JPS60123078A - Torque sensor - Google Patents

Torque sensor

Info

Publication number
JPS60123078A
JPS60123078A JP58230680A JP23068083A JPS60123078A JP S60123078 A JPS60123078 A JP S60123078A JP 58230680 A JP58230680 A JP 58230680A JP 23068083 A JP23068083 A JP 23068083A JP S60123078 A JPS60123078 A JP S60123078A
Authority
JP
Japan
Prior art keywords
torque
magnetic
torque sensor
thin band
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58230680A
Other languages
Japanese (ja)
Other versions
JPS6320031B2 (en
Inventor
Masashi Sahashi
政司 佐橋
Tadahiko Kobayashi
忠彦 小林
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58230680A priority Critical patent/JPS60123078A/en
Priority to DE8484305819T priority patent/DE3475831D1/en
Priority to US06/643,703 priority patent/US4627298A/en
Priority to EP84305819A priority patent/EP0136086B1/en
Priority to CA000462058A priority patent/CA1225846A/en
Publication of JPS60123078A publication Critical patent/JPS60123078A/en
Publication of JPS6320031B2 publication Critical patent/JPS6320031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • G01L3/103Details about the magnetic material used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/109Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving measuring phase difference of two signals or pulse trains

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a torque sensor having excellent linearity in the detection of torque extending over a wide range by fixing a magnetic metallic thin band, a saturation magnetostriction constant lambdas thereof is kept within a specific range, to a shaft and detecting the change of the magnetic characteristics of the thin band in a non-contact manner. CONSTITUTION:A magnetic metallic thin band 22 having magnetostriction, a saturation magnetostriction constant lambdas thereof satisfies the relationship of formula 1X10<-6=¦lambdas¦<20X10<-6>, is fixed to a shaft 21, and torque is measured by detecting a change by torque applied to the shaft 21 of the magnetic characteristics of the thin band in a noncontact manner. An amorphous alloy consisting of a composition such as one of (Co1-a-bFeaMb)zSixBy (where M represents one kind or more of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Ru, Ir, Pd, Pt, Ag, Au, Cu, Zn, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Y, and a rare-earth metal and 0.05<= a<=0.5, 0<=b<=0.15, 0<=x<=20, 4<=y<=35, x+y+z=100) is used as said magnetic metal thin band 22.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非接触でトルクを検出するトルクセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque sensor that detects torque without contact.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

トルクは回転駆動系の制御を行う場合の基本量で、それ
を精密に検出Tる九めには非接触構造であることが必要
である。
Torque is a basic quantity when controlling a rotational drive system, and in order to accurately detect it, a non-contact structure is required.

最近、アモルファス磁性合金の磁気ひずみ特性を利用し
、直接非接触でトルクを検出するトルクセンサが提案さ
れている(電気学会マグネティックス研究会資料MAG
−81−71)。
Recently, a torque sensor that uses the magnetostrictive properties of amorphous magnetic alloys to detect torque without direct contact has been proposed (IEE of Japan Magnetics Study Group Materials MAG
-81-71).

これは、大きな磁気ひずみ特性を有するアモルファス磁
性薄帯を回転軸に巻いて固足し、トルクに伴う回転軸の
ひずみ応力を、磁気歪みに伴うアモルファス合金の磁気
特性の変化を検出Tることによりトルクを非接触で検出
するものである。
This is achieved by wrapping an amorphous magnetic ribbon with large magnetostrictive properties around a rotating shaft and fixing it, and detecting the strain stress of the rotating shaft caused by torque by detecting changes in the magnetic properties of the amorphous alloy caused by magnetostriction. This is a non-contact detection method.

このトルクセンサを第1図に従りて更に詳しく説明下る
。第1図中1はアそルファス磁性合金の薄帯から形成さ
れ九環伏磁芯であり、この環状磁芯1にはその周方向2
に対して角度θの傾き方向に誘導磁気異方性Ku ’3
が付与されて回転軸4に巻回して固定されている。説明
を簡単にするために。
This torque sensor will be explained in more detail with reference to FIG. In Fig. 1, reference numeral 1 denotes a nine-ring magnetic core formed from a ribbon of amorphous magnetic alloy.
Induced magnetic anisotropy Ku '3 in the direction of inclination of angle θ with respect to
is provided and wound around the rotating shaft 4 and fixed. For ease of explanation.

