JPH0242417B2 - - Google Patents

Info

Publication number
JPH0242417B2
JPH0242417B2 JP9947083A JP9947083A JPH0242417B2 JP H0242417 B2 JPH0242417 B2 JP H0242417B2 JP 9947083 A JP9947083 A JP 9947083A JP 9947083 A JP9947083 A JP 9947083A JP H0242417 B2 JPH0242417 B2 JP H0242417B2
Authority
JP
Japan
Prior art keywords
torque
rotating shaft
magnetic
shape memory
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9947083A
Other languages
Japanese (ja)
Other versions
JPS5961729A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9947083A priority Critical patent/JPS5961729A/en
Publication of JPS5961729A publication Critical patent/JPS5961729A/en
Publication of JPH0242417B2 publication Critical patent/JPH0242417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • G01L3/103Details about the magnetic material used

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非接触でトルクを検出するトルクセン
サに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque sensor that detects torque without contact.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、回転体のトルクを正確に検出することが
求められている。この要望に対しては、回転体に
検出体が接触しない非接触方式が適している。
In recent years, it has been required to accurately detect the torque of a rotating body. To meet this demand, a non-contact method in which the detection body does not come into contact with the rotating body is suitable.

従来、非接触方式によるトルクセンサとして
は、軸のねじり角を光や磁気により検出して間接
的にトルクを検出する間接方式によるもの、或い
は回転体に磁性体を設け、磁性体の回転による磁
気ひずみ現象を利用してトルクを検出する直接方
式等が試みられている。しかしながら実用上、使
用に耐えるものではない。
Traditionally, non-contact type torque sensors include indirect methods that detect torque indirectly by detecting the torsion angle of the shaft using light or magnetism, or those that use a magnetic material on the rotating body and detect magnetism due to the rotation of the magnetic material. Attempts have been made to directly detect torque using strain phenomena. However, it is not suitable for practical use.

上記直接方式は間接方式に比較すると、簡便
で、かつ静止、正転、逆転時のトルクの検出が可
能で応用上好ましいが、従来のものでは磁性体の
磁気的特性の不均一により正確なトルク検出が困
難であつた。
Compared to the indirect method, the direct method described above is more convenient and can detect torque during standstill, forward rotation, and reverse rotation, and is preferable in terms of application. It was difficult to detect.

ところで、最近アモルフアス磁性合金の磁気ひ
ずみ特性を利用し、直接、非接触でトルクを検出
するトルクセンサが提案されている(電気学会マ
グネテイツクス研究会資料、MAG−81−71)。
By the way, recently a torque sensor has been proposed that uses the magnetostrictive properties of an amorphous magnetic alloy to directly detect torque without contact (IEE of Japan Magnetics Study Group Materials, MAG-81-71).

これは、大きな磁気ひずみ特性を有するアモル
フアス磁性合金薄帯を回転軸に巻いて固定し、ト
ルクによる軸のひずみ応力がアモルフアス磁性合
金薄帯に導入されるようにして、磁気ひずみ現象
によるアモルフアス磁性合金薄帯の磁気特性の変
化を外部から非接触で検出することによりトルク
を検出するものである。
This is done by wrapping an amorphous magnetic alloy ribbon with large magnetostrictive properties around a rotating shaft and fixing it so that the shaft strain stress due to torque is introduced into the amorphous magnetic alloy ribbon. Torque is detected by externally detecting changes in the magnetic properties of the ribbon without contact.

即ち、前記トルクセンサは第1図に示す如く回
転軸1に嵌装されたアモルフアス磁性合金薄帯か
らなる環状磁芯2を有する。今、トルク3を回転
軸1に加えると、回転軸1にはその周方向に対し
て±45°の方向にひずみ応力が加わり、これに伴
つて回転軸1に完全密着した環状磁芯2にも同第
1図に示す如くその周方向に対してひずみ応力σ
4が生じる。
That is, as shown in FIG. 1, the torque sensor has an annular magnetic core 2 made of an amorphous magnetic alloy ribbon fitted around a rotating shaft 1. Now, when torque 3 is applied to the rotating shaft 1, strain stress is applied to the rotating shaft 1 in a direction of ±45° with respect to its circumferential direction, and along with this, the annular magnetic core 2 that is in complete contact with the rotating shaft 1 is As shown in Figure 1, strain stress σ is applied in the circumferential direction.
4 occurs.

