JPS5946526A - Electromagnetic stress sensor - Google Patents

Electromagnetic stress sensor

Info

Publication number
JPS5946526A
JPS5946526A JP15579182A JP15579182A JPS5946526A JP S5946526 A JPS5946526 A JP S5946526A JP 15579182 A JP15579182 A JP 15579182A JP 15579182 A JP15579182 A JP 15579182A JP S5946526 A JPS5946526 A JP S5946526A
Authority
JP
Japan
Prior art keywords
magnetic core
coil
magnetic
torque
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15579182A
Other languages
Japanese (ja)
Inventor
Shoichi Edo
江戸 昇市
Masaaki Uchida
正明 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15579182A priority Critical patent/JPS5946526A/en
Publication of JPS5946526A publication Critical patent/JPS5946526A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To prevent the occurrence of poor contact, by constituting a magnetic core means by a magnetic core supporting body, which is attached to a body to be detected, and a pair of tubular bodies of a high permeability material, which surrounds said magnetic core supporting body and has a saw tooth edge, and providing a coil means so as not to contact with said tubular body. CONSTITUTION:A DC or AC voltage is applied to an exciting coil 9. Then magnetic lines of force are generated in a magnetic circuit comprising a tubular body 2b, a tubular coil supporting body 8, and gaps d1 and d2 and in a magnetic circuit comprising a magnetic core supporting body 2a, an annular body 2d, the tubular body 2b, the gap d2, and the tubular coil supporting body 8. When torque is applied to a rotary shaft 1 at this time, the reluctance of the latter magnetic circuit is changed, and the magnetic lines of force generated in the former magnetic circuit is also changed. By detecting the inductance change of the coil as a result of the change in the number of the magnetic lines of force related to the shaft torque, the shaft torque can be accurately measured.

Description

【発明の詳細な説明】 本発明は、応力を測定すべき被検体に関連する磁心手段
と、との磁心手段の周囲に設けたコイル手段と、応力に
より生ずる磁心手段の変形とコイル手段のインダクタン
スとの相関に基づいて応力を検出する検出手段とを具え
る電磁ストレスセンサに関する。更に、本発明は、特に
回転軸の軸トルクを測定する電磁ストレスセンサに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic core means associated with a subject whose stress is to be measured; a coil means provided around the magnetic core means; The present invention relates to an electromagnetic stress sensor comprising a detection means for detecting stress based on a correlation with the stress. Furthermore, the present invention particularly relates to an electromagnetic stress sensor that measures the axial torque of a rotating shaft.

従来の電磁ストレスセンサとしては、第1図に示すよう
なものがある。]は応力または軸トルクを測定すべき被
検体としての回転軸、2は回転軸1に同軸状に取付けた
磁心手段と1.ての磁歪材、8は磁歪材2の周囲に設け
たコイル手段、4は磁歪材の変形に相関する自己インダ
クタンスの変化から回転軸10回転トルクを検出する検
出手段である。
As a conventional electromagnetic stress sensor, there is one shown in FIG. ] is a rotating shaft as an object to be measured for stress or shaft torque, 2 is a magnetic core means coaxially attached to the rotating shaft 1, and 1. 8 is a coil means provided around the magnetostrictive material 2, and 4 is a detection means for detecting the rotational torque of the rotating shaft 10 from a change in self-inductance that correlates with deformation of the magnetostrictive material.

しかI−々から従来の電磁ストレスセンサにあっては、
コイルが磁心手段、例えば磁歪材2の周囲に巻き付けら
れた構造となっていたため、コイルも軸とともに回転し
、コイル両端に発生する電磁的変化を、スリップリング
を介さなけわば取り出せず、スリップリングの摩耗によ
って接触不良が生ずる恐れがあるという問題点があった
However, in conventional electromagnetic stress sensors,
Since the coil was wound around the magnetic core means, for example, the magnetostrictive material 2, the coil also rotated with the shaft, and the electromagnetic changes occurring at both ends of the coil could not be taken out without passing through the slip ring. There is a problem in that contact failure may occur due to wear.

