JPS59188968A - Torque sensor made of double layer structural amorphous magnetic thin band - Google Patents

Torque sensor made of double layer structural amorphous magnetic thin band

Info

Publication number
JPS59188968A
JPS59188968A JP58064710A JP6471083A JPS59188968A JP S59188968 A JPS59188968 A JP S59188968A JP 58064710 A JP58064710 A JP 58064710A JP 6471083 A JP6471083 A JP 6471083A JP S59188968 A JPS59188968 A JP S59188968A
Authority
JP
Japan
Prior art keywords
magnetic
torque
magnetic thin
amorphous magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58064710A
Other languages
Japanese (ja)
Other versions
JPH0412635B2 (en
Inventor
Kosuke Harada
原田 耕介
Ichiro Sasada
一郎 笹田
Masazumi Inoue
井上 正純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58064710A priority Critical patent/JPS59188968A/en
Publication of JPS59188968A publication Critical patent/JPS59188968A/en
Publication of JPH0412635B2 publication Critical patent/JPH0412635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To facilitate the manufacture of the torque sensor by making the following substance as a differential torque system sensor by using the titled magnetic thin band made of high and low magnetostriction layer having different properties of magnetic characteristic, or the magnetic layer of positive magnetic characteristic and that of negative one. CONSTITUTION:The titled magnetic thin bands 9a and 9b different from each other in spiral direction are fixed by adhesion on the outer peripheral surface of a torque transmission shaft 8. An excitation winding 10 excited to these magnetic thin bands 9a and 9b by means of an AC power source, detection windings 12a and 12b connected in reverse series, and a synchronization rectifying circuit 13 which obtains a DC voltage from the voltage induced in said windings 12a and 12b are provided. By this constitution, the impressed torque is made as the difference of permeabilities of the two magnetic thin bands 9a and 9b, which is detected by an AC bias magnetic field. Then, the influence by the material of the transmission shaft 8 and the rotational direction and rotational speed is eliminated, and accordingly the torque is detected with a high accuracy in a wide dynamic range.

Description

【発明の詳細な説明】 本発明は9作製が容易で、トルり伝達軸の材質及びその
回転の方向や回転速度に影響されることなく、トルクを
高感度・高精度に検出できかつ優れた動特性を有する新
しいトルクセンサに関す号ものである。
[Detailed Description of the Invention] The present invention is easy to manufacture, and can detect torque with high sensitivity and precision without being affected by the material of the torque transmission shaft, the direction of rotation, or the rotation speed. This issue concerns a new torque sensor with dynamic characteristics.

電動機、自動車等の回転駆動部において、トル・りは制
御を行う場合の最も基本的変量であシ、又システムの岩
田化の程度を示すパラメータとして。
Torque is the most fundamental variable when controlling rotary drive parts such as electric motors and automobiles, and is also a parameter that indicates the degree of system optimization.

故障診断に利用することもできる。この場合トルクセン
サは、非接触方式であることが必要で、正転、逆転及び
静止時のトルクが高感度、高精度で検出でき、動特性が
良く、信頼性が高いことが要求される。
It can also be used for fault diagnosis. In this case, the torque sensor must be of a non-contact type, capable of detecting torque in forward rotation, reverse rotation, and at rest with high sensitivity and precision, and must have good dynamic characteristics and high reliability.

本発明の先行技術に、アモルファス磁性体の優れた機械
的特性、材質の均一性、著しい磁気ひずみ特性を生かし
て構成されたトルクセンサがある。
Prior art of the present invention includes a torque sensor constructed by taking advantage of the excellent mechanical properties, uniformity of the material, and remarkable magnetostrictive properties of an amorphous magnetic material.