このトルクセンサでは、第2図に示す如く、環
状磁芯2に、その周方向に対して例えばθ=45°
の方向に一軸磁気異方性Ku(5)を予め導入し、こ
の方向に磁化しやすいようにしている。前述した
ように、トルク3を加えると、それに応じて環状
磁芯2に生じたひずみ応力σによつて誘起された
誘導磁気異方性が加わり、一軸磁気異方性はKu
(5)からKu′(6)へ変化する。したがつて、この一軸
磁気異方性の変化量を電気的に検出することによ
り、回転軸1に加わるトルク3を検出することが
できる。具体的には、例えば環状磁芯2の周囲に
励磁巻線7及び検出巻線8を配設し、励磁巻線7
に電源回路(図示せず)を、検出巻線8に検出回
路(図示せず)をそれぞれ接続する。そして、励
磁巻線7により環状磁芯2を励磁する。回転軸1
にトルク3が加わることにより、環状磁芯2の一
軸磁気異方性が変化すると、磁束貫通方向におけ
る環状磁芯2の透磁率が変化する。この透磁率の
変化は、検出巻線7及び検出回路により、電圧変
化として検出される。したがつて、トルク3の大
きさと電圧変化の大きさとの対応関係から、トル
クを検出することができる。
In this torque sensor, as shown in FIG.
Uniaxial magnetic anisotropy Ku(5) is introduced in advance in the direction of , to facilitate magnetization in this direction. As mentioned above, when torque 3 is applied, the induced magnetic anisotropy induced by the strain stress σ generated in the annular magnetic core 2 is added accordingly, and the uniaxial magnetic anisotropy becomes Ku
(5) changes to Ku′(6). Therefore, by electrically detecting the amount of change in this uniaxial magnetic anisotropy, the torque 3 applied to the rotating shaft 1 can be detected. Specifically, for example, an excitation winding 7 and a detection winding 8 are arranged around the annular magnetic core 2, and the excitation winding 7
A power supply circuit (not shown) is connected to the detection winding 8, and a detection circuit (not shown) is connected to the detection winding 8. Then, the annular magnetic core 2 is excited by the excitation winding 7. Rotating axis 1
When the uniaxial magnetic anisotropy of the annular magnetic core 2 changes due to the application of torque 3 to , the magnetic permeability of the annular magnetic core 2 in the magnetic flux penetration direction changes. This change in magnetic permeability is detected as a voltage change by the detection winding 7 and the detection circuit. Therefore, the torque can be detected from the correspondence between the magnitude of the torque 3 and the magnitude of the voltage change.

なお、環状磁芯2に予め一軸磁気異方性Kuを
導入していない場合、トルク検出特性(電圧変
化)がヒステリシスを示すため、センサとして使
用できなくなる。
Note that if the uniaxial magnetic anisotropy Ku is not introduced into the annular magnetic core 2 in advance, the torque detection characteristic (voltage change) exhibits hysteresis, making it impossible to use it as a sensor.

ところで、従来、上述した磁性金属薄帯の回転
軸への固定は合成樹脂の接着剤でなされていた。
しかし、磁性金属薄帯を接着剤で固定すると、温
度上昇に伴つて接着がゆるむため、磁性金属薄帯
に加わる応力が変化してトルクの検出出力の変動
をきたし、トルク検出の精度が落ちるという問題
があつた。
By the way, conventionally, the above-mentioned magnetic metal ribbon was fixed to the rotating shaft using a synthetic resin adhesive.
However, when magnetic metal ribbons are fixed with adhesive, the adhesive loosens as the temperature rises, which changes the stress applied to the magnetic metal ribbons, causing fluctuations in the torque detection output and reducing the accuracy of torque detection. There was a problem.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたも
のであり、−30〜150℃程度の温度変化に対しても
出力の変動がなく、精度の高いトルク検出を行う
ことのできるトルクセンサを提供することを目的
とするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and provides a torque sensor that can perform highly accurate torque detection without fluctuation in output even with temperature changes of about -30 to 150 degrees Celsius. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明のトルクセンサは回転軸に磁性金属薄帯
を形状記憶合金固定材を用いてその形状記憶作用
により被包固定することを特徴とするものであ
る。
The torque sensor of the present invention is characterized in that a magnetic metal ribbon is encapsulated and fixed to the rotating shaft using a shape memory alloy fixing material due to its shape memory action.