更に、従来のセンサは、強磁性体の逆磁気歪み(ピラリ
−)効果を応用した磁歪ストレスセンサである。即ち、
強磁性体は、その磁区の内部で自発磁化の方向に結晶格
子が変形しているため、歪み全与えるとその方向の磁区
が安定若しくは不安定とがり、磁化特性が変化するので
、この磁歪材をコイルの磁心として自己インダクタンス
の変化により回転軸の回転トルクを検出可能としたもの
である。
Furthermore, the conventional sensor is a magnetostrictive stress sensor that applies the inverse magnetostrictive (pilary) effect of a ferromagnetic material. That is,
In a ferromagnetic material, the crystal lattice is deformed in the direction of spontaneous magnetization inside the magnetic domain, so when full strain is applied, the magnetic domain in that direction becomes stable or unstable, and the magnetization characteristics change. The rotational torque of the rotating shaft can be detected by changing the self-inductance of the magnetic core of the coil.

しかし彦から、ピラリ−効果は単軸の引張りおよび圧縮
に対して顕著ではあるが、ねじシに対しては効果はそれ
程顕著では々く、回転トルクの精度の高い測定を行うと
とができないという問題点がある。
However, Hiko explained that although the pillar effect is noticeable for uniaxial tension and compression, the effect is not as pronounced for screw threads, and that it is difficult to accurately measure rotational torque. There is a problem.

本発明は、このような従来の問題点に着目して力された
もので、磁心手段を、被検体に取付けた磁心支持体と、
との磁心支持体を包囲し、鋸歯状端縁を有する高透磁率
材料の]対の筒状体とにより構成i−1これら筒状体を
各鋸歯状端縁が互いに対向するよう環状体を介して磁心
支持体に取付け、またコイル手段を、筒状体に接触し彦
いよう筒状体を包囲する筒状コイル支持手段の内面に配
設して、応力による磁気抵抗変動ひいてはインダクタン
ス変動が顕著に現われるようにするとともに、スリップ
リングを介さなくても検出することができる構造にする
ことにより上記問題点を解決することを目的としている
The present invention was developed by paying attention to such conventional problems, and includes a magnetic core means, a magnetic core support attached to a subject,
and a pair of cylindrical bodies made of a high magnetic permeability material having serrated edges surrounding a magnetic core support. The coil means is attached to the magnetic core support via the cylindrical body, and the coil means is disposed on the inner surface of the cylindrical coil support means surrounding the cylindrical body so as to come into contact with the cylindrical body. The object of the present invention is to solve the above problems by creating a structure in which the detection is noticeable and can be detected without using a slip ring.

以下、本発明を図面に基づいて説明する。第2図は、本
発明電磁ストレスセンサの一実施例である。まず構成を
説明すると、との実施例においては、磁心手段を、高透
磁性材料により形成し、回転軸1に対して同軸状に反磁
性体部材5を介して取付けた磁心支持体2aと、との磁
心支持体2aを包囲し、鋸歯状端縁を有する高透磁率材
料により形成した1対の筒状体2bとにより構成し、更
に各鋸歯状端縁20f互いに対向離間させ、鋸歯状端縁
20とは反対側の筒状体の端縁において環状体2d71
r−介して磁心支持体2aに取付ける(第3図参照)。
Hereinafter, the present invention will be explained based on the drawings. FIG. 2 shows an embodiment of the electromagnetic stress sensor of the present invention. First, to explain the configuration, in the embodiment shown in FIG. and a pair of cylindrical bodies 2b made of a high magnetic permeability material and having serrated edges surrounding the magnetic core support 2a, and each serrated edge 20f facing and spaced apart from each other. An annular body 2d71 at the end edge of the cylindrical body opposite to the edge 20
r- to the magnetic core support 2a (see FIG. 3).

第2および3図に示す実施例においては、鋸歯状端縁2
Cの双方の凸部相互および凹部相互を軸線方向に対向さ
せ、対向凸部間に間隙δ□を空けておく。環状体2dは
、筒状体2bの材料と同一の材料により一体にまたは別
体として形成することもできるが、別の材料により別体
として固着することもできる。
In the embodiment shown in FIGS. 2 and 3, the serrated edge 2
Both convex portions and concave portions of C are opposed to each other in the axial direction, and a gap δ□ is left between the opposing convex portions. The annular body 2d can be formed integrally or separately from the same material as the cylindrical body 2b, but it can also be fixed as a separate body from a different material.

