JPS60129634A - Torque sensor - Google Patents

Torque sensor

Info

Publication number
JPS60129634A
JPS60129634A JP58238658A JP23865883A JPS60129634A JP S60129634 A JPS60129634 A JP S60129634A JP 58238658 A JP58238658 A JP 58238658A JP 23865883 A JP23865883 A JP 23865883A JP S60129634 A JPS60129634 A JP S60129634A
Authority
JP
Japan
Prior art keywords
magnetic
torque
detection
transmission shaft
torque transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58238658A
Other languages
Japanese (ja)
Other versions
JPH0559374B2 (en
Inventor
Tadahiko Kobayashi
忠彦 小林
Tomokazu Domon
土門 知一
Masashi Sahashi
政司 佐橋
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58238658A priority Critical patent/JPS60129634A/en
Priority to US06/682,269 priority patent/US4590807A/en
Priority to DE8484308792T priority patent/DE3481546D1/en
Priority to CA000470314A priority patent/CA1222396A/en
Priority to EP84308792A priority patent/EP0146382B1/en
Publication of JPS60129634A publication Critical patent/JPS60129634A/en
Publication of JPH0559374B2 publication Critical patent/JPH0559374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Abstract

PURPOSE:To enable the enhancement of S/N and the stable detection of torque, by fixing one or plural thin magnetic metal strip having magnetostriction to a part of a torque transmission shaft in the peripheral direction thereof and arranging a detection magnetic core to the outer periphery of the rotary surface thereof. CONSTITUTION:A pair of thin magnetic metal strip 321, 322 are partially fixed to a torque transmission shaft 31 comprising a ferromagnetic body at two places in the axial direction thereof so as to apply induction magnetic anisotropies to directions respectively inclined at angles of theta, -theta to the peripheral direction of the transmission shaft 31. Further, a pair of U-shaped detection magnetic cores 331, 332 respectively provided with excitation winding 341, 342 and detection windings 351, 352 are arranged to the outer peripheries of the thin metal strips 321, 322 in a concentric circular form. In this case, the relation of the length (l) of a metal strip 21 and the length (l') of the effective magnetic path of a detection magnetic core 22 is brought to a range of l'<=l<=2l'. By this mechanism, S/N is enhanced and the stable detection of torque can be performed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非接触でトルクを検出するトルクセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque sensor that detects torque without contact.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

トルクは回転駆動系の制御を行なう際の基本食の一つで
ある。トルクを精密に検出するためには、その検出機構
が非接触方式であることが必要である。
Torque is one of the basic ingredients when controlling a rotational drive system. In order to accurately detect torque, the detection mechanism must be of a non-contact type.

近年、上述したような非接触方式のトルクセンサとして
アモルファス磁性合金の薄帯を利用したものが提案され
ている(電気学会マグネティックス研究会資料MAG 
−81−72)。
In recent years, a non-contact torque sensor as described above that uses a thin strip of amorphous magnetic alloy has been proposed (IEE of Japan Magnetics Study Group Materials MAG
-81-72).

このドルクセ/すの概略構成は第1図に示すようなもQ
である。図中1はトルクを検出すべき回転軸、すなわち
トルク伝達軸であり、このトルク伝達軸1にはアモルフ
ァス磁性合金から形成された環状磁心2が全周に巻回さ
れて固定されている。この環状磁心2には予めその周方
向3に対して角度θの傾き方向に誘導磁性異方性Ku’
 4が付与されている。なお、前記環状磁心2の周囲に
は例えば図示しない検出コイルが近接して配設されてお
シ、更にこの検出コイルは図示しない検出回路に接続さ
れている。
The general structure of this druxe is as shown in Figure 1.
It is. In the figure, reference numeral 1 denotes a rotating shaft on which torque is to be detected, that is, a torque transmission shaft, and an annular magnetic core 2 made of an amorphous magnetic alloy is wound around the entire circumference of the torque transmission shaft 1 and fixed thereto. This annular magnetic core 2 has an induced magnetic anisotropy Ku' in advance at an angle θ with respect to the circumferential direction 3.
4 is given. Note that, for example, a detection coil (not shown) is disposed close to the annular magnetic core 2, and this detection coil is further connected to a detection circuit (not shown).

