive shaft, and forming a trough (which surrounds each magnetic layer). Two detection coils are wound rotationally symmetrically around the passive shaft, and a self-excited push-pull oscillator circuit is constructed using these valley/detection coils, and the passive M itself with each magnetic layer is used as the magnetic core of the circuit. By using this as a feedback element, the applied torque can be determined by detecting the difference in the duty ratio change of the pair of oscillation signals from the oscillation circuit caused by the change in magnetic permeability of each of the magnetic layers at the time of torque impression. The aim is to detect the magnitude and direction without being influenced by bending stress or ambient temperature.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の動作原理を説明するための図である
。一般に、@柱材に応力を〃■えると、その磁気特性が
変化することはよく知られており。
FIG. 1 is a diagram for explaining the operating principle of the present invention. It is generally well known that when stress is applied to a pillar material, its magnetic properties change.

引張応力によって透磁率は増加し、圧縮応力によって透
磁率は減少する。ところで、第1図に示すように受動軸
(1)にトルクTを印加すると、中心軸(2)に対し+
45°方向に応力σが生ずる。つまp中心1lIIIJ
(2)に対し+45°の角度をもつ線上に引張応力σが
発生し、−45°の角度をもつ線上に圧縮応力−〇が生
ずる。したがって受!I!lll14II(1)の外周
に高磁歪材からなる磁性層を固着し、トルクが加わった
ときのその@気ひずみ効果を利用すれば、トルクの検出
が可能となる。
Tensile stress increases magnetic permeability, and compressive stress decreases magnetic permeability. By the way, when torque T is applied to the passive shaft (1) as shown in Fig. 1, +
Stress σ is generated in the 45° direction. Toe p center 1lIIIJ
A tensile stress σ occurs on a line having an angle of +45° with respect to (2), and a compressive stress −0 occurs on a line having an angle of −45°. Therefore, receive! I! Torque can be detected by fixing a magnetic layer made of a high magnetostrictive material to the outer periphery of the Ill14II (1) and utilizing the strain effect when torque is applied.

第2図はこの発明の一実施例を示す構成図であり、(1
)は中心軸(2)をもつ回転軸などの受動軸(以下回転
軸として説明を進める)であり、軸受(3)。
FIG. 2 is a block diagram showing an embodiment of the present invention, (1
) is a passive shaft such as a rotating shaft (hereinafter referred to as a rotating shaft) having a central axis (2), and a bearing (3).

(4)により回転自在に支承さカフている。7この回転
軸(1)はトルクに耐え得る十分な機械的強度をもつも
のとする。+5+、 +6)は重陽止材からなる第1及
び第2の磁性層でおシ、中心軸(2)に対して第1の磁
性層(5)は+45°方向に磁気異方性が、第2の両性
層(6)は−450方向に磁気異方性が与えられるよう
に。
(4) The cuff is rotatably supported. 7. This rotating shaft (1) shall have sufficient mechanical strength to withstand torque. +5+, +6) are the first and second magnetic layers made of heavy positive material, and the first magnetic layer (5) has magnetic anisotropy in the +45° direction with respect to the central axis (2). The amphoteric layer (6) of No. 2 is given magnetic anisotropy in the -450 direction.