θ〉45°、飽和磁歪定数λ8>0と仮定する。回転軸
4にトルク5を印加すると、環状磁芯1には+45゜の
方向に張力aが一45°の方向には圧縮応力−aが加わ
り、磁気ひずみ効果により誘導磁気異方性Ku’−3λ
S−aが+45°方向に誘導される。その結果Ku’と
Ku’の合成として誘導磁気異方性はKu6へ変化する
。一般に、磁性体の透磁率は励磁方向に対する誘導磁気
異方性の方向によって変化するから、第1図に示す如く
1回転軸に加えられたトルクによりてアモルファス磁性
合金薄帯の環状磁芯の誘導磁気異方性が変化するように
すれば、この環状磁芯の周囲に近接して検出コイルを配
設し、検出回路で透磁率の変化を電圧の変化として出力
することによって、トルクを検出することができる。
Assume that θ>45° and saturation magnetostriction constant λ8>0. When a torque 5 is applied to the rotating shaft 4, a tension a is applied to the annular magnetic core 1 in the +45° direction, and a compressive stress -a is applied in the -45° direction, and the induced magnetic anisotropy Ku'- is applied to the annular magnetic core 1 due to the magnetostrictive effect. 3λ
S-a is guided in the +45° direction. As a result, the induced magnetic anisotropy changes to Ku6 as a combination of Ku' and Ku'. In general, the magnetic permeability of a magnetic material changes depending on the direction of induced magnetic anisotropy with respect to the excitation direction, so as shown in Figure 1, the induction of the annular magnetic core of the amorphous magnetic alloy ribbon by the torque applied to the axis of rotation is as shown in Figure 1. If the magnetic anisotropy changes, a detection coil is placed close to the annular magnetic core, and the detection circuit outputs the change in magnetic permeability as a change in voltage, thereby detecting torque. be able to.

なお、上記トルクセンサの説明では環状磁芯を構成する
磁性体としてアモルファス磁性合金を用いた場合につい
て述べたが、これに限らず軟質磁性を示すものであれば
、例えばパーマロイ(Fe−N1合金)、センダスト(
Fe−A7−81合金)Fe−8t合金など他の磁性体
を用いることができる。
In addition, in the above description of the torque sensor, a case was described in which an amorphous magnetic alloy was used as the magnetic material constituting the annular magnetic core, but the present invention is not limited to this, and any material exhibiting soft magnetism may be used, such as permalloy (Fe-N1 alloy). , Sendust (
Other magnetic materials such as Fe-A7-81 alloy) Fe-8t alloy can be used.

このよりに磁気歪特性を用いてトルクを検出するが、一
般に磁気歪特性を利用する場合は、その出力を大とする
ためになるべく大きい例えば3゜XIO’以上の飽和磁
歪定数を有する磁性材料を用いるのが普通である。
In this way, torque is detected using magnetostrictive properties, but generally when using magnetostrictive properties, a magnetic material with a saturation magnetostrictive constant of as large as possible, for example 3°XIO' or more, is used to increase the output. It is common to use

しかしながら従来のものでは、トルクに対する出力の線
形性が劣り、結局狭いトルク範囲での測定しかできない
という問題点かあまた。
However, conventional methods often have a problem in that the linearity of output with respect to torque is poor, and measurements can only be made within a narrow torque range.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を考慮してなされたもので、広範囲ト
ルク検出ζこおける線形性に優れ九トルクセンサを提供
することを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a torque sensor with excellent linearity in wide-range torque detection.