上記トルクセンサの原理を概略的に説明する。The principle of the torque sensor described above will be schematically explained.

ここで、説明を簡単にするためにθ〉45°、飽和磁歪
定数λS > Oとする。いま、トルク伝達軸1にトル
ク5が加わると、トルク伝達軸1に発生したひずみ応力
が環状磁心2に伝達され、環状磁心2には+45°の方
向に張力σが、−45゜の方向に圧縮応力−〇がそれぞ
れ発生する。これに伴い、環状磁心2には磁気ひずみ効
果によシ+45°方向に誘導磁気異方性Ku“(6) 
(’Ku”’ =3λ8・σ)が誘導される。この結果
、Ku’とKu“の合成として誘導磁気異方性はKu 
(7)へ変化する。
Here, to simplify the explanation, it is assumed that θ>45° and the saturation magnetostriction constant λS>O. Now, when torque 5 is applied to the torque transmission shaft 1, the strain stress generated on the torque transmission shaft 1 is transmitted to the annular magnetic core 2, and the annular magnetic core 2 receives tension σ in the +45° direction and -45° direction. Compressive stress -〇 occurs respectively. Along with this, the annular magnetic core 2 has an induced magnetic anisotropy Ku" (6) in the +45° direction due to the magnetostrictive effect.
('Ku''' = 3λ8・σ). As a result, as a combination of Ku' and Ku'', the induced magnetic anisotropy is Ku
Changes to (7).

一般に、磁性体の透磁率は励磁方向に対する誘導磁気異
方性の方向によって変化する。したがって、環状磁心2
の誘導磁気異方性の方向の変化に伴う透磁率の変化を、
例えば検出コイル及びこれに接続された検出回路により
電圧の変化3− として測定することができ、その値からトルク伝達軸1
に加えられたトルク5を検出することができる。
Generally, the magnetic permeability of a magnetic material changes depending on the direction of induced magnetic anisotropy with respect to the excitation direction. Therefore, the annular magnetic core 2
The change in magnetic permeability due to the change in the direction of the induced magnetic anisotropy of
For example, the change in voltage can be measured by a detection coil and a detection circuit connected to it, and from that value, the torque transmission shaft 1
Torque 5 applied to can be detected.

なお、上記トルクセンサの説明では環状磁心を構成する
磁性体としてアモルファス磁性合金を用いた場合につい
て述べたが、これに限らず軟質磁性を示すものであれば
、例えばパーマロイ(Fe−Ni合金)、センダスト(
Fe−At−81合金×Fe’−8i合金など他の磁性
体を用いることができる。
In addition, in the above description of the torque sensor, a case was described in which an amorphous magnetic alloy was used as the magnetic material constituting the annular magnetic core, but the present invention is not limited to this, and as long as it exhibits soft magnetism, for example, permalloy (Fe-Ni alloy), Sendust (
Other magnetic materials such as Fe-At-81 alloy x Fe'-8i alloy can be used.

上述した透磁率の変化の検出機構としては第′2図(、
)及び(b)に示すようなものが知られている。
The mechanism for detecting the change in magnetic permeability described above is shown in Figure '2 (,
) and (b) are known.