それぞれ受動11QIIf+lの外周に固層きれている
。これら各磁性層+51. (61をなす磁a伺として
は、軟磁性で高磁気ひずみ特性をもつものがmt L<
、非晶質金属がよい。例数なら、非晶質金属は同磁気ひ
ずみ特性をもち2機械的強度にもすぐれているからであ
る。(7)は回転軸fi+と同一の中心軸をもつ非磁性
材からなる円筒状のコイルボビン、(8)は上記第1O
it層(5)を包囲するようにコイルボビン(7)を介
して回転軸(1)の外周に壱、回された第1の検出コイ
ル、(9)は上記第2の磁性層(6)を包囲するように
コイルボビン(力を介して回転軸(1)の外周に巻回さ
れた第2の検出コイルである。
A solid layer is formed on the outer periphery of each passive 11QIIf+l. Each of these magnetic layers +51. (As for the magnetic axis forming 61, one that is soft magnetic and has high magnetostriction characteristics is mt L<
, amorphous metals are preferred. This is because amorphous metals have similar magnetostrictive properties and excellent mechanical strength. (7) is a cylindrical coil bobbin made of a non-magnetic material having the same central axis as the rotation axis fi+, and (8) is the above-mentioned first O.
A first detection coil (9) is wound around the outer periphery of the rotating shaft (1) via a coil bobbin (7) so as to surround the IT layer (5). The coil bobbin is a second detection coil that is wound around the outer periphery of the rotating shaft (1) via force so as to surround the coil bobbin.

第3図はこの発明の一実施例を示す電気回路図である。FIG. 3 is an electrical circuit diagram showing one embodiment of the present invention.

この電気回路は上記第2図における回転軸fl)への印
加トルクを電気信号に変換して導出するためのものでろ
fi、Qlは磁性層+51. +6+が固層された回転
軸filを磁心とした自励式プッシュプル型発振回路で
あり、この実施例では周知の抵抗結合型インバータ回路
により構成されている。(141,asはトランジスタ
、’ae、αD、αね、 Qlは結合抵抗I C11l
)#切)は結合コンデンサ、Vccは駆動電源である。
This electric circuit is for converting the torque applied to the rotating shaft fl in FIG. 2 into an electric signal and deriving it. This is a self-excited push-pull type oscillation circuit whose magnetic core is a rotating shaft fil on which +6+ is solidified, and in this embodiment, it is constituted by a well-known resistance coupling type inverter circuit. (141, as is the transistor, 'ae, αD, α, Ql is the coupling resistance I C11l
) #off) is a coupling capacitor, and Vcc is a drive power supply.

さて、抵抗結合型インバータ回路に使用する磁心として
は、上記第1及び第2の磁性層(51,(61を固着し
た回転軸(1)そのものを利用し、第1及び第2の磁性
層(5)、 (61を包囲する第1及び第2の検出コイ
ル+81. +91を発振回路のコレクタ巻線としてそ
れぞれ利用する。なお、これら各検出コイル+81. 
+91は互いに巻数が等しくなるようにコイルボビン(
7)に巻回する。抵抗結合型インバータのトラフ2フフ
0局、uつの等適時間は、la心の透磁率が変化すると
Now, as a magnetic core used in a resistance-coupled inverter circuit, the rotating shaft (1) itself to which the first and second magnetic layers (51, (61) are fixed is used; 5), (The first and second detection coils +81.+91 surrounding 61 are respectively utilized as collector windings of the oscillation circuit. Note that each of these detection coils +81.+91 is used as a collector winding of an oscillation circuit.
+91 is a coil bobbin (
7). In the trough 2 fufu 0 station of a resistive coupled inverter, the two equally suitable times change when the magnetic permeability of the core changes.

コレクタ巻線のインダクタンスが変化するために。Because the inductance of the collector winding changes.

その透磁率の変化に応じて変化する。従って、そのデユ
ーティ比は、検出コイルtel、 (91の磁心となる
名磁性層(5)、(6)の透磁率の相対的な変化によっ
て変わる。プッシュプルで出力されるトランジスタQ4
)、 Q!9のそれぞれのコレクタ電圧■C1t vc
2は。
It changes depending on the change in its magnetic permeability. Therefore, the duty ratio changes depending on the relative change in the magnetic permeability of the magnetic layers (5) and (6) that form the magnetic core of the detection coil tel, (91).
), Q! 9 respective collector voltage ■C1t vc
2 is.