このトルクセンサにおいては、2つの幅広アモルファス
磁性薄帯がトルク伝達軸の周囲に巻いて固定され、各々
の薄帯には一軸磁気異方性がトルク伝達軸の軸方向に対
し各々±45°の角をなすように与えてアシ、その結果
トルクの印加によりこれら2つの薄帯の透磁率が互いに
逆に変化することを利用し印加トルクを差動的に検出で
きるものであった。従って、検出時゛性を高感度・高精
度にすることができるだけでなく、トルク伝達軸は磁気
的性質において制限を受けないという特徴がちりた。
In this torque sensor, two wide amorphous magnetic ribbons are wound and fixed around the torque transmission shaft, and each ribbon has a uniaxial magnetic anisotropy of ±45° with respect to the axial direction of the torque transmission shaft. It was possible to differentially detect the applied torque by utilizing the fact that the magnetic permeability of these two thin ribbons changes in opposite ways to each other due to the application of torque. Therefore, not only can the detection time be made highly sensitive and accurate, but the torque transmission shaft has the characteristic that it is not limited by magnetic properties.

しかし、上記方式のトルクセンサを実際に応用しようと
する立場からみると、応用対象機械装置によっては、ト
ルク伝達軸に接着される2つの幅広アモルファス磁性薄
帯に一軸磁気異方性を付与する工程において1問題を生
ずる場合がある。従来は、上記−軸磁気異方性は、アモ
ルファス磁性薄帯を磁場中熱処理する方法、及び上記薄
帯をトルク伝達軸に接着する時トルク伝達軸にあらかじ
めトルりを印加しておき接着完了後それを除去する方法
のいずれかによっていた。しかし前者の場合は、比較的
大きな一軸磁気異方性を作シ出すことは容易でなく、従
って、ダイナミックレンジがあまり大きくできない欠点
があシ、又後者の場合は、アモルファス磁性薄帯接着時
にあらかじめトルクの印加が困難となるような場合実現
不可能となる恐れがある。
However, from the perspective of actually applying the above-mentioned torque sensor, depending on the mechanical device to which it is applied, the process of imparting uniaxial magnetic anisotropy to two wide amorphous magnetic ribbons bonded to the torque transmission shaft may be difficult. In some cases, a problem may occur. Conventionally, the above-mentioned -axis magnetic anisotropy has been obtained by heat-treating an amorphous magnetic ribbon in a magnetic field, and by applying a torque to the torque transmission shaft in advance when bonding the ribbon to a torque transmission shaft, and then after the bonding is completed. There was no way to remove it. However, in the former case, it is not easy to create a relatively large uniaxial magnetic anisotropy, and therefore the dynamic range cannot be made very large.In the latter case, the amorphous magnetic ribbon is bonded in advance. This may not be possible in cases where it is difficult to apply torque.

本発明は、上記幅広アモルファス磁性薄帯を用いた差動
力式トルクセンサと同一原理に基づき。
The present invention is based on the same principle as the differential torque sensor using the wide amorphous magnetic ribbon.

しかも上記製作上の問題点をこうむることなく容易に製
作できる新しいトルクセンサを提供するものである。
Moreover, the present invention provides a new torque sensor that can be easily manufactured without incurring the above-mentioned manufacturing problems.

この目的を達成するために1本発明では磁気特待性の磁
性層とからなる2層構造アモルファス磁性薄帯を用いる
。以下9図を用いて本発明の詳細な説明する。
In order to achieve this object, the present invention uses an amorphous magnetic ribbon having a two-layer structure including a magnetic layer having magnetic properties. The present invention will be described in detail below using FIG. 9.

第1図は本発明の基礎となるねじシモーメントによる主
応力の発生機構を示したものである。第1図(a)は短
ざく状弾性薄帯からなるらせん状円筒1を示している。
FIG. 1 shows the mechanism of generation of principal stress due to screw moment, which is the basis of the present invention. FIG. 1(a) shows a spiral cylinder 1 made of short elastic ribbons.

この状態で内部応力はすべて除去されているものとする
。これにねじシモーメント2を加えれば、一様な弾性変
形により、第1図(b)のように完全な円筒3になる。
It is assumed that all internal stress has been removed in this state. If a screw moment 2 is added to this, uniform elastic deformation results in a complete cylinder 3 as shown in FIG. 1(b).