このような回転軸1と磁心手段の組立体を、軸受6を介
して筒状コイル支持手段内で回転自在に取付ける。この
筒状コイル支持手段は、軸受全支持する低透磁率材料の
筒状体7と、磁心手段の筒状体2bに接触せずにこれを
包囲するよう筒状体7の内面に固着した高透磁率材料の
筒状コイル支持体8とによシ構成し、この筒状コイル支
持体8の内面に、コイル手段即ち励磁用コイル9および
検出用コイル10を取付ける。この筒状コイル支持体8
の両端部に半径方向内方に延びる7ランジ8aを設け、
このフランジ8aの遊端を筒状体2bの環状体2d側の
端縁に対向させ、間隙d2を空ける。更に励磁用コイル
9全直流または交流電源に接続し、検出用コイル10f
検出手段に接続する。
The assembly of the rotating shaft 1 and the magnetic core means is rotatably mounted within the cylindrical coil support means via the bearing 6. This cylindrical coil support means includes a cylindrical body 7 made of a low magnetic permeability material that fully supports the bearing, and a high-pressure coil fixed to the inner surface of the cylindrical body 7 so as to surround the cylindrical body 2b of the magnetic core means without contacting it. It is constructed with a cylindrical coil support 8 made of a magnetically permeable material, and coil means, that is, an excitation coil 9 and a detection coil 10 are attached to the inner surface of the cylindrical coil support 8. This cylindrical coil support 8
7 langes 8a extending radially inward are provided at both ends of the
The free end of the flange 8a is opposed to the edge of the cylindrical body 2b on the annular body 2d side, leaving a gap d2. Furthermore, the excitation coil 9 is connected to a DC or AC power supply, and the detection coil 10f
Connect to detection means.

次に作用を説明する。励磁用コイルに直流または交流電
圧を印加すると、筒状体2b、筒状コイル支持体8およ
び間隙d□、d2よりなる磁気回路および磁心支持体2
a、環状体2d、筒状体2b。
Next, the effect will be explained. When a DC or AC voltage is applied to the excitation coil, a magnetic circuit consisting of the cylindrical body 2b, the cylindrical coil support 8, and gaps d□, d2 and the magnetic core support 2
a, annular body 2d, cylindrical body 2b.

間隙d11および筒状コイル支持体より力る磁気回路に
磁力線が発生する。このとき回転軸1にトルクが加わる
と、軸1カらびに磁心支持体2aがねじれ、磁心支持体
2aに若干の逆磁気歪み(ピラリ−)効果が発生すると
ともに、筒状体2bの互いに対向する鋸歯状#A縁の相
対位置が変化する(第4図参照)。従って軸にトルクが
加わると、上記磁心支持体の若干の逆磁気歪みにより磁
心本体の透磁率が僅かに変化するとともに、対向鋸歯状
端縁の相対位置変化により間隙d□における透磁率が比
較的大きく変化し、全体的に見て上記後者の磁気回路の
磁気抵抗が比較的大きく変化1−1前者の磁気回路に発
生する磁力線の数も比較的大きな変化をする。従って軸
トルクに相関する磁力線の数の変化の結果としてのコイ
ルのインダクタンス変化を検出することによって軸トル
クを精度よく測定できる。トルクと磁気回路のインダク
タンスとの相関関係は第5図に示すようになる。なお、
第5図に点線で示した特性が対向鋸歯状端縁の相対位置
変化に対応する特性を示し、実線で示した特性が逆磁気
歪に対応して生じる特性を点線で示した特性に加えたも
のである。更にコイル手段は、回転軸とともに回転する
ことがないのでスリップリングケ介して検出手段4.に
接続する必要は碌くなる。
Lines of magnetic force are generated in the magnetic circuit exerted by the gap d11 and the cylindrical coil support. At this time, when torque is applied to the rotating shaft 1, the shaft 1 and the magnetic core support 2a are twisted, a slight reverse magnetostriction (pilary) effect is generated on the magnetic core support 2a, and the cylindrical bodies 2b are opposed to each other. The relative position of the serrated #A edge changes (see Figure 4). Therefore, when a torque is applied to the shaft, the magnetic permeability of the magnetic core body changes slightly due to the slight reverse magnetostriction of the magnetic core support, and the magnetic permeability in the gap d□ changes slightly due to the relative position change of the opposing serrated edges. Overall, the magnetic resistance of the latter magnetic circuit changes relatively largely, and the number of magnetic lines of force generated in the former magnetic circuit also changes relatively largely. Therefore, the shaft torque can be accurately measured by detecting the change in the inductance of the coil as a result of the change in the number of lines of magnetic force that correlates with the shaft torque. The correlation between the torque and the inductance of the magnetic circuit is shown in FIG. In addition,
The characteristic shown by the dotted line in Figure 5 shows the characteristic corresponding to the relative position change of the opposing serrated edges, and the characteristic shown by the solid line corresponds to the inverse magnetostriction, which is added to the characteristic shown by the dotted line. It is something. Furthermore, since the coil means does not rotate together with the rotating shaft, the detection means 4. No need to connect to.