原理的にほぼ電源電圧Vccの2倍のレベルの矩形波信
号となるが、このそれぞれのコレクタ出力電圧VC1*
 Vc2は、抵抗’2L n、 QL (2F9及びオ
ペアンプ01.(ハ)からなる波形整形回路0υに入力
され。
In principle, this is a rectangular wave signal with a level approximately twice that of the power supply voltage Vcc, but each collector output voltage VC1*
Vc2 is input to a waveform shaping circuit 0υ consisting of resistors '2Ln, QL (2F9) and operational amplifier 01. (c).

電源電圧Vccでリミットされた矩形波信号V4.V2
に整形される。なおこの波形整形回路aυはオペアンプ
e4+、(ト)を用いて構成されておシ、バッファの役
割もかねそなえている。さて、波形整形されたそれぞれ
の矩形波信号v1.v2は、抵抗翰とコンデンサ(ハ)
、抵抗(ハ)とコンデンサ(ハ)からなる積分回路a2
に入力され、デユーティ比に対厄した直流レベル信号V
s+ V4に変換されて1次段の差動増幅回路QIK入
力される。差動増幅回路a騰は抵抗(至)。
Rectangular wave signal V4. limited by power supply voltage Vcc. V2
formatted into. Note that this waveform shaping circuit aυ is constructed using an operational amplifier e4+ (g), and also serves as a buffer. Now, each of the waveform-shaped rectangular wave signals v1. v2 is the resistor and capacitor (c)
, an integrating circuit a2 consisting of a resistor (c) and a capacitor (c)
The DC level signal V that is input to the
It is converted to s+V4 and inputted to the primary stage differential amplifier circuit QIK. The differential amplifier circuit a is a resistor (to).

OI)、(ハ)、イ)及びオペアンプ(ト)によ)構成
され、抵抗(至)、 Cl11を介してオペアンプ(至
)の逆相入力端子及び正相入力端子に入力される上記直
流レベル信号v6.v4の差電圧を、抵抗(至)、(至
)で決められるゲインで増幅して出力する。
The above DC level is configured by OI), (c), a) and an operational amplifier (g), and is input to the negative phase input terminal and positive phase input terminal of the operational amplifier (to) via the resistor (to) and Cl11. signal v6. The differential voltage of v4 is amplified with a gain determined by the resistors (to) and (to) and is output.

第4図は上記実施例の動作を説明するための谷部出力波
形図である。回転軸+11にトルクが加わらない状態で
は、第1及び第2の磁性層+51.161の透磁率は等
しいので2発振回路四のコレクタ電圧vc1.■c2は
、原理的にデユーティ比50%の信号となる。従って直
流レベルに変換された信号v3.v4の電圧値は共にV
OCl2 とな9.差動増幅回路(13の出力電圧Vo
は零となシアトルク零を指示する。次に回転軸(1)に
トルクが加った状態を考える。軸(1)の外周に固層さ
れた第1及び第2の磁性層(5)、+6+は、前述した
ようにその磁気異方性が一万は軸(1)の中心軸(2)
に対して+45°方向に。
FIG. 4 is a trough output waveform diagram for explaining the operation of the above embodiment. When no torque is applied to the rotating shaft +11, the magnetic permeability of the first and second magnetic layers +51.161 is equal, so the collector voltage vc1. (2) In principle, c2 becomes a signal with a duty ratio of 50%. Therefore, the signal v3. which is converted to a DC level. The voltage values of v4 are both V
OCl2 Tona9. Differential amplifier circuit (13 output voltage Vo
indicates zero and Seattleku zero. Next, consider a state in which torque is applied to the rotating shaft (1). As mentioned above, the first and second magnetic layers (5) and +6+ fixed on the outer periphery of the shaft (1) have magnetic anisotropy of 10,000 times the central axis (2) of the shaft (1).
in the +45° direction.

他方は一45°方向に与えられているから、軸(1)に
トルクが加わるとそれぞれの磁性層+51. +61で
透磁率が逆向きに変化する応力が加わることになシ。
Since the other direction is applied in the -45° direction, when torque is applied to the axis (1), the respective magnetic layers +51. At +61, stress is applied that changes the magnetic permeability in the opposite direction.

