JPH01210485A - Element for detecting mechanical quantity - Google Patents

Element for detecting mechanical quantity

Info

Publication number
JPH01210485A
JPH01210485A JP3408188A JP3408188A JPH01210485A JP H01210485 A JPH01210485 A JP H01210485A JP 3408188 A JP3408188 A JP 3408188A JP 3408188 A JP3408188 A JP 3408188A JP H01210485 A JPH01210485 A JP H01210485A
Authority
JP
Japan
Prior art keywords
mechanical quantity
adhesive
ferromagnetic material
thermal expansion
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3408188A
Other languages
Japanese (ja)
Inventor
Naomasa Kimura
直正 木村
Minako Onodera
美奈子 小野寺
Jun Sasahara
潤 笹原
Tomoyuki Fukumaru
福丸 智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3408188A priority Critical patent/JPH01210485A/en
Priority to US07/310,546 priority patent/US4971859A/en
Publication of JPH01210485A publication Critical patent/JPH01210485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cause the coefficient of thermal expansion of an element for detecting a mechanical quantity to approach to that of an adhesive layer, by fixing a ferromagnetic material thin belt element for detecting a mechanical quantity on the surface of an object to be measured for a mechanical quantity with an adhesive containing an inorganic fiber. CONSTITUTION:A ferromagnetic material thin belt element for detecting a mechanical quantity for utilizing the stress/magnetism effect of a ferromagnetic material having positive magnetostriction, made of, for example, an amorphous magnetic alloy is fixed on the surface of an object to be measured for a mechanical quantity (e.g., austenitic stainless steel) through a 100-200mum-thick layer of an adhesive containing an inorganic fiber (e.g., carbon fiber).

Description

【発明の詳細な説明】 LLL立皿旦立1 本発明は、力学量測定対象物の表面に固定され強磁性材
料の応力−磁気効果を利用する力学量検出素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mechanical quantity detection element that is fixed to the surface of a mechanical quantity measurement object and utilizes the stress-magnetic effect of a ferromagnetic material.

LIL逝 力、トルクなどを計測する力学量センサにおいて、強磁
性材料(特に、非晶質磁性合金)の応力−磁気効果を利
用するセンサが近年注目されつつあり、この力学量セン
サによれば、■力の非接触検出が可能である、■力の電
気量への変換を直接的に行うことができる、■センサと
しての装置構造が簡単で、小型化が達成される等の利点
が得られる。
In mechanical quantity sensors that measure LIL force, torque, etc., sensors that utilize the stress-magnetic effect of ferromagnetic materials (especially amorphous magnetic alloys) have been attracting attention in recent years.According to this mechanical quantity sensor, ■ Non-contact detection of force is possible; ■ Force can be directly converted into electrical quantity; ■ The structure of the device as a sensor is simple and miniaturization can be achieved. .

その−例として、応力−磁気効果が敏感な正の磁歪を有
する強磁性材、料の薄帯01を回転軸02に巻き付け、
トルクTによって回転軸02に生ずる“捩りひずみ″を
薄帯01に導入せしめ、応力−磁気効果による薄帯01
の磁気特性の変化を検出し、もってトルクTを検出する
トルクセンサが知られている(11図参照)。磁歪が正
の強磁性材料では、引張り応力を与えると引張り方向の
磁気弾性エネルギーが低下し、その方向で磁化が容易易
になる現象があり、この現象を応力−磁気効果と称して
いるが、前記トルクセンサにおいては、該応力−磁気効
果を利用して、薄帯01の全面に周方向03に対する傾
斜角α(α〉45°)の方向に−様な磁化容易軸(−軸
磁気異方性)にUを与えている。しかるに、回転軸02
にトルクTが作用すると、第2図図示の如く回転軸02
の表面で軸心線方向に対してdは回転軸02の外径であ
る)で表わされる最大応力σが生じ、応力−磁気効果に
より、+σの方向にも一軸磁気異方性が誘導され、結果
として合成された磁化容易軸にU′が与えられる。
As an example, a thin ribbon 01 of a ferromagnetic material having positive magnetostriction that is sensitive to stress-magnetic effects is wound around a rotating shaft 02,
"Torsional strain" generated on the rotating shaft 02 by the torque T is introduced into the ribbon 01, and the ribbon 01 due to the stress-magnetic effect is
A torque sensor is known that detects a change in the magnetic properties of a magnet, thereby detecting a torque T (see FIG. 11). In a ferromagnetic material with positive magnetostriction, when tensile stress is applied, the magnetoelastic energy in the tensile direction decreases, and magnetization becomes easier in that direction. This phenomenon is called the stress-magnetic effect. In the torque sensor, by utilizing the stress-magnetic effect, a -like easy axis of magnetization (-axis magnetic anisotropy) is created on the entire surface of the ribbon 01 in the direction of an inclination angle α (α>45°) with respect to the circumferential direction 03. gender) is given a U. However, the rotation axis 02
When torque T is applied to the rotating shaft 02 as shown in FIG.
A maximum stress σ expressed as d is the outer diameter of the rotating shaft 02 is generated in the axial direction on the surface of U' is given to the resulting synthesized easy axis of magnetization.