〔発明の概要〕[Summary of the invention]

本発明は1回転軸に固定された磁歪を有する磁性金属薄
帯(飽和磁歪定数λS)の磁気特性の、前記回転軸に加
えられたトルクによる変化を非接触検出することにより
、トルクを測定するトルクセンサにおいて、 前記磁性金属薄帯のλSが 1x 1o−’(lλSl<20 X 10−eの関係
を満たすことを特徴とするトルクセンサである。このよ
うなトルクセンサは、非常に線形性にすぐれたものとな
る。
The present invention measures torque by non-contact detecting changes in the magnetic properties of a magnetostrictive magnetic metal ribbon (saturation magnetostriction constant λS) fixed to a rotating shaft due to torque applied to the rotating shaft. The torque sensor is characterized in that λS of the magnetic metal ribbon satisfies the relationship of 1 x 1o-'(lλSl<20 x 10-e. Such a torque sensor has very high linearity. It will be excellent.

す1表面応力に変化し、この表面応力変化を磁性金属の
磁気変化に変換して測定するが、λSがIX 10”−
’未満では、その変換効率が極めて悪く。
This change in surface stress is converted into a magnetic change in the magnetic metal for measurement.
If the value is less than ', the conversion efficiency is extremely poor.

線形性は良好であるが、センサ出力が低いという問題が
ある。よってλS>lxz□−a とする。またλSが
20X10−”以上となると、線形性が極めて劣化して
しまう。
Although the linearity is good, there is a problem that the sensor output is low. Therefore, λS>lxz□−a. Furthermore, when λS exceeds 20×10 − ”, the linearity deteriorates significantly.

よって前述のような範囲とする。Therefore, the range is as described above.

本発明者は、トルクセンサの線形性について鋭意研究を
行なったところ、この線形性の保証には。
The inventor of the present invention has conducted intensive research on the linearity of torque sensors, and has found a way to guarantee this linearity.

磁性金属薄帯の飽和磁歪定数(λ8)と誘導磁気異方性
(Kua)が大きく関係していることを見い出して、本
発明に到った。
The present invention was achieved by discovering that the saturation magnetostriction constant (λ8) and induced magnetic anisotropy (Kua) of a magnetic metal ribbon are significantly related.

本発明者の研究によれば、Kuo73・λS・GA)2
(Kuo:誘導磁気異方性、λS:飽和磁歪定数、σA
:磁性金属薄帯の表面応力〕のきき、(T:トルク、d
;トルク伝達軸(回転軸)の直径、GT:トルク伝達軸
の剛性率、 GA :磁性金4薄帯の剛性率)の範囲で
優れた線形性を得ることができることが見い出された。
According to the research of the present inventor, Kuo73・λS・GA)2
(Kuo: induced magnetic anisotropy, λS: saturation magnetostriction constant, σA
: surface stress of magnetic metal ribbon], (T: torque, d
It has been found that excellent linearity can be obtained within the range of: diameter of the torque transmission shaft (rotating shaft), GT: rigidity of the torque transmission shaft, GA: rigidity of the magnetic gold 4 ribbon.

すなわち、 の範囲で良好な線形性が得られるのである。That is, Good linearity can be obtained within the range of .

上述した式から明らかなように、広範囲のトルクに対し
線形性を保証するためには、Ku6/λSの値が重要な
因子となる。とがわかる。
As is clear from the above equation, the value of Ku6/λS is an important factor in ensuring linearity over a wide range of torque. I understand.

この式の物理的意味としては、異なる2種類の異方性K
u6と3λSσ人の競合において、Kuox3λSσA
近傍で容易磁化方向の不安定性を生じ。
The physical meaning of this equation is that there are two different types of anisotropy K
In the competition between u6 and 3λSσ, Kuox3λSσA
Easily causes instability in the magnetization direction in the vicinity.

飽和現象を引き起こすわけであるのでKu、1が。Ku, 1 because it causes a saturation phenomenon.

3λSσAより十分大きければ、この飽和現象は起きず
容易磁化方向はK11o近傍でわずかlこ変化するlこ
とどまる。この線形現象の臨界値がKuo/λ5==2
と言うことである。
If it is sufficiently larger than 3λSσA, this saturation phenomenon does not occur and the easy magnetization direction changes only by a small amount in the vicinity of K11o. The critical value of this linear phenomenon is Kuo/λ5==2
That is to say.

このように本発明者の研究によれば、K u、/λSが
大きい程、広範囲のトルクで線形性が保証されることか
見い出されたのである。
As described above, according to the research conducted by the present inventors, it has been found that the larger K u,/λS is, the more linearity is guaranteed over a wide range of torque.