つまり一万では引張応力によって透磁率が増加し。In other words, at 10,000 yen, the magnetic permeability increases due to tensile stress.

他方では圧縮応力によって透磁率が減少する。そのため
に発振回路の信号のデユーティ比が変化する。第4図の
(A)、 (B)は、トルクが加わることにより第1の
磁性層(5)の透磁率が増加し、第2の磁性層(6)の
透磁率が減少したときの波形整形後の信号v1.v2を
、 (Cり、 (D)はそれらが積分された後の直流レ
ベル信号V3.v4を、@)はそのv3.■4を入力と
した差動増幅回路a漠の出力信号Voをそれぞれ示した
ものである。上述の場合は、積分された後の直流レベル
信号v3がVOCl2より小さく、v4がVOCl2 
よシ大きくなるため、差動増幅回路0:1の出力信号V
Qは正の値(第4図(k)失心)を示す。
On the other hand, compressive stress reduces the magnetic permeability. Therefore, the duty ratio of the signal of the oscillation circuit changes. (A) and (B) in Figure 4 are waveforms when the magnetic permeability of the first magnetic layer (5) increases and the magnetic permeability of the second magnetic layer (6) decreases due to the application of torque. Signal v1 after shaping. v2, (C), (D) is the DC level signal V3.v4 after they are integrated, @) is the v3.v4. (2) The output signal Vo of the differential amplifier circuit a with input 4 is shown. In the above case, the integrated DC level signal v3 is smaller than VOCl2, and v4 is smaller than VOCl2.
Since the output signal of the differential amplifier circuit 0:1 becomes larger, the output signal V of the differential amplifier circuit 0:1
Q indicates a positive value (FIG. 4(k) loss of consciousness).

上述の場合と逆向きのトルクが〃口わった場合には。If the torque is in the opposite direction to the above case.

磁性層+5+、 +6+の透磁率は上述の場合と逆に変
化するので、積分された後の直流レベル信号v5はVO
Cl2より太きく、■4はVcc /2.1: 、り 
小す< fZるため、差動増幅回路θ諌の出力信号Vo
は負の1は(第4図(ト))破線)となる。以上のよう
に差動窄幅回路峙ノ出力信号vOには、トルクに比例し
た第4図(勾の失心βるいは破線で示すような電圧が出
力され、加えられたトルクの向きは出力電圧VDの正負
によって判別することができる。また回転軸(11には
使用状態によっては時とL7てねじシトルりの他に曲げ
応力が加わることがあるが、これも−柱層の透磁率変化
をひきおこす要因となる。し5かし1本発明の構成にお
いては、この曲げ応力は第1及び第2の磁性層で同様に
加わるので、第1の感性層(5)及び第2の磁性層(6
)のそれぞれの透磁率変化は、それぞれの磁性層+51
. f6+で同一方向となり、そのため差動増幅回路0
3でその影響は互いに相殺され、出力信号voにはトル
クによる信号のみがあられれる。また周囲温度変化によ
る磁性Jaの特性の変化2回路素子の特性の変化も差m
増幅回路を用いているために同様に相殺される。
Since the magnetic permeability of the magnetic layers +5+ and +6+ changes in the opposite way to the above case, the DC level signal v5 after integration is VO
Thicker than Cl2, ■4 is Vcc /2.1: , ri
Since smaller < fZ, the output signal Vo of the differential amplifier circuit θ
is negative 1 (Figure 4 (g)) broken line). As described above, the output signal vO of the differential width narrowing circuit is a voltage proportional to the torque as shown in FIG. It can be determined by the positive or negative of the voltage VD. Also, depending on the usage conditions, bending stress may be applied to the rotating shaft (11) in addition to screw stress due to time and L7, but this is also due to changes in the magnetic permeability of the columnar layer. However, in the configuration of the present invention, this bending stress is applied to the first and second magnetic layers in the same way, so the bending stress is applied to the first and second magnetic layers. (6
) for each magnetic layer +51
.. The direction is the same at f6+, so the differential amplifier circuit 0
3, their influences cancel each other out, and only the signal due to the torque is included in the output signal vo. In addition, the change in the characteristics of the magnetic Ja due to changes in the ambient temperature and the change in the characteristics of the two circuit elements also differ m
Since an amplifier circuit is used, they are also canceled out.