第2図(、)は中空のトルク伝達軸11に磁性金属薄帯
の環状磁心12を固定し、ソレノイドコイル13を用い
て環状磁心12の周方向に励磁し、さらに検出巻線14
を巻いて出力を検出するものである。また、同図(b)
はトルク伝達軸′11に磁性金属薄帯の環状磁心12を
固定し、その外周に巻かれたソレノイドコイル13′を
用いて環状磁心12の巾方向に励磁し、さらにそ4− ・どのカ側に検出巻線14′を巻いて出力を検出するも
のである。
In FIG. 2(,), an annular magnetic core 12 made of a magnetic metal ribbon is fixed to a hollow torque transmission shaft 11, and a solenoid coil 13 is used to excite the annular magnetic core 12 in the circumferential direction.
The output is detected by winding the wire. Also, the same figure (b)
An annular magnetic core 12 made of a magnetic thin ribbon is fixed to a torque transmission shaft '11, and a solenoid coil 13' wound around the outer periphery is used to excite the annular magnetic core 12 in the width direction. The output is detected by winding a detection winding 14' around the output.

すなわち、第2図(、)及び(b)図示の検出機構では
いずれも透磁率の変化をソレノイドコイルを検出巻線と
の相互誘導による電圧の変化として□とらえ、増幅回路
を経て出力を得るものである。
In other words, in both of the detection mechanisms shown in Figures 2 (,) and (b), a change in magnetic permeability is treated as a change in voltage due to mutual induction between the solenoid coil and the detection winding, and an output is obtained via an amplifier circuit. It is.

〔背景技術の問題点〕[Problems with background technology]

上述したようガ検出機構で回転時のトルク検出出力を実
用レベルにするためにはトルク伝達軸に巻いて固定する
環状磁芯に予め大きな誘導磁気異方性を付与しなければ
ならないが、環状磁芯に大きな誘導磁気異方性を±45
°方向に付与することは極めて困難である―また、トル
ク伝達軸の全周に亘うて連続的に透磁率を検出するため
、透磁率をどの位置でも=定値にする必・要があるが、
トルク伝達軸にFe系などの強磁性体を用いた場合、材
質の不均一性から一周のうちに透磁率変化が生じる。し
たが・って、この透磁率変化に起因する出力変動がトル
クの検出出力に重畳されるためSA比が著しく低下する
As mentioned above, in order to achieve a practical level of torque detection output during rotation with the torque detection mechanism, it is necessary to give a large induced magnetic anisotropy to the annular magnetic core that is wound and fixed around the torque transmission shaft. Large induced magnetic anisotropy in the core ±45
It is extremely difficult to apply it in the ° direction - Also, since the magnetic permeability is detected continuously over the entire circumference of the torque transmission shaft, it is necessary to set the magnetic permeability to a constant value at any position. ,
When a ferromagnetic material such as Fe-based material is used for the torque transmission shaft, magnetic permeability changes within one revolution due to non-uniformity of the material. Therefore, the output fluctuation caused by this change in magnetic permeability is superimposed on the torque detection output, resulting in a significant decrease in the SA ratio.

5− 〔発明の目的〕 本発明は上記欠点を解消するためになされたものであl
)、S、A比を向上し、安定したトルク検出を行なえる
トルクセンサを提供しようとするものである。
5- [Object of the invention] The present invention has been made in order to eliminate the above-mentioned drawbacks.
), S, and A ratios to provide a torque sensor that can perform stable torque detection.

〔発明の概要〕[Summary of the invention]

本発明のトルクセンナは、トルク伝達軸の周方向の一部
に1゛個または複数個の磁性金属薄帯を固定し、この磁
性金属薄帯の回転面の外周に検出磁芯を配設したことを
特徴とするものである。 ・ 上述したようなトルクセンサによれば、トルク伝達軸の
一部にのみ磁性金属薄帯を固定するので全周に磁性金属
薄帯を巻回する場合に比べ長さが短いので予め大きな誘
導磁気異方性を付与することが容易である。またトルク
伝達軸の周方向の一部でのみトルク検出を行なうのでト
ルク伝達軸の材質の不均一性の影譬を受けることが少な
く、1回転当シの出力変動がほとんどなくなシ、はぼ静
止状態と等価な条件下でトル6一 り検出を行なえることからSA比が高く、かつ安定した
トルク検出が行なえる。
The torque sensor of the present invention has one or more magnetic metal ribbons fixed to a part of the circumferential direction of a torque transmission shaft, and a detection magnetic core arranged on the outer periphery of the rotating surface of the magnetic metal ribbon. It is characterized by: - According to the above-mentioned torque sensor, since the magnetic metal ribbon is fixed only on a part of the torque transmission shaft, the length is shorter than when the magnetic metal ribbon is wound around the entire circumference, so there is a large induced magnetism in advance. It is easy to impart anisotropy. In addition, since torque is detected only in a part of the circumferential direction of the torque transmission shaft, there is little chance of being affected by non-uniformity of the material of the torque transmission shaft, and there is almost no output fluctuation per revolution. Since torque 6 can be detected under conditions equivalent to a stationary state, the SA ratio is high and stable torque detection can be performed.