この過程で、短ざ〈状弾性薄帯は、その長手方向すなわ
ち9円周方向を中心軸としてねじられその内部にはねじ
シモーメントが内在する状態となる。この結果1円筒形
の短ざく状弾性薄帯3には主応力が発生し。
In this process, the short elastic ribbon is twisted around its longitudinal direction, that is, its circumferential direction, as a central axis, and a thread moment exists inside it. As a result, a principal stress is generated in the cylindrical short elastic ribbon 3.

その方向はこの短ざく状弾性薄帯3の外側半分では実線
の矢印のよう如なり、逆に内側半分では破線の矢印のよ
うになる。この主応力の方向は弾性薄帯の幅方向すなわ
ち円筒の中心軸方向に対し。
The direction is as shown by the solid line arrow in the outer half of this strip-shaped elastic ribbon 3, and conversely, as shown in the broken line arrow in the inner half. The direction of this principal stress is in the width direction of the elastic ribbon, that is, in the direction of the central axis of the cylinder.

±45°の角をなしている。It forms an angle of ±45°.

前述の磁気特性に関し性質の異なった2層構造アモルフ
ァス磁性薄帯によって構成した第2図の如きらせん状円
筒4を用いれば1円筒の中心軸方向と45°又は−45
°方向の応力誘導−軸磁気異方性を得ることができ□る
。たとえば外側の層5を磁nゝ゛ 歪−正の高磁歪アモルファス磁性層とし、内側の層6を
非磁性アモルファス合金層とすれば、第1〜カ 図の弾性変形により外側の層5には引張−の方向に応力
誘導−軸磁気異方性Kuoが現れ、これは第3図のよう
に円筒の中心軸方向と45°の角をなす。この場合磁歪
定数が負であれば、 Kuoの方向が90°変化した一
45°方向となるだけである。又2層構造らせん状円筒
の内側と・外側の層を入れ換えた場合はKuoの符号が
反転する。すなわちKu。
If a helical cylinder 4 as shown in FIG. 2, which is constructed of two-layered amorphous magnetic ribbons with different magnetic properties, is used, the angle will be 45° or -45° with respect to the central axis of the cylinder.
Stress induction in the ° direction - axial magnetic anisotropy can be obtained. For example, if the outer layer 5 is made of a high magnetostriction amorphous magnetic layer with positive magnetostriction and the inner layer 6 is made of a non-magnetic amorphous alloy layer, the elastic deformation shown in Figs. A stress-induced axial magnetic anisotropy Kuo appears in the - direction, which forms an angle of 45° with the central axis direction of the cylinder as shown in FIG. In this case, if the magnetostriction constant is negative, the Kuo direction only changes by 90° to a 45° direction. Furthermore, when the inner and outer layers of the two-layer spiral cylinder are exchanged, the sign of Kuo is reversed. That is, Ku.

方向が90°だけ変化し9円筒中心軸と一45°方向と
なる。非磁性アモルファス合金層のがゎシに低磁歪アモ
ルファス磁性層を用いた2層構造アモルファス磁性薄帯
の場合も同様に考えることができる°。ところで、これ
ららせん状円筒に与える弾性変形は、らせんのピッチが
あまシ大きくない時は。
The direction changes by 90° and becomes a 45° direction with respect to the center axis of the 9 cylinder. The same can be considered in the case of a two-layer structure amorphous magnetic ribbon in which a low magnetostriction amorphous magnetic layer is used instead of a nonmagnetic amorphous alloy layer. By the way, the elastic deformation given to these spiral cylinders is limited when the pitch of the spiral is not very large.