なお上記実施例では9回転軸に固着する2つの磁性層+
51. (6]を、軸の中心軸に対して+45°の角度
にそれぞれ磁気異方性をもたせて固着するものとしたが
、第5図に示すように細長い磁性層C371゜(至)を
、−万では軸の中心軸に対して+45°の角度をなすよ
うに、他方では一45°の角度をなすようにそれぞれ軸
外周に固着しても同様の効果を奏する。これは、トルク
印加による引張応力、圧縮応力が最大となる軸表面+4
5°方向に固着する磁性層on、(至)が十分に細長い
形状であれば、、4tl+にトルクが加わったとき、−
万の磁性層はほとんど引張応力のみを受け、他方の磁性
層はほとんど圧縮応力のみを受けることとな見 両磁柱
層が上記実施例と同様の透磁率変化を生ずることになる
からである。また上記説明では、受動軸が回転軸である
場合について述べたが9回転軸に限定されるものでない
ことはいうまでもない。
Note that in the above embodiment, two magnetic layers fixed to the 9 rotating shafts +
51. (6) were fixed with magnetic anisotropy at an angle of +45° with respect to the central axis of the shaft, but as shown in FIG. The same effect can be achieved by fixing them to the outer circumference of the shaft at an angle of +45° with respect to the central axis of the shaft in some cases, and at an angle of -45° with respect to the central axis of the shaft on the other hand. Shaft surface where stress and compressive stress are maximum +4
If the magnetic layer fixed in the 5° direction has a sufficiently elongated shape, when torque is applied to 4tl+, -
This is because one magnetic layer receives almost only tensile stress, and the other magnetic layer receives almost only compressive stress, and both magnetic column layers undergo changes in magnetic permeability similar to those in the above embodiment. Further, in the above description, the case where the passive shaft is a rotary shaft has been described, but it goes without saying that the passive shaft is not limited to nine rotary shafts.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、受動軸外周に固着きれ
た異なる方向の磁気異方性をもつ第1及び第2の磁性層
と、これらをそれぞれ包囲するように受動軸に所定のギ
ャップをおいて巻回された第1及び第2の検出コイルと
を用いて自励式プッシュプル型発振回路を構成し、受動
軸そのものを発振回路の帰還要素として用い、トルク印
加時に生ずる上記各磁性層の透磁率変化をブッンユプル
型発振回路のそれぞれの出力信号のデユーティ比変化の
差としてトルクを検出するようにしたので。
As described above, according to the present invention, the first and second magnetic layers having magnetic anisotropy in different directions are firmly fixed to the outer periphery of the passive shaft, and a predetermined gap is formed in the passive shaft so as to surround them. A self-excited push-pull oscillation circuit is constructed using the first and second detection coils wound at the The torque is detected by detecting the change in magnetic permeability as the difference in the duty ratio change of each output signal of the Bunyupuru type oscillation circuit.

非接触状態で静止時及び回転時双方のトルクがその方向
を含めて検出でき、しかも曲げ応力による影響及び周囲
温度変化による影響を受けずにトルクが検出できるとい
う効果を有する。また検出コイルを受動軸に回転対称に
巻回しているから出力が軸の回転角依存性を持たせるこ
となく検出できるという効果を有する。さらに、検出部
分が磁性層とこれを包囲する検出コイルとでこと足り、
その構造が非常に簡単であるという効果もある0
The present invention has the advantage that torque can be detected both in a stationary state and in rotation, including its direction, in a non-contact state, and the torque can be detected without being affected by bending stress or changes in ambient temperature. Furthermore, since the detection coil is wound rotationally symmetrically around the passive shaft, there is an effect that the output can be detected without dependence on the rotation angle of the shaft. Furthermore, the detection part consists of a magnetic layer and a detection coil surrounding it,
Another advantage is that its structure is very simple0