一般に磁性体の透磁率は、磁界方向に対する磁化容易軸
の方向によって変化することから、前記磁化容易軸の変
化(Ku→にul )を透磁率の変化として捉え、トル
クTの大きさを検出することができる。そこで、例えば
励磁コイル(−次コイル)。
Generally, the magnetic permeability of a magnetic material changes depending on the direction of the axis of easy magnetization with respect to the direction of the magnetic field, so the change in the axis of easy magnetization (Ku → ul) is regarded as a change in magnetic permeability, and the magnitude of torque T is detected. be able to. So, for example, an excitation coil (-order coil).

検出コイル(二次コイル)を用いて透磁率(または磁束
密度)の変化を電圧変化として検出すると、第3図図示
の如きトルク−出力曲線が1りられる。
When a change in magnetic permeability (or magnetic flux density) is detected as a voltage change using a detection coil (secondary coil), a torque-output curve as shown in FIG. 3 is obtained.

ところで、回転軸02の表面に薄帯01を接合するだめ
の接着剤の熱膨張係数(例、エポキシ系樹脂接着剤の熱
膨張係数−40〜50X 10−8 / ”C)は非晶
質磁性合金の熱膨張係数(←IOX 10″s/℃)、
あるいは金属製回転軸のそれ(例、JIS 5US30
4材の熱膨張係数= 17X 10’ /”C’)に比
して非常に大きく、温度変化に伴う接着剤と薄帯01と
の間の熱膨張差により薄帯01に引張り応力または圧縮
応力が発生し、薄帯01の見掛は上の特性が環境温度に
よって変化する結果となる。
By the way, the coefficient of thermal expansion of the adhesive used to bond the ribbon 01 to the surface of the rotating shaft 02 (e.g., the coefficient of thermal expansion of epoxy resin adhesive -40 to 50X 10-8/''C) is that of amorphous magnetism. Coefficient of thermal expansion of alloy (←IOX 10″s/℃),
Or that of a metal rotating shaft (e.g. JIS 5US30
The coefficient of thermal expansion of the 4 materials = 17X 10' / "C') is very large, and the difference in thermal expansion between the adhesive and the ribbon 01 due to temperature changes causes tensile or compressive stress in the ribbon 01. occurs, and the apparent characteristics of the ribbon 01 change depending on the environmental temperature.