らせん状円筒の内径と等しいがやや大きめの外径を有す
る丸棒の外周面にらせん状円筒の内側面が完全に密着す
るように巻いて固定することにより得られる。従って、
前述の磁気特性に関して特性の異なる2つの層75jら
なる2層構造アモルファス熱処理等の方法により除去し
ておけば、これら2つのらせん状円筒を単にトルク伝達
軸外周に密着して巻いて固定するだけで、各2層構造ア
モルファス磁性薄帯にはトルクセンサの構成に適するト
ルク伝達軸と各々45°及び−45°方向の一軸磁気異
方性が得られる。これら2層構造アモルファス磁性薄帯
匠おいて、非磁性層や、低磁歪層は単にその薄帯の内側
部分拠生ずるねじ9モーメントを引き受ける支持材とな
っている。又支持材として。
It is obtained by winding and fixing the inner surface of the spiral cylinder around the outer circumferential surface of a round bar having an outer diameter equal to but slightly larger than the inner diameter of the spiral cylinder so that the inner surface of the spiral cylinder is in complete contact with the outer circumferential surface of the rod. Therefore,
If the above-mentioned two-layer structure consisting of the two layers 75j having different magnetic properties is removed by a method such as amorphous heat treatment, these two spiral cylinders can be simply wound tightly around the outer periphery of the torque transmission shaft and fixed. Thus, each of the two-layered amorphous magnetic ribbons has a torque transmission axis suitable for the construction of a torque sensor and uniaxial magnetic anisotropy in the 45° and -45° directions, respectively. In these two-layer structure amorphous magnetic ribbons, the non-magnetic layer and the low magnetostriction layer simply serve as supporting materials that take on the screw moment generated in the inner part of the ribbon. Also as a support material.

性 金層からなる2層構造アモルファス磁性薄帯を用いても
第3図のような一軸磁気異方性が得られる。
Uniaxial magnetic anisotropy as shown in FIG. 3 can also be obtained by using an amorphous magnetic ribbon with a two-layer structure consisting of a magnetic gold layer.

この場合は、磁歪特性の符号が互いに逆で、又主応力の
分布も外側層5と内側層6においてその符号が互いに逆
であるため応力誘導−軸磁気異方性の方向は一致し、全
体として第3図のような一軸性の磁気異方性が得られる
ものである。
In this case, the signs of the magnetostrictive properties are opposite to each other, and the signs of the distribution of principal stress are also opposite to each other in the outer layer 5 and the inner layer 6, so the directions of stress induction and axial magnetic anisotropy are the same, and the overall direction is the same. As a result, uniaxial magnetic anisotropy as shown in FIG. 3 can be obtained.

第4図は本発明の1実施例である。トルク伝達軸8の外
周面上に、らせんの方向が互いに異なる2層構造アモル
ファス磁性薄帯9a、9bを接着によシ固定し、印加ト
ルクによる2つの薄帯の透磁率の差を交流バイアス磁界
によって検出するため。
FIG. 4 shows one embodiment of the present invention. Two-layered amorphous magnetic ribbons 9a and 9b with different helical directions are fixed on the outer peripheral surface of the torque transmission shaft 8 by adhesive, and the difference in magnetic permeability of the two ribbons due to the applied torque is applied to an alternating current bias magnetic field. To detect by.

励磁巻線10と励磁交流電源11及び逆直列に結線され
た検出巻線12a、12bと検出巻線誘起電圧から直流
電圧を得るだめの同期整流回路13とからなっている。
It consists of an excitation winding 10, an excitation AC power supply 11, detection windings 12a and 12b connected in anti-series, and a synchronous rectification circuit 13 for obtaining a DC voltage from the detection winding induced voltage.

ここで励磁巻線10と検出巻線12a 、 12bは第
5図の巻線の簡略表示法によって示されている0 第6図は第1実施例の構成によって作製したトルクセン
サの回転トルクに対する検出特性である。
Here, the excitation winding 10 and the detection windings 12a and 12b are shown in the simplified representation of the windings in FIG. It is a characteristic.

この実験において、2層構造らせん状円筒は、2種類の
アモルファス磁性薄帯を用いて作った同形状のらせん状
円筒2個を接着して作製している。
In this experiment, the two-layer helical cylinder was fabricated by bonding two helical cylinders of the same shape made using two types of amorphous magnetic ribbons.