従来、磁歪を利用した応力センサにおいては。Conventionally, in stress sensors using magnetostriction.

より大きな飽和磁歪値を実現することに注力されていた
。これは、応力と磁気変化に変換する際の効率を大きく
するためである。
The focus was on achieving larger saturation magnetostriction values. This is to increase the efficiency in converting stress into magnetic change.

ここで線形性を考慮した場合、前述のごと(Ku、/λ
Sが大きい程良いため、λSの増大に伴ないKu6も増
加する必要がある。しかしながらK u 6 ニは限界
があり(〜15 X 10 S 6170m” ) 、
λSを大きくすると線形性の点が劣ることになる。例え
ば自動車用エンジンシャフトの最大トルクは、100k
g参mにも達し、この範囲までの線形性を保証するには
、シャフト径等を考慮して35X101erll/cm
” を超えるKu、を磁場中処理により付与することが
必要となる。しかしながらこの値は限界値を超えるもの
であり、不可能である。
When linearity is considered here, as mentioned above (Ku, /λ
Since the larger S is, the better, Ku6 also needs to increase as λS increases. However, K u 6 ni has a limit (~15 x 10 S 6170 m”),
If λS is increased, linearity will be degraded. For example, the maximum torque of an automobile engine shaft is 100k
In order to guarantee linearity up to this range, it is necessary to take into consideration the shaft diameter, etc.
It is necessary to impart a Ku exceeding `` by treatment in a magnetic field. However, this value exceeds the limit value and is not possible.

よって前述のとと< I X 1 o−@<1λS l
<20 XIO″の範囲であれば、すぐれた線形性を得
ることができる。
Therefore, the above relationship < I X 1 o−@<1λS l
In the range <20 XIO'', excellent linearity can be obtained.

また、Kuoについても、磁性金属薄帯に磁場中処理に
より付与する場合、より理想的に一軸磁気異方性を付与
するもめにはある程度以上のKu6を必要とする。よっ
てKu6 )I XI O” ertt/cm” T!
あることが望ましい。
Furthermore, when Kuo is applied to a magnetic metal ribbon by treatment in a magnetic field, a certain amount or more of Ku6 is required to impart more ideal uniaxial magnetic anisotropy. Therefore, Ku6) I XI O” ertt/cm” T!
It is desirable that there be.

本発明に用いる磁性金属薄帯としては、例えばパーマロ
イ(Fe−’Ni合金)、センダスト(Fe−AJ −
8i合金)’、Fe−81合金等の磁性体が挙げられる
。しかしながらより大きいKu6の付与が可能であり、
Kuo/λSの可変域の大炒い非晶質合金を甲いること
が好ましい。
Examples of the magnetic metal ribbon used in the present invention include Permalloy (Fe-'Ni alloy), Sendust (Fe-AJ-
Examples include magnetic materials such as 8i alloy)' and Fe-81 alloy. However, it is possible to provide a larger amount of Ku6,
It is preferable to use a large amorphous alloy with a variable range of Kuo/λS.

また非晶質合金として。Also as an amorphous alloy.

(COt−a bFeaMb) zsi xByMet
Ti 、Zr、Hf、V、Nb、Ta、Cr 、Me。
(COt-a bFeaMb) zsi xByMet
Ti, Zr, Hf, V, Nb, Ta, Cr, Me.

W、Mn、Re、Ru、Ir、Pd、Pt、AJ。W, Mn, Re, Ru, Ir, Pd, Pt, AJ.

Au、Cu、Zn、AJ、Ga、In、Ge、8n。Au, Cu, Zn, AJ, Ga, In, Ge, 8n.

Pb、8b、Bi、Y、希土類金属のうちから選ばれた
少なくとも一種の元素 o、o5くa〈o、s Oくb(0,150<X<:2
0 4≦yく35 x十y十z−100 で表わされる非晶質合金を用いると極めて線形性に優れ
たトルクセンサを得ることができる。
At least one element selected from Pb, 8b, Bi, Y, rare earth metals
By using an amorphous alloy expressed as 04≦y×35x10y1z-100, a torque sensor with extremely excellent linearity can be obtained.