なお、本発明のトルクセンサにおいて磁性金属薄帯(複
数個固定された場合はそれぞれの磁性金属薄帯)の長さ
tは、検出磁芯の有効磁路長さをt′とすると、t′≦
t≦21’の範囲にあることが望ましい。この理由を第
3図及び第4図を参照して説明する。第3図はトルク伝
達軸の一部に固定された磁性金属薄帯21の長さtと検
出磁芯22の有効磁路長さt′との関係を示す説明図、
第4図はトルク伝達軸を回転した際、検出磁芯によシ得
られるインダクタンスの特性図である。第3図において
有効磁路長さt′は検出磁芯22が磁束変化を有効に得
ることができる磁路長さを意味する。したがって、tが
t′未満であると磁性金属薄帯21の磁束変化を有効に
得ることができず、第4図のインダクタンスPが大幅に
低下する。一方、tが21’を超えると第4図のWが拡
がるとともにWの範囲内でインダクタンスPが変動して
しまい、S/N比が著しく低下する。このため、tはt
′≦t≦21’の範囲にあることが望ましい。また、有
効磁路t′を得るための磁芯の構造を考慮した場合、ト
ルク伝達軸の全周をLとするとt’< T Lであると
とが実質的に有効である。
In addition, in the torque sensor of the present invention, the length t of the magnetic metal ribbon (or each magnetic metal ribbon when a plurality of magnetic metal ribbons are fixed) is t', where t' is the effective magnetic path length of the detection magnetic core. ≦
It is desirable that t≦21'. The reason for this will be explained with reference to FIGS. 3 and 4. FIG. 3 is an explanatory diagram showing the relationship between the length t of the magnetic metal ribbon 21 fixed to a part of the torque transmission shaft and the effective magnetic path length t' of the detection magnetic core 22;
FIG. 4 is a characteristic diagram of the inductance obtained by the detection magnetic core when the torque transmission shaft is rotated. In FIG. 3, the effective magnetic path length t' means the magnetic path length that allows the detection magnetic core 22 to effectively obtain changes in magnetic flux. Therefore, if t is less than t', the magnetic flux change of the magnetic metal ribbon 21 cannot be effectively obtained, and the inductance P shown in FIG. 4 is significantly reduced. On the other hand, when t exceeds 21', W in FIG. 4 widens and the inductance P fluctuates within the range of W, resulting in a significant drop in the S/N ratio. Therefore, t is t
It is desirable that the range is '≦t≦21'. Furthermore, when considering the structure of the magnetic core for obtaining the effective magnetic path t', it is substantially effective that t'<TL, where L is the entire circumference of the torque transmission shaft.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第5図〜第7図を参照して説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 5 to 7.

第5図中31は直径55mの、強磁性体のトルク伝達軸
であシ、このトルク伝達軸31の軸方向の2箇所には一
対の磁性金属薄帯321゜32□がトルク伝達軸3ノの
周方向の一部に接着剤によシ固定されている。これら磁
性金属薄帯321.322は単ロールにより作製された
幅5m+a、厚さ30μmの(Fe0.65”0.3C
r0.05 )75S111B、4アモルファス磁性合
金の薄帯をt=10mlの長さに切出したものである。
In Fig. 5, 31 is a ferromagnetic torque transmission shaft with a diameter of 55 m, and a pair of magnetic metal thin strips 321° 32□ are attached at two locations in the axial direction of the torque transmission shaft 31. It is fixed with adhesive to a part of the circumference. These magnetic metal thin strips 321 and 322 were made by a single roll and had a width of 5m+a and a thickness of 30μm (Fe0.65"0.3C
r0.05) A ribbon of 75S111B, 4 amorphous magnetic alloy was cut into a length of t=10ml.