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の動作原理を説明するための図、第2
図はこの発明あ一実施例を示す構造図で。 第3図はその電気回路図、第4図は第3図の動作を説明
するための谷部出方波形図、第5図はこの発明の他の実
施例を示す構造図であり2図において(1)は受動軸、
 (51,+61は第1及び第2の磁性層。 +81. +91は第1及び第2の検出コイル、 (l
[Iは自励式プツンユプル型発振回路である抵抗結合現
インバータ回路、a1)は波形整形回路、azは積分回
路、0(至)け差動増幅回路、 C37)、 C381
は細長い磁性材からなる磁性層である。なお、各図中同
一符号は同一または相当部分を示すものとする。 代理人 大 岩 増 雄 (はが2名)第1図 I 第2図 −S++r 第4図 第 514 3β 37
Figure 1 is a diagram for explaining the operating principle of this invention, Figure 2 is a diagram for explaining the operating principle of this invention.
The figure is a structural diagram showing one embodiment of this invention. FIG. 3 is an electric circuit diagram thereof, FIG. 4 is a waveform diagram of a trough part for explaining the operation of FIG. 3, and FIG. 5 is a structural diagram showing another embodiment of the present invention. (1) is a passive axis,
(51, +61 are the first and second magnetic layers. +81. +91 are the first and second detection coils, (l
[I is a resistive coupled current inverter circuit that is a self-excited push-pull type oscillator circuit, a1) is a waveform shaping circuit, az is an integrating circuit, and a zero (to) differential amplifier circuit, C37), C381
is a magnetic layer made of elongated magnetic material. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 people) Figure 1 I Figure 2 - S++r Figure 4 514 3β 37

Claims (4)

【特許請求の範囲】[Claims] (1)トルクを受ける受動軸の外周に、互いに異なる方
向でかつ軸方向に対し45°の磁気異方性をもたせて固
層された第1及び第2の磁性層、これら各磁性層のそれ
ぞれを包囲するように上記受動軸に所定のギャップを隔
てて巻回された第1及び第2の検出コイル、これら各検
出コイルを用いて構成された。上記各磁性層を固層した
受動軸を磁心とする自励式プッシュプル型発振回路を備
え。 トルクによる上記%磁性層の透磁率変化を上記発振回路
から出力される一対の出力信号のデユーティ比変化の差
として検出するようにしたことを特徴とするトルク検出
装置。
(1) First and second magnetic layers fixed on the outer periphery of the passive shaft that receives torque in different directions and having magnetic anisotropy of 45° with respect to the axial direction, each of these magnetic layers The first and second detection coils are wound around the passive shaft with a predetermined gap therebetween, and each of these detection coils is used. Equipped with a self-excited push-pull type oscillation circuit whose magnetic core is a passive shaft made of each of the above magnetic layers. A torque detection device characterized in that a change in magnetic permeability of the magnetic layer due to torque is detected as a difference in a change in duty ratio of a pair of output signals output from the oscillation circuit.
(2) 自励式プッシュプル型発振回路が、各検出コイ
ルをコレクタ巻線とする抵抗結合型インバータ回路から
なることを特徴とする特許請求の範囲第1項記載のトル
ク検出装置。
(2) The torque detection device according to claim 1, wherein the self-excited push-pull oscillation circuit comprises a resistance-coupled inverter circuit in which each detection coil is a collector winding.
(3) 各磁性層が、互いに異なる方向でかつ軸方向に
対し45°の傾きをもって受動軸の外周に固層された細
長い磁性材からなることを特徴とする特許請求の範囲第
1項記載のトルク検出装置。
(3) The magnetic layer according to claim 1, wherein each magnetic layer is made of an elongated magnetic material fixed on the outer periphery of the passive shaft in different directions and at an angle of 45° with respect to the axial direction. Torque detection device.
(4) 各磁性層が、軟磁性の非晶質金属であることを
特徴とする特許請求の範囲第1項及び第3項記載のトル
ク検出装置。
(4) The torque detection device according to claims 1 and 3, wherein each magnetic layer is made of a soft magnetic amorphous metal.
JP3174584A 1984-02-20 1984-02-20 Torque detector Pending JPS60173433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174584A JPS60173433A (en) 1984-02-20 1984-02-20 Torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174584A JPS60173433A (en) 1984-02-20 1984-02-20 Torque detector