形状記憶合金としてはAu−Cd、Cu−Al−Ni、
Cu−Al−Zn、Cu−Sn、In−Tl、Ni−Al、Ni−
Tiなどの多くの合金が知られているが、本発明
のトルクセンサにはいずれのものも用いることが
できる。
Shape memory alloys include Au-Cd, Cu-Al-Ni,
Cu−Al−Zn, Cu−Sn, In−Tl, Ni−Al, Ni−
Many alloys such as Ti are known, and any of them can be used in the torque sensor of the present invention.

上述した形状記憶合金固定材による磁性金属薄
帯の回転軸への固定を第3図a〜dを参照して説
明する。
Fixing of the magnetic metal ribbon to the rotating shaft using the above-mentioned shape memory alloy fixing material will be explained with reference to FIGS. 3a to 3d.

まず、直径D1の回転軸11に磁性金属薄帯1
2を巻きつける(第3図a図示)。一方、形状記
憶合金を変態点以上の温度下で成型し、前記回転
軸11の直径D1よりも小さい直径D2の円筒体1
3を作製する(同図b図示)。次に、変態点以下
の温度にて前記円筒体13の径を拡げ、前記回転
軸11の直径D1より大きい直径D3の円筒体1
3′を作製する(同図c図示)。つづいて、この円
筒体13′を前記回転軸11の磁性金属薄帯12
が巻きつけられている位置に嵌装し、全体を変態
点以上の温度にさらすと、前記円筒体13′は形
状記憶作用によつて最初の直径D2の円筒体13
に縮もうとするので前記磁性金属薄帯12は円筒
体13に被包されてしつかりと回転軸11に固定
される(同図d図示)。なお、磁性金属薄帯12
への一軸磁気異方性の付与は磁性金属薄帯12を
回転軸11に巻きつける前に行つてもよいし、巻
きつけた後行つてもよい。
First, a magnetic metal ribbon 1 is attached to a rotating shaft 11 with a diameter D 1 .
2 (as shown in Figure 3a). On the other hand, a cylindrical body 1 having a diameter D 2 smaller than the diameter D 1 of the rotating shaft 11 is formed by molding a shape memory alloy at a temperature higher than the transformation point.
3 (as shown in Figure b). Next, the diameter of the cylindrical body 13 is expanded at a temperature below the transformation point, and the cylindrical body 1 has a diameter D 3 larger than the diameter D 1 of the rotating shaft 11.
3' is prepared (shown in c of the same figure). Next, this cylindrical body 13' is attached to the magnetic metal ribbon 12 of the rotating shaft 11.
When the cylindrical body 13' is inserted into the position where the cylindrical body 13' is wound and the entire body is exposed to a temperature above the transformation point, the cylindrical body 13' has the initial diameter D2 due to the shape memory effect.
Since the magnetic metal ribbon 12 tends to shrink, the magnetic metal ribbon 12 is wrapped in the cylindrical body 13 and firmly fixed to the rotating shaft 11 (as shown in d of the same figure). In addition, the magnetic metal ribbon 12
The uniaxial magnetic anisotropy may be imparted to the magnetic metal ribbon 12 before or after the magnetic metal ribbon 12 is wound around the rotating shaft 11.

以後、形状記憶合金からなる円筒体はいかなる
温度においても直径がD1より大きくなることは
ない(但し、熱膨張に伴う形状の変化を除く)の
で、広い範囲の温度保証を行えることになり、ト
ルクの検出精度が著しく向上する。
Since the diameter of the cylindrical body made of shape memory alloy will not become larger than D1 at any temperature (excluding changes in shape due to thermal expansion), it will be possible to guarantee a wide range of temperatures. Torque detection accuracy is significantly improved.