また、これら磁性金属薄帯324,82□にはトルク伝
達軸31の周方向に対してそれぞれ角度θと角度−〇の
傾き方向に誘導磁気異方性が付与されている。更に、磁
性金属薄帯321.32゜の回転面の外周には1■のギ
ャップを隔てて一対のυ型の検出磁芯331,33゜の
端部がトルク伝達軸31と同心円状に配設されている。
In addition, induced magnetic anisotropy is imparted to these magnetic metal thin strips 324, 82□ in directions of inclination at an angle θ and an angle −0 with respect to the circumferential direction of the torque transmission shaft 31, respectively. Further, on the outer periphery of the rotating surface of the magnetic metal ribbon 321.32°, the ends of a pair of υ-shaped detection magnetic cores 331, 33° are arranged concentrically with the torque transmission shaft 31 with a gap of 1 cm apart. has been done.

これら検出磁芯33. 、332にはそれぞれ励磁巻線
34.。
These detection magnetic cores 33. , 332 have excitation windings 34., 332, respectively. .

342及び検出巻線351.352が施されている。342 and detection windings 351,352 are provided.

また、検出巻線35.と検出巻線352とは差動接続さ
れている。なお、前記検出磁芯33.。
Further, the detection winding 35. and the detection winding 352 are differentially connected. Note that the detection magnetic core 33. .

332の有効磁路長さt′はともに10mmとしてあ6
・″・1方1fil″1″7 ffl!M、ザ方01あ
る。
Assuming that the effective magnetic path length t' of 332 is both 10 mm,
・″・One way 1fil″1″7 ffl!M, there is the way 01.

上記トルクセンサを用いて回転数1500rpnのトル
ク伝達軸31の動、トルクを検出したところ、第6図中
のAに示す如くSA比が高く安定でしかも線形性の優れ
た検出特性を得ることができた。
When the motion and torque of the torque transmission shaft 31 at a rotational speed of 1,500 rpm was detected using the above torque sensor, it was possible to obtain detection characteristics with a high SA ratio, stability, and excellent linearity, as shown in A in Fig. 6. did it.

また、上記トルクセンサでは既述した第4図に示したよ
うに1回転当シ1個(周方向に複数個の磁性金属薄帯を
固定した場合には複数個)のインダクタンスPのピーク
が得られるため、9− この出力信号をカウンタ等の計数器に導入することによ
シトルク伝達軸の回転数を得ることもできる。
In addition, in the above torque sensor, as shown in Fig. 4 mentioned above, a peak of the inductance P can be obtained per rotation (multiple magnetic metal ribbons if multiple magnetic metal ribbons are fixed in the circumferential direction). Therefore, the rotational speed of the torque transmission shaft can also be obtained by introducing this output signal into a counter such as a counter.

なお、上記実施例では磁性金属薄帯の長さtと検出磁芯
の有効磁路長さt′とを等しくしたが、t=2t’に設
定した場合でも第6図中Bに示す如く上記実施例と同様
の良好な結果が得られた。
In the above embodiment, the length t of the magnetic metal ribbon and the effective magnetic path length t' of the detection magnetic core were made equal, but even when t = 2t', as shown in B in FIG. Good results similar to those in the examples were obtained.

一方、t = 1/2 t’の場合を第7図中Cに、t
=3t’の場合を第7図中りにそれぞれ示す。
On the other hand, the case of t = 1/2 t' is shown in C in Fig. 7, and t
=3t' is shown in FIG.