しかしこの2層構造らせん秋田1筒を得る方法は。However, how to obtain this two-layer spiral Akita cylinder?

上記のような接着による方法に限定するものではない。The method is not limited to the adhesive method described above.

第6図グラフ16は磁無歪定数λ8= 24 X 10
−6の高磁歪アモルファス磁性薄帯を外側の層5に用い
、内側の層6には非磁性アモルファス合金薄帯を用いた
時の結果で、グラフ17は、グラフ16の場合において
、内側の層6に零磁歪アモルファス磁性薄帯を用いた場
合の結果である0以上の2つの結果から1本発明による
トルクセンサは直線性。
Graph 16 in Figure 6 shows the magnetostriction constant λ8 = 24 x 10
Graph 17 shows the results when a high magnetostriction amorphous magnetic ribbon of -6 is used for the outer layer 5 and a non-magnetic amorphous alloy ribbon is used for the inner layer 6. 6. Out of the two results of 0 or more, which are the results when zero magnetostrictive amorphous magnetic ribbon is used, 1. The torque sensor according to the present invention has linearity.

感度共に応用上充分な特性を持っていることがわかる。It can be seen that both sensitivity and characteristics are sufficient for practical applications.

この実施例の他にも2層構造アモルファス磁性薄帯の透
磁率変化を磁気ヘッドを用いて検出するようにしたトル
クセンサなと1本発明は特許請求の範囲内で、ここで述
べた方法以外でも実現可能である。
In addition to this embodiment, there is also a torque sensor that uses a magnetic head to detect changes in magnetic permeability of a two-layered amorphous magnetic ribbon. But it is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はらせん状円筒を完全な円筒へ弾性変形図の外側
の層5を磁歪定数が正の高磁歪アモルファス磁性層とし
た時に弾性変形によシ生ずる応力誘導−軸磁気異方性の
説明図0第4図は本発明の1実施例。第5図は巻線の簡
略表示法。第6図は本発明を第4図の実施例により実現
した時の回転トルク検出特性。1.短ざく状弾性薄帯よ
りなるらせん状円筒、2.ねじシモーメント、7.2層
構造アモルファス磁性薄帯よりなる弾性変形後の円筒、
8.トルク伝達軸、9.2層構造アモルファス磁性薄帯
、14.)ルク伝達軸と中心軸を共有する円筒形状巻線
、151円筒形状巻線の簡略図。 特許出願人 原田耕介 他2名 (a)(b) 第1図 第2図        第3図 第4図 回転トルク (N−m) 第6図
Figure 1 shows the explanation of stress induction and axial magnetic anisotropy caused by elastic deformation when the outer layer 5 in the diagram is a high magnetostrictive amorphous magnetic layer with a positive magnetostriction constant. FIG. 4 shows one embodiment of the present invention. Figure 5 shows a simplified representation of windings. FIG. 6 shows the rotational torque detection characteristics when the present invention is realized by the embodiment shown in FIG. 1. 2. A spiral cylinder made of short elastic ribbons; 2. Screw moment, 7. Cylinder after elastic deformation made of two-layered amorphous magnetic ribbon,
8. Torque transmission shaft, 9. Two-layer structure amorphous magnetic ribbon, 14. ) A cylindrical winding that shares a central axis with the torque transmission axis, 151 Simplified diagram of a cylindrical winding. Patent applicant Kosuke Harada and 2 others (a) (b) Fig. 1 Fig. 2 Fig. 3 Fig. 4 Rotating torque (N-m) Fig. 6

Claims (1)