ここでFeは誘導磁気異方性の大きな値を得るため、及
び飽和磁歪値の制御のための必須成分であるが、その値
がa (0,05では誘導磁気異方性値及び飽和磁歪値
が小さく、a ) 0.5では飽和磁歪値が大舘くなり
、線形性が劣下する。
Here, Fe is an essential component to obtain a large value of induced magnetic anisotropy and to control the saturation magnetostriction value. is small, and at a) 0.5, the saturation magnetostriction value becomes large and the linearity deteriorates.

よって 0.05 (a (0,5の範囲とする。Therefore, 0.05 (a (range of 0.5).

Mはアモルファス合金の結晶化温度を上昇させ、熱安定
性を向上させるとともに熱膨張係数の太きさを調整する
ことが出来、回転シャフト材の熱膨張係数の大きさに合
わせることが出来、信頼性の高いトルクセンサを得るこ
とに有効な元素であるが、その大きさがb −0,15
を越えるとアモルファス化することが困難になる。よっ
てb(0,15とする。
M increases the crystallization temperature of the amorphous alloy, improves thermal stability, and can adjust the thickness of the thermal expansion coefficient, making it possible to match the thermal expansion coefficient of the rotating shaft material, making it reliable. This element is effective in obtaining a torque sensor with high performance, but its size is b −0,15
If it exceeds this value, it becomes difficult to make it amorphous. Therefore, b(0, 15).

Mは少量の添加により効果が現われ始めるが、実用上は
、0.01(b(0,12・ の含有量にすることが好
ましい。
Although the effect of M starts to appear when added in a small amount, it is practically preferable to set the content to 0.01(b(0,12.).

Siは結晶化温度を上昇させるのに効果のある元素であ
るが、その含有率を上記範囲に限定したのは、Xが20
を越えるとアモルファス合金の製造が河難になるためで
ある。また、Bはアモルファス合金の製造に不可欠の元
素であるか、その含有率を上記範囲lこ限定したのは 
y di 4未満および35を越えるとアモルファス合
金の製造が困難になるためである。
Si is an element that is effective in raising the crystallization temperature, but the reason why its content is limited to the above range is that X is 20
This is because the production of amorphous alloys becomes difficult if the Also, is B an essential element for the production of amorphous alloys?
This is because if y di is less than 4 or more than 35, it becomes difficult to manufacture an amorphous alloy.

実用上好ましい8iの下限値としては1<Slである。A practically preferable lower limit value of 8i is 1<Sl.

これはSlの含有により、アモルファス合金の製造性が
高まるためである。
This is because the inclusion of Sl increases the manufacturability of the amorphous alloy.

このようにlXl0−”<Iλs l(20X 10−
’の範囲で優れた線形性を示すが、さらに5×1(T6
〈1λSl<18 XI O−6であればより実用的に
優れたものとなる。
In this way, lXl0−”<Iλs l(20X 10−
It shows excellent linearity in the range of 5×1 (T6
If <1λSl<18 XI O-6, it will be more practically excellent.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、良好な線形性を有
するトルクセンサを得ることができ、トルクが広範囲で
変化する系に用いると有効である。
As explained above, according to the present invention, a torque sensor having good linearity can be obtained, and it is effective when used in a system where torque changes over a wide range.

トルクセンサにおいては、磁性金属薄帯に誘導磁気異方
性を付与してお(必要があるが、その具体的な方法とし
ては回転軸の径に合わせて例えばアモルファス磁性合金
薄帯の環状磁芯を作製し。
In a torque sensor, it is necessary to impart induced magnetic anisotropy to a magnetic metal ribbon. Created.

熱処理して内部応力を除去した後、これを前記回転軸に
巻回して軸にねじりを与えた状態で接着し。
After heat-treating to remove internal stress, it is wound around the rotating shaft and bonded with the shaft twisted.

軸のねじりをもどすという方法が知られている。A method of untwisting the shaft is known.

(l気学会マグネティックス研究会資料MAG−81−
71)。
(Materials MAG-81-
71).