第7−か6明らかなように1 = 1/2 t’とした
場合にはトルクの検出一度が大幅に低下している。
As is clear from No. 7-6, when 1 = 1/2 t', the torque detection rate is significantly reduced.

また、t=3t’の場合には87N比の低下から出力が
不安定になってい゛る。し是がって、tはt′≦t≦2
1’の範囲にあることが望ましいことがわかる。
Furthermore, when t=3t', the output becomes unstable due to a decrease in the 87N ratio. Therefore, t is t′≦t≦2
It can be seen that it is desirable that the value be in the range of 1'.

なお、上記実施例と同様な効果は磁性金属薄帯としてパ
ーマロイ、センダスト、 Fe−81合金など他の磁性
体を用いた場合にも得られることが確認された。
It has been confirmed that the same effect as in the above embodiment can be obtained when other magnetic materials such as permalloy, sendust, and Fe-81 alloy are used as the magnetic metal ribbon.

また、トルクの正転反転に伴うトルク検出特10− 性の線形性を向上するためには上記実施例のように一対
の検出磁芯を用い、更に検出巻線を差動接続することが
望ましい。
In addition, in order to improve the linearity of the torque detection characteristics associated with normal rotation and reversal of torque, it is desirable to use a pair of detection magnetic cores as in the above embodiment and further connect the detection windings differentially. .

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、S/N比を向上し、
安定したトルク検出を行なえるトルクセンサを提供する
ことができるものである。
As detailed above, according to the present invention, the S/N ratio is improved,
It is possible to provide a torque sensor that can perform stable torque detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非接触方式のトルクセンサの原理図、第2図(
、)及び(b)はそれぞれ従来のトルクセンサの構成図
、第3図は本発□明のトルクセンサにおける磁性金属薄
帯の長さtと検出磁芯の有効磁路長さt′との関係を示
す説明図、第4図は同トルクセンサによシ得られるイン
ダクタンスの特性図、第5図は本発明の実施例における
トルクセンサの構成図、第6図は本発明のトルクセンサ
によるt = t’及びt=2t’の場合のトルク検出
特性図、第7図は本発明のトルクセンサによるt = 
1/2 t’及びt=3t’の場合のトルク検出特性□
図である。 31・・・トルク伝達軸、32.322・・・磁性金属
薄帯、331,332・・・検出磁芯、341.342
・・・励磁巻線、351,352・・・検出巻線。 出願人代理人 弁理士 鈴 江 武 彦第6図 第7図
Figure 1 shows the principle of a non-contact torque sensor, Figure 2 (
, ) and (b) are block diagrams of conventional torque sensors, respectively, and FIG. 3 shows the relationship between the length t of the magnetic metal ribbon and the effective magnetic path length t' of the detection magnetic core in the torque sensor of the present invention. FIG. 4 is an explanatory diagram showing the relationship, FIG. 4 is a characteristic diagram of inductance obtained by the torque sensor, FIG. 5 is a configuration diagram of a torque sensor in an embodiment of the present invention, and FIG. Fig. 7 is a torque detection characteristic diagram when = t' and t = 2t'.
Torque detection characteristics when 1/2 t' and t=3t'
It is a diagram. 31...Torque transmission shaft, 32.322...Magnetic metal ribbon, 331,332...Detection magnetic core, 341.342
...Excitation winding, 351,352...Detection winding. Applicant's agent Patent attorney Takehiko Suzue Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)磁歪を有する磁性金属薄帯をトルク伝達軸に固定
し、該軸に加えられたトルクによシ前記磁性金属薄帯の
磁気特性が変化することを利用してトルクの5非接触検
出を行なうトルクセンサ・、において1.前記上次り伝
達軸の周方向の一部に1個または複数個の磁性金属薄帯
を固定し、該磁性金属薄帯の回転面の外周に検出磁芯を
配設したごとを特徴とするトルクセンサ。
(1) Non-contact detection of torque by fixing a magnetostrictive magnetic metal ribbon to a torque transmission shaft and utilizing the fact that the magnetic properties of the magnetic metal ribbon change due to the torque applied to the shaft. In a torque sensor that performs 1. One or more magnetic metal ribbons are fixed to a part of the upper transmission shaft in the circumferential direction, and a detection magnetic core is arranged on the outer periphery of the rotating surface of the magnetic metal ribbon. Torque sensor.
(2)トル久伝達軸の周方向に固定する磁性金属薄帯の
曇さtが、・検出磁芯の有効磁蹄長さをt′とすると、
 ・ 、8 を−≦ lシ≦ 2 1’ の範囲にあることを特徴とする特許請求の、範囲第1項
記載のトルクセンサ。
(2) The cloudiness t of the magnetic metal thin strip fixed in the circumferential direction of the torque transmission shaft is: If the effective magnetic hoop length of the detection magnetic core is t', then
The torque sensor according to claim 1, characterized in that , 8 is in the range -≦l≦21'.
JP58238658A 1983-12-17 1983-12-17 Torque sensor Granted JPS60129634A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58238658A JPS60129634A (en) 1983-12-17 1983-12-17 Torque sensor
US06/682,269 US4590807A (en) 1983-12-17 1984-12-17 Torque sensor of noncontact type
DE8484308792T DE3481546D1 (en) 1983-12-17 1984-12-17 TOUCH-FREE TORQUE PROBE.
CA000470314A CA1222396A (en) 1983-12-17 1984-12-17 Torque sensor of noncontact type
EP84308792A EP0146382B1 (en) 1983-12-17 1984-12-17 Torque sensor of noncontact type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238658A JPS60129634A (en) 1983-12-17 1983-12-17 Torque sensor