【特許請求の範囲】[Claims] らせん状円筒形状に変形した状態で応力を除去した高磁
歪アモルファス磁性薄帯Aに、Aとは磁気特性の異なっ
た弾性薄帯から々る支持材Bを接合したものCをトルク
伝達軸りの外周面にCの内側面が密着するように巻いて
固定し、Dに加わるトルクによってAの透磁率が変化す
ることを利用してトルク検出を可能とした2層構造アモ
ルファス磁性薄帯によるトルクセンサ。
A high magnetostrictive amorphous magnetic ribbon A that has been deformed into a spiral cylindrical shape and has stress removed is joined with a supporting material B made of an elastic ribbon with different magnetic properties from A. A torque sensor made of a two-layered amorphous magnetic ribbon that is wound and fixed so that the inner surface of C is in close contact with the outer circumferential surface, and enables torque detection by utilizing the change in magnetic permeability of A due to the torque applied to D. .
JP58064710A 1983-04-11 1983-04-11 Torque sensor made of double layer structural amorphous magnetic thin band Granted JPS59188968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064710A JPS59188968A (en) 1983-04-11 1983-04-11 Torque sensor made of double layer structural amorphous magnetic thin band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064710A JPS59188968A (en) 1983-04-11 1983-04-11 Torque sensor made of double layer structural amorphous magnetic thin band

Publications (2)

Publication Number Publication Date
JPS59188968A true JPS59188968A (en) 1984-10-26
JPH0412635B2 JPH0412635B2 (en) 1992-03-05

Family

ID=13265973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064710A Granted JPS59188968A (en) 1983-04-11 1983-04-11 Torque sensor made of double layer structural amorphous magnetic thin band

Country Status (1)

Country Link
JP (1) JPS59188968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369281A (en) * 1986-09-10 1988-03-29 Honda Motor Co Ltd Dynamic quantity detection element of laminated layer structure and manufacture thereof
JPS63109338A (en) * 1986-10-16 1988-05-14 ダイムラー−ベンツ アクチエンゲゼルシヤフト Device for electrically measuring torque in shaft indirectly in noncontact manner
JPH0459435U (en) * 1990-09-28 1992-05-21
JP2002156296A (en) * 2000-09-27 2002-05-31 Abb Ab Torque converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369281A (en) * 1986-09-10 1988-03-29 Honda Motor Co Ltd Dynamic quantity detection element of laminated layer structure and manufacture thereof
JPS63109338A (en) * 1986-10-16 1988-05-14 ダイムラー−ベンツ アクチエンゲゼルシヤフト Device for electrically measuring torque in shaft indirectly in noncontact manner
JPH0565094B2 (en) * 1986-10-16 1993-09-17 Daimler Benz Ag
JPH0459435U (en) * 1990-09-28 1992-05-21
JP2002156296A (en) * 2000-09-27 2002-05-31 Abb Ab Torque converter

Also Published As

Publication number Publication date
JPH0412635B2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
JP2811980B2 (en) Torque sensor
JPS6159232A (en) Torque measuring apparatus
JP2005513413A (en) Magnetoelastic torque sensor
WO1995033982A1 (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
JPH01189971A (en) Toque sensor
JPH0422830A (en) Torque sensor
US3572106A (en) Means for measuring angular displacement of coaxially rotating elements
JPS59188968A (en) Torque sensor made of double layer structural amorphous magnetic thin band
JP2022019090A (en) Torque detection sensor
JPS62184323A (en) Magneto-striction type torque sensor
JPS5946526A (en) Electromagnetic stress sensor
JPS63317734A (en) Magnetostriction type torque sensor
JPH0424530A (en) Magnetostriction torque sensor
JPS6044839A (en) Torque detecting device
JPS59166827A (en) Magnetostriction type torque sensor by differential system
JP5081353B2 (en) Torque transducer
JPH03282338A (en) Manufacture of torque sensor
JP2540865B2 (en) Torque detector
JPS63182535A (en) Torque sensor
JP3078111B2 (en) Speed sensor
JPS6050429A (en) Torque sensor
JPH0431571Y2 (en)
JPS60187835A (en) Torque detection apparatus
JPH0242417B2 (en)
JPH055661A (en) Torque sensor with multifunction