これを第4図により説明すると、回転軸02上の薄帯0
1が室温で仮に曲線Aのような特性を有していても、環
境温度が上昇して接着剤が薄帯01に比べ大きく熱膨張
すると、薄帯01に引張り応力が生じて特性が曲線B(
例えば、温度80℃の場合)のようになり、また環i温
度が低下して樹脂接着剤が薄帯01に比べ大きく熱収縮
すると、薄帯01に圧縮応力が生じて特性が曲[IC(
例えば、温度−40℃の場合)のようになる。これでは
、環tM湿温度変化すると回転軸02に作用するトルク
を正確に測定することができない。
To explain this with reference to FIG. 4, the ribbon 0 on the rotating shaft 02
Even if 1 has the characteristics as shown in curve A at room temperature, if the environmental temperature rises and the adhesive thermally expands to a greater extent than ribbon 01, tensile stress will occur in ribbon 01 and the characteristics will change to curve B. (
For example, when the temperature is 80°C), if the ring i temperature decreases and the resin adhesive thermally shrinks more than ribbon 01, compressive stress will occur in ribbon 01 and the characteristics will change [IC (
For example, when the temperature is -40°C). This makes it impossible to accurately measure the torque acting on the rotating shaft 02 when the humidity and temperature of the ring tM change.

゛し と 本発明は斯かる技術的背景の下に創案されたものであり
、接着剤を介して力学量測定対象物の表面に固定されて
なり、正の磁歪を有する強磁性材料の応力−磁気効果を
利用するための強磁性材料製薄帯状力学形検出素子にお
いて、力学量測定対象物と力学量検出素子との間に介在
する接着剤層の熱膨張係数を力学量検出素子のそれに近
い伯にすることをその目的とする。
Therefore, the present invention was devised against such a technical background, and is fixed to the surface of a mechanical quantity measurement object via an adhesive, and is made of a ferromagnetic material having positive magnetostriction. In a ribbon-shaped mechanical sensing element made of a ferromagnetic material that utilizes magnetic effects, the coefficient of thermal expansion of the adhesive layer interposed between the object to be measured and the mechanical sensing element is close to that of the mechanical sensing element. The purpose is to make the country a country.

′  た の−び この目的は、■接着剤中に無機質繊維を混在させること
により、あるいは■無機質繊維の縦糸と横糸から成る織
布に接着剤を含浸させたものを接合媒体とすることによ
り達成される。
The purpose of this process can be achieved by ■ mixing inorganic fibers in the adhesive, or by using a woven fabric made of warp and weft of inorganic fibers impregnated with adhesive as the bonding medium. be done.

本発明は、接着剤に対する充填材として熱膨張係数の小
さい無機質繊維を用いることを基本原理としている。無
機質繊維の熱膨張係数は通常使用される接着剤に比して
十分に小さく、例えば炭素I!雑の熱膨張係数はポリア
クリロニトリル(PAN)系・・・3〜5x104/’
C,ピッチ系・・・1.′S〜1.7X104/”Cで
あり、無機質繊維を充填材として使用することによって
、力学量測定対象物に対して力学検出素子を固定する接
着剤層の熱膨張係数を小さくすることができる。熱膨張
係数の調整は無機質繊維混在量(配合迅)の多、少によ
って行われ、ill雑体積率(Vf)として表わされる
該混在量を多(するほど接着剤層の熱膨張係数が低下す
る。第5図はエポキシ系樹脂接着剤中に炭素繊維を混在
させた場合の繊維体積率(Vf)と熱膨張係数の関係を
示している。このグラフによれば、力学量測定対象物が
JIS 303304材(オーステナイト系ステンレス
鋼)である場合、接着剤層の熱膨張係数を力学量検出素
子(非晶質磁性合金)と力学量測定対象物の熱膨張係数
に近付けるには、m雄体積率(Vf)を45〜85%に
するのが良く、更に望ましくは力学量検出素子の熱膨張
係数と力学M測定対象物のそれとの中間値を狙って11
維体積率(Vf)を59〜72%にするのが良い。ここ
で留意すべきは、繊維体積率(Vf)を過大にすると接
着剤による必要な接合力が得られず、力学量検出素子が
剥離し易くなることである。
The basic principle of the present invention is to use inorganic fibers with a small coefficient of thermal expansion as fillers for adhesives. The coefficient of thermal expansion of inorganic fibers is sufficiently smaller than that of commonly used adhesives, such as carbon I! The coefficient of thermal expansion is polyacrylonitrile (PAN)...3~5x104/'
C. Pitch system...1. 'S ~ 1.7X104/''C, and by using inorganic fibers as a filler, it is possible to reduce the coefficient of thermal expansion of the adhesive layer that fixes the mechanical detection element to the object to be measured. The coefficient of thermal expansion is adjusted by adjusting the amount of inorganic fiber mixed (mixing speed). Figure 5 shows the relationship between fiber volume fraction (Vf) and thermal expansion coefficient when carbon fibers are mixed in an epoxy resin adhesive.According to this graph, the mechanical quantity measurement target is In the case of JIS 303304 material (austenitic stainless steel), in order to bring the thermal expansion coefficient of the adhesive layer close to that of the mechanical quantity detection element (amorphous magnetic alloy) and the mechanical quantity measurement object, m male volume is required. It is preferable to set the coefficient (Vf) to 45 to 85%, and more preferably to 11%, aiming for an intermediate value between the coefficient of thermal expansion of the mechanical quantity detection element and that of the object to be measured.
It is preferable to set the fiber volume fraction (Vf) to 59 to 72%. What should be noted here is that if the fiber volume fraction (Vf) is set too high, the necessary bonding force from the adhesive cannot be obtained, and the mechanical quantity detection element is likely to peel off.