Publications (2)

Publication Number Publication Date
JPS60129634A true JPS60129634A (en) 1985-07-10
JPH0559374B2 JPH0559374B2 (en) 1993-08-30

Family

ID=17033398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238658A Granted JPS60129634A (en) 1983-12-17 1983-12-17 Torque sensor

Country Status (2)

Country Link
JP (1) JPS60129634A (en)
CA (1) CA1222396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275328A (en) * 1985-09-30 1987-04-07 Toshiba Corp Torque sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275328A (en) * 1985-09-30 1987-04-07 Toshiba Corp Torque sensor
US4750371A (en) * 1985-09-30 1988-06-14 Kabushiki Kaisha Toshiba Torque sensor for detecting a shaft torque and an electric machine in which the torque sensor is mounted
USRE34039E (en) * 1985-09-30 1992-08-25 Kabushiki Kaisha Toshiba Torque sensor for detecting a shaft torque and an electric machine in which the torque sensor is mounted

Also Published As

Publication number Publication date
CA1222396A (en) 1987-06-02
JPH0559374B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
US5351555A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
EP0136086B1 (en) A torque sensor of the noncontact type
JPS6275328A (en) Torque sensor
JPH01189971A (en) Toque sensor
JPS6228413B2 (en)
US4590807A (en) Torque sensor of noncontact type
JP3252004B2 (en) Magnetostrictive torque sensor
JPS60129634A (en) Torque sensor
US4616424A (en) Magnetic direction sensor
JPS59166827A (en) Magnetostriction type torque sensor by differential system
JP2566640B2 (en) Torque measuring device
Sasada et al. A new method of assembling a torque transducer by the use of bilayer-structure amorphous ribbons
JPS6320030B2 (en)
JPH0522858B2 (en)
JPS6044839A (en) Torque detecting device
JPS6050429A (en) Torque sensor
JPS60123078A (en) Torque sensor
JPS6055681A (en) Torque sensor
JPS59180338A (en) Torque sensor
JPS63118627A (en) Torque sensor
JPS6182126A (en) Torque sensor
JPH0522859B2 (en)
JPS6183927A (en) Torque sensor
JPS6141935A (en) Torque sensor
JPS60187835A (en) Torque detection apparatus