第2および8図に示した実施例では、鋸歯状端縁の展開
したときの形状が矩形の凹凸列とし、四部相互および凸
部相互を対向させたものであるが、第6図(a)に示す
ように双方の凹凸を互いに隙間を持たせて嵌合するよう
磁心手段を構成することもできる。この場合、トルクが
加わると第6図(1))に示す状態になるよう変化し、
このときのトルクとインダクタンスとの関係は$7図に
示すように々る。
In the embodiments shown in FIGS. 2 and 8, the shape of the serrated edge when developed is a rectangular row of protrusions and protrusions, and the four parts and the protrusions are opposed to each other. The magnetic core means can also be constructed so that both the projections and depressions are fitted with each other with a gap as shown in FIG. In this case, when torque is applied, the state changes as shown in Figure 6 (1)),
The relationship between torque and inductance at this time is as shown in Figure $7.

更に鋸歯状端縁の形状を矩形の凹凸列にする代りに、台
形またけ三角形状の凹凸列とすることもでき、この場合
凸部相互を対向離間させる代りに対向接触するよう磁心
手段を構成することもできる。また第6図(a)に示す
ように凹凸部を互いに隙間を持たせて嵌合させることも
できる。
Furthermore, the shape of the serrated edge may be a triangular row of projections and depressions spanning a trapezoid instead of a rectangular row of projections and recesses, and in this case, the magnetic core means is configured so that the projections are in contact with each other instead of facing each other. You can also. Further, as shown in FIG. 6(a), the concave and convex portions may be fitted with each other with a gap between them.

凹凸の配列ピンチはトルク変動によるねじれ変形の範囲
の大きさに応じて決定するとよい。
The arrangement pinch of the unevenness is preferably determined depending on the size of the range of torsional deformation due to torque fluctuation.

鋸歯状端縁の凹凸を嵌合させたり凸部相互を対向接触さ
せる実施例の場合、成る特定のトルク値を検知するのに
好適であり、このトルク値検知全オンオフ制御に適用す
ることができる。
In the case of embodiments in which the concave and convex portions of the serrated edges fit together or the convex portions are brought into opposing contact with each other, it is suitable for detecting a specific torque value, and this torque value detection can be applied to all on/off control. .

更に、第2図に示す実施例のように、環状体2ci’(
5筒状体2bと同一の高透磁率材料により筒状体2bに
一体または別体として設ける場合上記2種類の磁気回路
を生ずるが、環状体2ci′Ii7筒状体2bとは異な
る低透磁率材料により別体として設ける場合、磁心支持
体2aの材質は任意のものでよく、高透磁率材料にする
必要はなく、磁心支持体が高透磁率材料で々いとき検出
に関与する磁気回路は筒状体2b、筒状コイル支持体8
および間隙d□、d2より々る磁気回路だけとなる。
Furthermore, as in the embodiment shown in FIG.
5 When the cylindrical body 2b is made of the same high magnetic permeability material as the cylindrical body 2b, the two types of magnetic circuits described above are generated, but the annular body 2ci'Ii7 has a low magnetic permeability different from that of the cylindrical body 2b. When provided as a separate body depending on the material, the magnetic core support 2a may be made of any material and does not need to be made of a high magnetic permeability material, and when the magnetic core support is made of a high magnetic permeability material, the magnetic circuit involved in detection may be Cylindrical body 2b, cylindrical coil support 8
And only the magnetic circuit extends from the gaps d□ and d2.