また、無機質繊維としては長繊維、短繊維、ウィスカー
のいずれを使用しても良いが、短繊維。
Further, as the inorganic fiber, any of long fibers, short fibers, and whiskers may be used, but short fibers are used.

ウィスカーの場合、そのね径が極細であると接着剤層の
層厚を十分小さくできるものの、接着剤中にtli+M
を配合する際の取扱い、および接着剤の層厚制御が難し
い。長繊維は織布としてこれを使用することができ、織
布に接着剤を含浸させて使用すれば良いため取扱いが容
易であり、接着剤が硬化する際に収縮すると−ころから
、織布(本明細書では織布も充填材であると見做す)を
含めた接着剤層の層厚が織布の厚さによって規定され、
接着剤層の層厚を全接着面に亘って均一に、かつ正確に
制御することができる。
In the case of whiskers, if the thread diameter is extremely fine, the thickness of the adhesive layer can be made sufficiently small;
It is difficult to handle when blending and control the adhesive layer thickness. Long fibers can be used as woven fabrics, and they can be easily handled by impregnating them with adhesive. The layer thickness of the adhesive layer including the woven fabric (herein, woven fabric is also considered to be a filler) is defined by the thickness of the woven fabric,
The thickness of the adhesive layer can be uniformly and precisely controlled over the entire adhesive surface.

接着剤層の層厚は、外力の作用で力学は測定対象物の表
面に生じた歪が強磁性材料の1帯(肉厚的30μm)で
ある力学量検出素子に正しく伝達されるように、接合力
が確保される範囲内で可及的にこれを薄くするのが良く
、層厚100〜200μm程度が好ましい。接着剤層の
層厚を容易に制御できる充填材用織布としては、例えば
炭素繊維製のものが推奨される。市販の炭素繊維織布は
、線径5〜8μmのIl雑を1000〜6000本撚り
合せて糸になし、この糸を縦糸、横糸として織製したも
のとして提供されており、本件発明では市原100〜4
00μmのものを使用するのが適当である。市原100
μmは市販品の下限値であり、重重を400μm以下に
限定する理由は、接着剤層の層厚を十分湧くするためで
ある。使用可能な市販炭素繊維織布の例として、東しく
株) Ill e6151B (商品名)、カネボウ(
株)製CF1101B  (商品名)等を挙げることが
できる。
The thickness of the adhesive layer is determined so that the strain generated on the surface of the mechanical measurement object due to the action of external force is correctly transmitted to the mechanical quantity detection element, which is a band of ferromagnetic material (thickness: 30 μm). It is best to make it as thin as possible within a range that ensures bonding strength, and a layer thickness of about 100 to 200 μm is preferred. As the woven fabric for the filler, which allows the thickness of the adhesive layer to be easily controlled, for example, a fabric made of carbon fiber is recommended. Commercially available carbon fiber woven fabrics are provided by twisting 1,000 to 6,000 Il miscellaneous fibers with a wire diameter of 5 to 8 μm into a thread, and weaving this thread as warp and weft threads.In the present invention, Ichihara 100 ~4
It is appropriate to use one with a diameter of 00 μm. Ichihara 100
μm is the lower limit of commercially available products, and the reason why the weight is limited to 400 μm or less is to ensure a sufficient thickness of the adhesive layer. Examples of commercially available carbon fiber woven fabrics that can be used include Toshiku Co., Ltd. Ill e6151B (trade name) and Kanebo (trade name).
Examples include CF1101B (trade name) manufactured by Co., Ltd.