本発明に用いる形状記憶合金固定材の形状は上
述した円筒体のほか、リング状、らせん状などい
ずれの形状でもよい。これらの形状記憶合金固定
材の厚さはその機械的強度に応じて設計されなけ
ればならないが、本発明の非接触方式のトルクセ
ンサにおいては検出出力をできるだけ大きくする
ために、磁性金属薄帯と該磁性金属薄帯の周囲に
近接して配設される検出コイルとの間隔はできる
だけ小さくする必要があるので、両者の間に介在
する形状記憶合金固定材の厚さはできるだけ薄い
ことが望ましい。
The shape of the shape memory alloy fixing material used in the present invention may be any shape, such as a ring shape or a spiral shape, in addition to the above-mentioned cylindrical shape. The thickness of these shape memory alloy fixing materials must be designed according to their mechanical strength, but in the non-contact type torque sensor of the present invention, in order to maximize the detection output, magnetic metal thin strips and Since the distance between the magnetic metal thin strip and the detection coil disposed close to it must be as small as possible, it is desirable that the thickness of the shape memory alloy fixing material interposed between the two is as thin as possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

まず、単ロール法により幅10mm、厚さ約20μm
の(Fe0.985Nb0.01581Si6B13アモルフアス磁性合
金の薄帯を作製した。次に、この薄帯を直径30mm
の回転軸に一周巻いて端部を接着剤により固定し
た。
First, a width of 10 mm and a thickness of approximately 20 μm were obtained using the single roll method.
A thin ribbon of (Fe 0.985 Nb 0.015 ) 81 Si 6 B 13 amorphous magnetic alloy was fabricated. Next, attach this thin strip to a diameter of 30 mm.
It was wrapped around the rotating shaft once and the ends were fixed with adhesive.

また、予め厚さ0.1mmの形状記憶合金NiTi(変
態点60℃)の薄板を70℃の温度下にて巻いて直径
29mmの円筒体を作製した。つづいて、室温にてこ
の円筒体の径を前記回転軸の直径30mm以上に広げ
た。
In addition, a thin plate of shape memory alloy NiTi (transformation point 60°C) with a thickness of 0.1 mm was rolled in advance at a temperature of 70°C, and the diameter
A 29 mm cylindrical body was manufactured. Subsequently, the diameter of this cylindrical body was expanded to a diameter of 30 mm or more of the rotating shaft at room temperature.

次いで、前記回転軸にねじりを与えた状態でこ
の回転軸の前記アモルフアス磁性合金薄帯が巻か
れている位置に前記形状記憶合金の円筒体を嵌装
した後、全体を70℃の温度下に置いた。この結
果、前記形状記憶合金NiTiの円筒体は形状記憶
作用によつて最初の直径29mmの円筒体に縮もうと
するので前記アモルフアス磁性合金薄帯は形状記
憶合金の円筒体に被包されて回転軸にしつかりと
固定された。つづいて、回転軸のねじりを戻して
前記アモルフアス磁性合金薄帯に一軸磁気異方性
を付与した。
Next, with the rotating shaft twisted, the cylindrical body of the shape memory alloy was fitted onto the rotating shaft at the position where the amorphous magnetic alloy ribbon was wound, and the entire body was then heated to a temperature of 70°C. placed. As a result, the cylindrical body of the shape memory alloy NiTi tries to shrink to the initial cylindrical body with a diameter of 29 mm due to the shape memory effect, so the amorphous magnetic alloy ribbon is encapsulated in the cylindrical body of the shape memory alloy and rotates. firmly fixed to the shaft. Subsequently, the rotating shaft was untwisted to impart uniaxial magnetic anisotropy to the amorphous magnetic alloy ribbon.

以上のようにして得られた、形状記憶合金の円
筒体によつてアモルフアス磁性合金薄帯が被包固
定されたトルクセンサを用い、既述した第1図及
び第2図図示の原理に基づいて−30〜150℃の温
度範囲で回転軸の動トルクを検出した。その結
果、従来の接着剤のみでアモルフアス磁性合金薄
帯を回転軸に固定したトルクセンサでは上記温度
範囲における動トルク検出精度は±10%程度であ
つたのに対し、上述した形状記憶合金を用いたト
ルクセンサによれば、上記温度範囲における動ト
ルク検出精度は±1%以内であつた。
Using the torque sensor obtained in the above manner, in which the amorphous magnetic alloy ribbon is encapsulated and fixed in the shape memory alloy cylinder, based on the principle shown in FIGS. 1 and 2 described above, The dynamic torque of the rotating shaft was detected in the temperature range of -30 to 150℃. As a result, the dynamic torque detection accuracy in the above temperature range was about ±10% with a conventional torque sensor in which an amorphous magnetic alloy ribbon was fixed to the rotating shaft using only adhesive, but when using the shape memory alloy described above, According to the torque sensor used, the dynamic torque detection accuracy in the above temperature range was within ±1%.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば広い温度範囲
に亘つて高い精度でトルクを検出することがで
き、工業上極めて実用性の高いトルクセンサを提
供することができるものである。
As described in detail above, according to the present invention, it is possible to detect torque with high accuracy over a wide temperature range, and it is possible to provide a torque sensor that is extremely practical in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は非接触型のトルクセンサの
原理図、第3図a〜dは本発明における形状記憶
合金固定材による磁性金属薄帯の回転軸への固定
方法を示す説明図である。 11……回転軸、12……磁性金属薄帯、1
3,13′……形状記憶合金の円筒体。
Figures 1 and 2 are principle diagrams of a non-contact torque sensor, and Figures 3a to 3d are explanatory diagrams showing a method of fixing a magnetic metal ribbon to a rotating shaft using a shape memory alloy fixing material in the present invention. be. 11...Rotating shaft, 12...Magnetic metal ribbon, 1
3, 13'... Shape memory alloy cylindrical body.