以−り説明してきたように、本発明によれば、磁心手段
を、被検体に増刊けた磁心支持体と、この磁心支持体を
包囲し、鋸歯状端縁を有する高透磁率材料の1対の筒状
体とにより構成し、これら筒状体を各鋸歯状端縁が互い
に対向するよう環状体を介して磁心支持体に取付け、ま
た前記コイル手段を、前記筒状体に接触しないようこの
筒状体を包囲する筒状コイル支持手段の内面に配設した
構成としたため、応力による磁気回路における磁気抵抗
変化量が増大し、従って応力を精度よく検知することが
できるとともに、コイル手段を固定したものとすること
ができ、スリップリングを用いることが々〈応力を検知
することができるという効果が得られる。
As has been explained, in accordance with the present invention, the magnetic core means comprises a magnetic core support attached to the specimen and a pair of high magnetic permeability materials surrounding the magnetic core support and having serrated edges. The cylindrical bodies are attached to the magnetic core support via the annular body so that the serrated edges thereof face each other, and the coil means is attached to the magnetic core support so as not to come into contact with the cylindrical body. Since the structure is arranged on the inner surface of the cylindrical coil support means surrounding the cylindrical body, the amount of change in magnetic resistance in the magnetic circuit due to stress increases, and therefore stress can be detected with high accuracy, and the coil means is fixed. A slip ring is often used, which has the effect of being able to detect stress.

更に筒状体の磁心手段を設けたため、軸線の周方向に重
置配分が均等であり、従って被検体が軸線の周りに高速
回転しても空気抵抗によるぶれの影響を受けることがな
く、軸トルクを低トルクから高トルクまで正確かつ安定
的に検知することができる。また摩耗部分がないため寿
命を飛開的に伸ばすことができる。
Furthermore, since a cylindrical magnetic core means is provided, the overlapping distribution is even in the circumferential direction of the axis. Therefore, even if the subject rotates at high speed around the axis, it will not be affected by vibration due to air resistance, and the axis will not be affected by vibration due to air resistance. Torque can be detected accurately and stably from low to high torque. Also, since there are no worn parts, the lifespan can be significantly extended.

更に上述した実施例は、軸トルクの検出に関して説明し
たが、間隙d1. d2の変化により圧縮応力および引
張応力の検出も可能である。
Furthermore, although the above-mentioned embodiments have been described with respect to the detection of shaft torque, the gap d1. It is also possible to detect compressive stress and tensile stress by changing d2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電磁ストレスセンサとしてのトルクセ
ンサの線図、 第2図は、本発明電磁ストレスセンザの実施例の線図、 第8図は、第2図に示した回転軸に関連する磁心手段の
斜視図、 第4図は、磁心手段の筒状体の鋸歯状端縁の相対位置が
トルクによって移動する状態を示す説明図、 第5図は、回転軸に加わる軸トルクとコイル手段のイン
ダクタンスとの関係を示すグラフ、第6図(a)、Φ)
は、それぞれ第2図の実施例とは異なる取付けをした筒
状体の鋸歯状端縁部の無負荷状態およびトルクを加えた
ときの状態を示す説明図、 第7図は、$6図に示す筒状体を有する実施例の回転軸
に加わるトルクとコイル手段のインダクタンスとの関係
を示すグラフである。 1・・・回転軸、2・・・磁歪材(磁心手段)、2a・
・・磁心支持体、2b・・・高透磁率桐料の筒状体、2
G・鋸歯状端縁、2d・環状体、3・・・コイル手段、
4・・・検出手段、5・・・反磁性体部材、6・・・軸
受、?・・・低透磁率材料の筒状体、8・・・筒状コイ
ル支持体、9・励磁用コイル、]0・・・検出用コイル
。 符V+−出願人 日産自動車株式会社 第2図 第6図 (a)      (b ) 第7図
Fig. 1 is a diagram of a torque sensor as a conventional electromagnetic stress sensor, Fig. 2 is a diagram of an embodiment of the electromagnetic stress sensor of the present invention, and Fig. 8 is a diagram of a torque sensor as a conventional electromagnetic stress sensor. FIG. 4 is a perspective view of the related magnetic core means. FIG. 4 is an explanatory diagram showing a state in which the relative position of the serrated edge of the cylindrical body of the magnetic core means is moved by torque. FIG. Graph showing the relationship with the inductance of the coil means, Fig. 6(a), Φ)
are explanatory diagrams showing the no-load state and the state when torque is applied to the serrated edge of the cylindrical body, which are installed differently from the embodiment shown in FIG. 2, respectively. 3 is a graph showing the relationship between the torque applied to the rotating shaft and the inductance of the coil means in the embodiment having the cylindrical body shown in FIG. 1... Rotating shaft, 2... Magnetostrictive material (magnetic core means), 2a.
...Magnetic core support, 2b...High magnetic permeability paulownia material cylindrical body, 2
G: serrated edge, 2d: annular body, 3: coil means,
4...Detection means, 5...Diamagnetic member, 6...Bearing, ? . . . Cylindrical body made of low magnetic permeability material, 8. Cylindrical coil support, 9. Excitation coil, ] 0. Detection coil. Sign V+- Applicant Nissan Motor Co., Ltd. Figure 2 Figure 6 (a) (b) Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 応力を測定すべき被検体に関連する磁心手段と、と
の磁心手段の周囲に設けたコイル手段と、応力により生
ずる磁心手段の変形とコイル手段のインダクタンスとの
相関に基づいて応力を検出する検出手段とを具える電磁
ストレスセンサにおいて、前記磁心手段を、被検体に取
付けた磁心支持体と、との磁心支持体を包囲し、鋸歯状
端縁を有する高透磁率材料の1対の筒状体とにより構成
し、これら筒状体を各鋸歯状端縁が互いに対向するよう
環状体を介して磁心支持体に取付け、また前記コイル手
段を、前記筒状体に接触し彦いよう前記筒状体を包囲す
る筒状コイル支持手段の内面に配設したことを%個とす
る電磁ストレスセンサ。
1. Stress is detected based on a magnetic core means related to the subject whose stress is to be measured, a coil means provided around the magnetic core means, and a correlation between the deformation of the magnetic core means caused by stress and the inductance of the coil means. an electromagnetic stress sensor comprising: a magnetic core support attached to a subject; and a pair of tubes of high magnetic permeability material surrounding the magnetic core support and having serrated edges. These cylindrical bodies are attached to a magnetic core support via an annular body such that their serrated edges face each other, and the coil means is configured to be in contact with the cylindrical body. An electromagnetic stress sensor that is disposed on the inner surface of a cylindrical coil support means surrounding a cylindrical body.
JP15579182A 1982-09-09 1982-09-09 Electromagnetic stress sensor Pending JPS5946526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15579182A JPS5946526A (en) 1982-09-09 1982-09-09 Electromagnetic stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15579182A JPS5946526A (en) 1982-09-09 1982-09-09 Electromagnetic stress sensor