支JLfLユ ■線径7μmの炭素繊維1000本を撚り合せてなる糸
を縦糸3.横糸4とする市原140μmの織布2を用意
した(第6図)。
Support JLfL Yu ■The warp yarn is made by twisting 1000 carbon fibers with a wire diameter of 7 μm.3. A woven fabric 2 having an Ichihara thickness of 140 μm as a weft thread 4 was prepared (FIG. 6).

■織布2にエポキシ系樹脂接着剤を含浸させ繊維体積率
(Vf)を65%としたものを媒体として、第1図、第
2図に示す薄帯01と同様に非晶質磁性合金製薄帯1を
鋼製軸5の外周に巻き付は接合した。
■The medium is a woven fabric 2 impregnated with epoxy resin adhesive to give a fiber volume fraction (Vf) of 65%, and is made of an amorphous magnetic alloy in the same way as the ribbon 01 shown in Figures 1 and 2. The thin ribbon 1 was wound around the outer periphery of a steel shaft 5 and joined.

その際、縦糸3.横糸4が最大応力方向(軸5にトルク
Tが作用したときに生ずる最大応力方向・・・第2図+
σ、−σ参照)に指向するようにした(第6図)。縦糸
3.横糸4をこのように配向すれば、接着剤層のヤング
率が縦糸3.横糸4の方向で増大してトルクTによって
軸5の外周に生じた歪と同様の変形挙動を示し、軸5の
歪が正確に薄帯1に伝達される。
At that time, the warp thread 3. The weft 4 is in the maximum stress direction (the maximum stress direction that occurs when torque T is applied to the shaft 5...Fig. 2 +
(see Fig. 6). Warp 3. If the weft yarns 4 are oriented in this manner, the Young's modulus of the adhesive layer will be that of the warp yarns 3. The deformation behavior increases in the direction of the weft thread 4 and exhibits the same deformation behavior as the strain produced on the outer periphery of the shaft 5 by the torque T, and the strain on the shaft 5 is accurately transmitted to the ribbon 1.

支1JLユ ■実施例1で使用した薄帯1とは、相互に平行な複数条
の傾斜スリット1a  (傾斜角θ=45°)が形成さ
れている点でのみ相違する薄帯1^を用意した(第7図
)。
Support 1 JL Yu■ Prepare a thin strip 1^ that differs from the thin strip 1 used in Example 1 only in that a plurality of mutually parallel inclined slits 1a (angle of inclination θ = 45°) are formed. (Figure 7).

■薄帯1Aの傾斜スリット1aと、織布2の縦糸3.横
糸4とがトルク下によって軸5の外周に発生する最大応
力方向に一致するように、実施例1と同様に薄帯1Aを
軸5の外周に巻き付は固定した。
■The inclined slit 1a of the thin strip 1A and the warp thread 3 of the woven fabric 2. As in Example 1, the ribbon 1A was wound around the outer periphery of the shaft 5 and fixed so that the weft thread 4 coincided with the direction of the maximum stress generated on the outer periphery of the shaft 5 under torque.