Publications (1)

Publication Number Publication Date
JPS60173433A true JPS60173433A (en) 1985-09-06

Family

ID=12339559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174584A Pending JPS60173433A (en) 1984-02-20 1984-02-20 Torque detector

Country Status (1)

Country Link
JP (1) JPS60173433A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259558A2 (en) * 1986-09-10 1988-03-16 Robert Bosch Gmbh Dynamometer for measuring stress in a pin shaped or so member
US4920809A (en) * 1987-12-28 1990-05-01 Kubota, Ltd. Magnetically anisotropic torque measuring device with error correction
US4976160A (en) * 1986-07-23 1990-12-11 Robert Bosch Gmbh Process for contactless measurement of mechanical stress and device for carrying out the same
US5131281A (en) * 1988-12-06 1992-07-21 Mitsubishi Denki Kabushiki Kaisha Strain sensing apparatus
US5182953A (en) * 1990-07-13 1993-02-02 Simmonds Precision Products, Inc. Method and apparatus for shaft torque measurement with temperature compensation
KR20020040241A (en) * 2000-11-24 2002-05-30 밍 루 A toque sensor of electric power steering device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976160A (en) * 1986-07-23 1990-12-11 Robert Bosch Gmbh Process for contactless measurement of mechanical stress and device for carrying out the same
EP0259558A2 (en) * 1986-09-10 1988-03-16 Robert Bosch Gmbh Dynamometer for measuring stress in a pin shaped or so member
US4920809A (en) * 1987-12-28 1990-05-01 Kubota, Ltd. Magnetically anisotropic torque measuring device with error correction
US5131281A (en) * 1988-12-06 1992-07-21 Mitsubishi Denki Kabushiki Kaisha Strain sensing apparatus
US5182953A (en) * 1990-07-13 1993-02-02 Simmonds Precision Products, Inc. Method and apparatus for shaft torque measurement with temperature compensation
KR20020040241A (en) * 2000-11-24 2002-05-30 밍 루 A toque sensor of electric power steering device

Similar Documents

Publication Publication Date Title
US7584672B2 (en) Magnetostrictive torque sensor
US20020162403A1 (en) Magnetoelastic torque sensor
JPS6275328A (en) Torque sensor
US5323659A (en) Multifunctional torque sensor
JPS6228413B2 (en)
JPS60173433A (en) Torque detector
JPS62113037A (en) Toque sensor
JPS61245033A (en) Torque detecting device
JPS60173434A (en) Torque detector
JPS6044839A (en) Torque detecting device
JPS62108120A (en) Torque transducer
JP2005321272A (en) Magnetostrictive torque sensor
JPS6044841A (en) Torque detecting device
JP2540865B2 (en) Torque detector
JPS60195430A (en) Torque detecting device
JP2008215942A (en) Torque sensor and electric power steering device
JPH1194658A (en) Torque sensor
Barton et al. Industrial torque measurement using magneto-strictive torquemeters
JP2661728B2 (en) Torque measuring device
JPS6161026A (en) Shaft torque meter
JPH05118938A (en) Torque transducer
JPS60236041A (en) Torque detecting device
JPH055661A (en) Torque sensor with multifunction
KR0135506B1 (en) Measuring torque
JPH04204225A (en) Magnetostriction type torque sensor