Claims (1)

【特許請求の範囲】[Claims] 1 大きな磁歪定数を有する磁性金属の薄帯を回
転軸に固定し、該回転軸に加えられたトルクによ
り前記磁性金属薄帯の磁気特性が変化することを
利用してトルクの非接触検出を行うトルクセンサ
において、前記回転軸に前記磁性金属薄帯を形状
記憶合金固定材を用いてその形状記憶作用により
被包固定したことを特徴とするトルクセンサ。
1. Non-contact detection of torque is performed by fixing a magnetic metal ribbon with a large magnetostriction constant to a rotating shaft and using the fact that the magnetic properties of the magnetic metal ribbon change due to the torque applied to the rotating shaft. A torque sensor, characterized in that the magnetic metal ribbon is encapsulated and fixed to the rotating shaft using a shape memory alloy fixing material due to its shape memory action.
JP9947083A 1983-06-06 1983-06-06 Torque sensor Granted JPS5961729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9947083A JPS5961729A (en) 1983-06-06 1983-06-06 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9947083A JPS5961729A (en) 1983-06-06 1983-06-06 Torque sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57171344 Division 1982-09-30 1982-09-30

Publications (2)

Publication Number Publication Date
JPS5961729A JPS5961729A (en) 1984-04-09
JPH0242417B2 true JPH0242417B2 (en) 1990-09-21

Family

ID=14248196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9947083A Granted JPS5961729A (en) 1983-06-06 1983-06-06 Torque sensor

Country Status (1)

Country Link
JP (1) JPS5961729A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648219A (en) * 1987-06-29 1989-01-12 Nippon Oils & Fats Co Ltd Amorphous metal-metal composite and its production and amorphous metal-metal composite torque sensor using said composite
US7127797B1 (en) * 2000-04-20 2006-10-31 Kilmartin Brian D Imparting compressive hoop stress into a bonded magnetoelastic element by means of diameter reduction of the underlying shaft
CN113375848B (en) * 2021-06-08 2023-03-21 哈尔滨工业大学 Soil pressure gauge based on shape memory polymer supports

Also Published As

Publication number Publication date
JPS5961729A (en) 1984-04-09

Similar Documents

Publication Publication Date Title
US5351555A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5520059A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
JPH04276533A (en) Torque sensor
US4631796A (en) Torque sensor and method for manufacturing the same
JPH0242417B2 (en)
JPS6042628A (en) Torque sensor
JPH0242419B2 (en)
JPH0470792B2 (en)
US4784003A (en) Mechanical quantity sensor element
JPS6115942A (en) Torque sensor
JPS5961730A (en) Torque sensor
JPH0424530A (en) Magnetostriction torque sensor
JPS6320031B2 (en)
JPS59180338A (en) Torque sensor
JPH081399B2 (en) Physical quantity detection element and manufacturing method thereof
JPH0242418B2 (en)
JPS59188968A (en) Torque sensor made of double layer structural amorphous magnetic thin band
JPH0710010B2 (en) Method of fixing the physical quantity detection element
JPS6320030B2 (en)
JPS60234948A (en) Amorphous alloy for torque sensor
JPH0710009B2 (en) Method of fixing the physical quantity detection element
JPH0295228A (en) Torque sensor
JPH01210485A (en) Element for detecting mechanical quantity
JP3166938B2 (en) Magnetostrictive strain sensor
JPH01189970A (en) Torque detector