■第8図、第9図は軸5に作用するトルクTの測定態様
を示している。励磁コイル8.検出コイル9,9を巻い
た磁心6.7.7を薄帯1八面に対して直角に近接して
宛てがい、励磁コイル8に高周波電流を供給し、検出コ
イル9,9の端子線10に生じる誘起電圧(V)を′調
べる(第9図に励磁コイル8.検出コイル9の配置を概
念的に示す)。
(2) Figures 8 and 9 show how the torque T acting on the shaft 5 is measured. Excitation coil 8. The magnetic cores 6, 7, and 7 around which the detection coils 9, 9 are wound are arranged close to each other at right angles to the 8 sides of the ribbon 1, and a high frequency current is supplied to the exciting coil 8, and the terminal wire 10 of the detection coils 9, 9 is (Figure 9 conceptually shows the arrangement of the excitation coil 8 and detection coil 9).

この誘起電圧(V)は、前述の如く、非晶質磁性合金で
形成された薄帯1Aの透磁率の変化、すなわち軸5に与
えられたトルクTによって薄帯1Aに導入される引張り
歪の大小によって変化し、透磁率とトルクTとの関係を
予め調べておけば、誘起電圧(V)を測定することによ
りトルクTの大きさを知ることができる。
As mentioned above, this induced voltage (V) is caused by the change in magnetic permeability of the ribbon 1A made of an amorphous magnetic alloy, that is, by the tensile strain introduced into the ribbon 1A by the torque T applied to the shaft 5. It changes depending on the magnitude, and if the relationship between magnetic permeability and torque T is investigated in advance, the magnitude of torque T can be determined by measuring the induced voltage (V).

■この場合に得られるトルク−出力曲線を第4図に示す
。曲線A′は先の曲線Aと一致し、曲線B’  (温度
80℃の場合)2曲線C′ (温度−40℃の場合)は
先の曲線B、Cに比して曲線A(またはA’ )に非常
に近い特性を示している。
(2) The torque-output curve obtained in this case is shown in Fig. 4. Curve A' matches the previous curve A, and curve B' (when the temperature is 80°C)2 curve C' (when the temperature is -40°C) is different from the previous curve A (or A). ).

1里亘11 以上の説明から明らかなように、本発明によれば下記の
効果が得られる。
As is clear from the above description, according to the present invention, the following effects can be obtained.

■力学量測定対象物の表面に強磁性材料製薄帯状力学量
検出素子を固定する接着剤中に熱膨張係数の小さな無機
質繊維が混在しているため、接着剤単体の熱膨張係数に
比して接着剤層の熱膨張係数が小さく、無機質繊維の配
合量を適正に選択することによって接着剤層の熱膨張係
数を十分小さくすることが可能である。接着剤層の熱膨
張係数は、力学量測定対象物の熱膨張係数と力学量検出
素子のそれとの間の値に調整するのが最適であり、接着
剤層の熱膨張係数を小さくすることによって接着剤層と
の間の熱膨張、熱収縮差に起因する力学量検出素子の剥
離を効果的に防ぐことができる。
■Since inorganic fibers with a small coefficient of thermal expansion are mixed in the adhesive that fixes the thin strip-shaped mechanical quantity detection element made of ferromagnetic material to the surface of the object to be measured, the coefficient of thermal expansion is smaller than that of the adhesive alone. The coefficient of thermal expansion of the adhesive layer is small, and it is possible to make the coefficient of thermal expansion of the adhesive layer sufficiently small by appropriately selecting the amount of inorganic fiber blended. It is best to adjust the thermal expansion coefficient of the adhesive layer to a value between the thermal expansion coefficient of the mechanical quantity measurement object and that of the mechanical quantity detection element, and by reducing the thermal expansion coefficient of the adhesive layer. It is possible to effectively prevent peeling of the mechanical quantity detecting element due to differences in thermal expansion and thermal contraction between the adhesive layer and the adhesive layer.