又、本発明者らが先に出願したように、アモルファス磁
性合金薄帯に予め誘導磁気異方性を付与した後、前記薄
帯を回転軸に巻いて固定するという方法もある(特願昭
57−171347号)。この具体的な方法の1つとし
ては、アモルファス磁性合金薄帯の長手方向に対しであ
る角度θを持つ方向に外部から直流磁場を印加したまま
加熱する方法である。
Furthermore, as previously filed by the present inventors, there is also a method of imparting induced magnetic anisotropy to an amorphous magnetic alloy ribbon in advance, and then winding the ribbon around a rotating shaft and fixing it. No. 57-171347). One specific method is to heat the amorphous magnetic alloy ribbon while applying an external DC magnetic field in a direction having a certain angle θ with respect to the longitudinal direction.

しかしながら、前者の方法は予めシャフトの径に合わせ
た環状磁芯を作製Tる必要があること、回転軸にねじり
を与える必要があることなど工程が繁雑になるという問
題点があるため、後者の方が実用的に好ましい。
However, the former method has the problem of complicating the process, such as the need to prepare an annular magnetic core that matches the diameter of the shaft in advance and the need to twist the rotating shaft. is more practical.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

第1表に示す組成を有する非晶質合金薄帯(幅約5mm
、平均板厚30μm)を単ロール法で作製した。この非
晶質合金薄帯に磁場中熱処理300℃。
Amorphous alloy ribbon (approximately 5 mm wide) having the composition shown in Table 1
, average plate thickness 30 μm) was produced by a single roll method. This amorphous alloy ribbon was heat treated in a magnetic field at 300°C.

IH炉冷(印加磁場方向、薄帯長手方向に対し45°方
向、 20000e)により、誘導磁気異方性を付与し
た後、トルク伝達軸の周方向に固定した。
After imparting induced magnetic anisotropy by IH furnace cooling (applied magnetic field direction, 45° to the longitudinal direction of the ribbon, 20000e), it was fixed in the circumferential direction of the torque transmission shaft.

第2図中にトルクセンサの構成を示す。The configuration of the torque sensor is shown in FIG.

第2図+al中21は直径55mmのトルク伝達軸であ
り、このトルク伝達軸21には一対の環状磁芯22S、
22.が固定されている。これら環状磁芯22、.22
.として、前述のアモルファス磁性合金の薄帯を前記ト
ルク伝達軸21に一周巻いて固定されている。また、こ
れらの環状磁芯22..22゜にはそれぞれ、その局方
向に対して角度45°と角度−45°の傾き方向に誘導
磁気異方性が付与されている。環状磁芯221,22を
上には1mmのギャップを隔てて酸化物磁性体からなる
1対のU型の磁心231 m23tによって構成される
検出ヘッドが配設されている。これら磁心23..23
.には第2図1b+に示す如く1次巻線(励磁巻線)2
4およ′g2次巻線(検出巻線)25が姉されている。
Reference numeral 21 in FIG.
22. is fixed. These annular magnetic cores 22, . 22
.. A thin ribbon of the amorphous magnetic alloy mentioned above is wound around the torque transmission shaft 21 and fixed thereto. Moreover, these annular magnetic cores 22. .. At 22°, induced magnetic anisotropy is imparted in directions inclined at an angle of 45° and an angle of −45° with respect to the local direction, respectively. A detection head constituted by a pair of U-shaped magnetic cores 231m23t made of oxide magnetic material is disposed above the annular magnetic cores 221 and 22 with a gap of 1 mm between them. These magnetic cores 23. .. 23
.. There is a primary winding (excitation winding) 2 as shown in Figure 2 1b+.
4 and 'g secondary winding (detection winding) 25 are arranged in a sister manner.

この検出ヘッドにより環状磁芯22..22.の周方向
に励磁することがでへる。このような励磁は構成により
幅方向に行うこともできるが、薄帯の形状から反磁場係
数の小さい周方向に励磁した方が励磁電流が小さくてす
むため、有効である。また。
This detection head detects the annular magnetic core 22. .. 22. The magnet can be excited in the circumferential direction. Although such excitation can be performed in the width direction depending on the configuration, it is more effective to excite in the circumferential direction where the demagnetizing field coefficient is smaller due to the shape of the ribbon because the excitation current can be smaller. Also.