■無機質繊維として縦糸と横糸から成る織布を使用した
例では接着剤層の層厚を正確に制御することができ、接
合面全体に亘って容易に層厚を均一にすることができる
。また、織布を用いることにより、接着剤層のヤング率
を向上させ、外力の作用で力学量測定対象物の表面に発
生した歪を正確に力学量検出素子に伝達させることがで
きる。
(2) In an example in which a woven fabric consisting of warp and weft yarns is used as the inorganic fiber, the thickness of the adhesive layer can be accurately controlled and the layer thickness can be easily made uniform over the entire joint surface. Furthermore, by using a woven fabric, the Young's modulus of the adhesive layer can be improved, and the strain generated on the surface of the mechanical quantity measurement object due to the action of external force can be accurately transmitted to the mechanical quantity detection element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は強磁性材料製部片を軸の周囲に接合し
て、軸に与えられるトルクを検出する場合の原理を説明
する図、第3図は強磁性材料製力学量検出素子を用いた
トルクセンサによる軸トルク測定例としてのトルク−出
力曲線を示すグラフ、第4図は接着剤の熱膨張係数が大
きいことに起因して前記トルク−出力曲線が温度によっ
て変化する態様を示すグラフ(従来の特性曲線A、B、
Cおよび本発明例としての特性曲線A I 、 B l
。 C′)、第5図は無機質繊維の体積率(vr)が接着剤
層の熱膨張係数に与える影響を示すグラフ、第6図は軸
の周囲に接着剤含浸織布を介して力学量検出素子を巻き
付は固定した状態を示す一部欠截図、第7図は複数条の
スリットが形成された力学量検出素子を示す図、第8図
は軸の周囲に接着剤含浸織布を介して力学量検出素子を
巻き付は固定した状態および力学量検出素子の透磁率変
化を検   □出する装置を示す斜視図、第9図は第8
図の表示方法を変えて前記検出装置の配線を概念的に示
す図である。 1・・・薄帯、2・・・織布、3・・・縦糸、4・・・
横糸、5・・・軸、6.7・・・磁心、8・・・励磁コ
イル、9・・・検出コイル、10・・・端子線。
Figures 1 and 2 are diagrams explaining the principle of detecting the torque applied to the shaft by joining a piece made of ferromagnetic material around the shaft, and Figure 3 is a diagram showing the detection of mechanical quantities made of ferromagnetic material. FIG. 4 is a graph showing a torque-output curve as an example of shaft torque measurement by a torque sensor using an element, and shows how the torque-output curve changes depending on temperature due to the large coefficient of thermal expansion of the adhesive. The graphs shown (conventional characteristic curves A, B,
C and characteristic curves A I, B l as examples of the invention
. C'), Figure 5 is a graph showing the effect of the volume fraction (vr) of inorganic fibers on the thermal expansion coefficient of the adhesive layer, and Figure 6 is a graph showing the influence of the volume fraction (vr) of inorganic fibers on the thermal expansion coefficient of the adhesive layer. A partially cutaway diagram showing a state in which the element is wrapped and fixed, Figure 7 is a diagram showing a mechanical quantity detection element with multiple slits formed, and Figure 8 is a diagram showing an adhesive-impregnated woven fabric around the shaft. Figure 9 is a perspective view showing the state in which the mechanical quantity detecting element is wound and fixed through the wire and the device for detecting changes in magnetic permeability of the mechanical quantity detecting element.
FIG. 3 is a diagram conceptually illustrating the wiring of the detection device using a different display method. 1... Thin strip, 2... Woven fabric, 3... Warp, 4...
Weft, 5... Axis, 6.7... Magnetic core, 8... Excitation coil, 9... Detection coil, 10... Terminal wire.

Claims (2)

【特許請求の範囲】[Claims] (1)接着剤を介して力学量測定対象物の表面に固定さ
れてなり、正の磁歪を有する強磁性材料の応力−磁気効
果を利用するための強磁性材料製薄帯状力学量検出素子
において、前記接着剤中に無機質繊維が混在しているこ
とを特徴とする力学量検出素子。
(1) In a thin strip-shaped mechanical quantity sensing element made of a ferromagnetic material that is fixed to the surface of a mechanical quantity measurement object via an adhesive and that utilizes the stress-magnetic effect of a ferromagnetic material that has positive magnetostriction. , A mechanical quantity detection element characterized in that inorganic fibers are mixed in the adhesive.
(2)接着剤を介して力学量測定対象物の表面に固定さ
れてなり、正の磁歪を有する強磁性材料の応力−磁気効
果を利用するための強磁性材料製薄帯状力学量検出素子
において、前記接着剤が無機質繊維の縦糸と横糸から成
る織布に含浸せしめられた接着剤であることを特徴とす
る力学量検出素子。
(2) In a thin strip-shaped mechanical quantity sensing element made of a ferromagnetic material that is fixed to the surface of a mechanical quantity measurement object via an adhesive and that utilizes the stress-magnetic effect of a ferromagnetic material that has positive magnetostriction. . A mechanical quantity detecting element, wherein the adhesive is an adhesive impregnated into a woven fabric made of warp and weft of inorganic fibers.
JP3408188A 1988-02-18 1988-02-18 Element for detecting mechanical quantity Pending JPH01210485A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3408188A JPH01210485A (en) 1988-02-18 1988-02-18 Element for detecting mechanical quantity
US07/310,546 US4971859A (en) 1988-02-18 1989-02-13 Adhesively bonded structure between dynamic power detecting element and object to be detected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3408188A JPH01210485A (en) 1988-02-18 1988-02-18 Element for detecting mechanical quantity

Publications (1)

Publication Number Publication Date
JPH01210485A true JPH01210485A (en) 1989-08-24

Family

ID=12404312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3408188A Pending JPH01210485A (en) 1988-02-18 1988-02-18 Element for detecting mechanical quantity

Country Status (1)

Country Link
JP (1) JPH01210485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090857A (en) * 2004-09-24 2006-04-06 Jtekt Corp Drive shaft monitor and its sensor device
JP2006090856A (en) * 2004-09-24 2006-04-06 Jtekt Corp Drive shaft monitor and its sensor device
WO2014188678A1 (en) * 2013-05-21 2014-11-27 パナソニックIpマネジメント株式会社 Load detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090857A (en) * 2004-09-24 2006-04-06 Jtekt Corp Drive shaft monitor and its sensor device
JP2006090856A (en) * 2004-09-24 2006-04-06 Jtekt Corp Drive shaft monitor and its sensor device
WO2014188678A1 (en) * 2013-05-21 2014-11-27 パナソニックIpマネジメント株式会社 Load detector

Similar Documents

Publication Publication Date Title
EP0136086B1 (en) A torque sensor of the noncontact type
CA1255922A (en) Strain gauge
US4823617A (en) Torque sensor
US6441737B1 (en) Glass-coated amorphous magnetic microwire marker for article surveillance
US20120296577A1 (en) Magnetoelastic force sensors, transducers, methods, and systems for assessing bending stress
US20070062311A1 (en) Reduction of hysteresis in torque sensor
CA1316714C (en) Torque detecting apparatus
Flanders A vertical force alternating‐gradient magnetometer
JPH01210485A (en) Element for detecting mechanical quantity
JPH02271227A (en) Fiber reinforced member with stress detecting capability
US4985108A (en) Method of mounting a mechanical quantity sensor element
Betz et al. Magnetoelastic properties of nickel thin films
JPH0745704B2 (en) Measured shaft for torque sensor
US4872350A (en) Mechanical quantity sensor element
JPH0242419B2 (en)
Sasada et al. A new method of assembling a torque transducer by the use of bilayer-structure amorphous ribbons
JPH081399B2 (en) Physical quantity detection element and manufacturing method thereof
JPH0710010B2 (en) Method of fixing the physical quantity detection element
JPS63182535A (en) Torque sensor
JPH0242417B2 (en)
JPH08184656A (en) Magnetic sensor
JPH055660A (en) Torque sensor and preparation thereof
JPS6369281A (en) Dynamic quantity detection element of laminated layer structure and manufacture thereof
JPS63158432A (en) Torque sensor
JPH0710009B2 (en) Method of fixing the physical quantity detection element