2次巻線(検出巻線)25は差動接続されている。The secondary winding (detection winding) 25 is differentially connected.

上記トルクセンサを用いてトルク伝達軸21 ノトルク
を検出し几。その特性を第1表にあわせて示す。
The torque of the torque transmission shaft 21 is detected using the torque sensor. Its characteristics are also shown in Table 1.

なお第1表において、飽和磁歪値(λ3)は歪ゲージ法
によりめた値であり、誘導磁気異方性(Ku)はアモル
ファス合金の長さ方向及び幅方向に磁場をかけて熱処理
し、その磁化曲線の第1象限におりる2つの磁化曲線の
囲む面積から算出した値である。
In Table 1, the saturation magnetostriction value (λ3) is the value determined by the strain gauge method, and the induced magnetic anisotropy (Ku) is the value obtained by heat-treating the amorphous alloy by applying a magnetic field in the length and width directions. This is a value calculated from the area surrounded by two magnetization curves falling in the first quadrant of the magnetization curve.

線形性は、出力の最小二乗直線に対する2σ値を、70
kg、m)ルク値に対する最小二乗直線近似値(直線要
(@)で表わした。
Linearity is defined as the 2σ value for the least squares straight line of the output, which is 70
kg, m) The least squares linear approximation value (represented by straight line (@)) for the torque value.

(以下ぐ、白) 第1表から明らかなごとく、λSがlXl0”≦1λs
l<20X10’の関係を満た下体発明の笑施例の方が
線形性に優れていることがわかる。
(Hereafter, white) As is clear from Table 1, λS is lXl0”≦1λs
It can be seen that the second embodiment of the lower body invention, which satisfies the relationship l<20X10', has better linearity.

従って自動車用エンジンシャフト等、トルクが広範囲で
変化する系に用いると非常に有効である。
Therefore, it is very effective when used in systems where torque varies over a wide range, such as automobile engine shafts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はトルクセンサを説明する原理図、第2図はトル
クセンサの構成図。 代理人弁理士 則 近 憲 市(ほか1名)第1図
FIG. 1 is a principle diagram explaining a torque sensor, and FIG. 2 is a configuration diagram of the torque sensor. Representative Patent Attorney Noriyuki Chika (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】 (1ン回転軸lこ固定された磁歪を有する磁性金属薄帯
(飽和磁歪定数λS)の磁気特性の、前記回転軸に加え
られたトルクによる変化を非接触検出することにより、
トルクを測定するトルクセンサにおいて、 前記磁性金属薄帯のλSが lX10−’(lλ5l(20X10’の関係を満たす
ことを特徴とするトルクセンサ。 (2)前記磁性金属薄帯として非晶質合金を用いたこと
を特徴とする特許請求の範囲第1項記載のトルクセンサ
。 +31前記非晶質合金として。 (Co、−a−bFelMb)zsixByの組成より
なる非晶質合金を用いたことを特徴とする特許請求の範
囲第3項記載のトルクセンサ。 (4)前記非晶質合金として 0.01(b(0,12 1(X(20 1■■■【―−−−― の組成よりなる非晶質合金を用いたことを特徴とする特
許請求の範囲第3項記載のトルクセンサ。
[Scope of Claims] (Non-contact detection of changes in the magnetic properties of a magnetostrictive magnetic metal ribbon (saturation magnetostriction constant λS) that is fixed to the rotating shaft) due to a torque applied to the rotating shaft. According to
A torque sensor for measuring torque, characterized in that λS of the magnetic metal ribbon satisfies the relationship lX10-'(lλ5l(20X10'). (2) An amorphous alloy is used as the magnetic metal ribbon. The torque sensor according to claim 1, characterized in that an amorphous alloy having a composition of (Co, -a-bFelMb)zsixBy is used as the amorphous alloy. The torque sensor according to claim 3. (4) As the amorphous alloy, from the composition of 0.01(b(0,12 1(X(20 1 ■■■ The torque sensor according to claim 3, characterized in that an amorphous alloy is used.
JP58230680A 1983-08-30 1983-12-08 Torque sensor Granted JPS60123078A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58230680A JPS60123078A (en) 1983-12-08 1983-12-08 Torque sensor
DE8484305819T DE3475831D1 (en) 1983-08-30 1984-08-24 A torque sensor of the noncontact type
US06/643,703 US4627298A (en) 1983-08-30 1984-08-24 Torque sensor of the noncontact type
EP84305819A EP0136086B1 (en) 1983-08-30 1984-08-24 A torque sensor of the noncontact type
CA000462058A CA1225846A (en) 1983-08-30 1984-08-29 Torque sensor of the noncontact type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230680A JPS60123078A (en) 1983-12-08 1983-12-08 Torque sensor

Publications (2)

Publication Number Publication Date
JPS60123078A true JPS60123078A (en) 1985-07-01
JPS6320031B2 JPS6320031B2 (en) 1988-04-26

Family

ID=16911621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230680A Granted JPS60123078A (en) 1983-08-30 1983-12-08 Torque sensor

Country Status (1)

Country Link
JP (1) JPS60123078A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213071A (en) * 1984-04-09 1985-10-25 Nippon Denso Co Ltd Torque sensor
JPS63232383A (en) * 1986-10-30 1988-09-28 Toshiba Corp Torque detector
JPS63252487A (en) * 1986-12-05 1988-10-19 マグ ディブ インコーポレーテッド Magnetoelastic torque transducer
JPH01225181A (en) * 1988-03-04 1989-09-08 Nissan Motor Co Ltd Torque sensor
US5585574A (en) * 1993-02-02 1996-12-17 Mitsubishi Materials Corporation Shaft having a magnetostrictive torque sensor and a method for making same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213071A (en) * 1984-04-09 1985-10-25 Nippon Denso Co Ltd Torque sensor
JPH0550157B2 (en) * 1984-04-09 1993-07-28 Nippon Denso Co
JPS63232383A (en) * 1986-10-30 1988-09-28 Toshiba Corp Torque detector
JPS63252487A (en) * 1986-12-05 1988-10-19 マグ ディブ インコーポレーテッド Magnetoelastic torque transducer
JPH01225181A (en) * 1988-03-04 1989-09-08 Nissan Motor Co Ltd Torque sensor
US5585574A (en) * 1993-02-02 1996-12-17 Mitsubishi Materials Corporation Shaft having a magnetostrictive torque sensor and a method for making same

Also Published As

Publication number Publication date
JPS6320031B2 (en) 1988-04-26

Similar Documents

Publication Publication Date Title
US4627298A (en) Torque sensor of the noncontact type
JP4716033B2 (en) Magnetic core for current transformer, current transformer and watt-hour meter
US4823617A (en) Torque sensor
WO2007125690A1 (en) Magnetic core for current transformer, current transformer, and watt-hour meter
EP0086485A2 (en) Wound iron core
JPS60123078A (en) Torque sensor
Mohri et al. New extensometers using amorphous magnetostrictive ribbon wound cores
JPH0610327B2 (en) Torque sensor
JPS59181575A (en) Torque sensor
JPH11186020A (en) Zero-phase current transformer
JPS5961732A (en) Manufacture of torque sensor
JP2624672B2 (en) Torque detector
JPH08184656A (en) Magnetic sensor
JPS58192309A (en) Magnetic core for noise filter
JP3602988B2 (en) Magnetic impedance effect element
JPS59180338A (en) Torque sensor
JPH0763627A (en) Dynamic amount sensor
JP7066132B2 (en) Magnetic sensor, material evaluation method using it, manufacturing method of magnetic sensor
JPH01189970A (en) Torque detector
JPH0992519A (en) Magnetic element and its manufacturing method
JPH11183278A (en) High-sensitivity magnetostrictive material for torque sensor as well as sensor shaft and its manufacture
JPH053959Y2 (en)
JPH02114139A (en) Sensor
Lorenz et al. Magnetostriction Versus Magnetization of Hiperco 50 From 20$^ circ $ C to 700$^ circ $ C
JPH0242417B2 (en)