Publications (1)

Publication Number Publication Date
JPS5946526A true JPS5946526A (en) 1984-03-15

Family

ID=15613506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15579182A Pending JPS5946526A (en) 1982-09-09 1982-09-09 Electromagnetic stress sensor

Country Status (1)

Country Link
JP (1) JPS5946526A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162934A (en) * 1986-01-13 1987-07-18 Nippon Denso Co Ltd Detecting device for rotary torque
JPH01244322A (en) * 1988-03-25 1989-09-28 Koyo Seiko Co Ltd Torque sensor
JPH01180737U (en) * 1988-06-02 1989-12-26
JPH02179431A (en) * 1988-10-31 1990-07-12 Texas Instr Inc <Ti> Torque sensor
US4996890A (en) * 1988-10-07 1991-03-05 Koyo Seiko Co. Ltd. Torque sensor
JPH03105226A (en) * 1989-09-19 1991-05-02 Omron Corp Torque sensor
WO1999030960A3 (en) * 1997-12-12 1999-08-19 Bktech Ag Drive mechanism and torque sensor, and method for the production thereof
FR3112524A1 (en) * 2020-07-20 2022-01-21 Moving Magnet Technologies CYCLE DRIVE COMPONENT HAVING A TORQUE SENSOR

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162934A (en) * 1986-01-13 1987-07-18 Nippon Denso Co Ltd Detecting device for rotary torque
JPH01244322A (en) * 1988-03-25 1989-09-28 Koyo Seiko Co Ltd Torque sensor
JPH01180737U (en) * 1988-06-02 1989-12-26
US4996890A (en) * 1988-10-07 1991-03-05 Koyo Seiko Co. Ltd. Torque sensor
JPH02179431A (en) * 1988-10-31 1990-07-12 Texas Instr Inc <Ti> Torque sensor
JPH03105226A (en) * 1989-09-19 1991-05-02 Omron Corp Torque sensor
WO1999030960A3 (en) * 1997-12-12 1999-08-19 Bktech Ag Drive mechanism and torque sensor, and method for the production thereof
FR3112524A1 (en) * 2020-07-20 2022-01-21 Moving Magnet Technologies CYCLE DRIVE COMPONENT HAVING A TORQUE SENSOR
WO2022018366A1 (en) * 2020-07-20 2022-01-27 Moving Magnet Technologies Cycle driving device having a torque sensor

Similar Documents

Publication Publication Date Title
EP0829001B1 (en) Circularly magnetized non-contact torque and power sensor and method for measuring torque and power using same
JPS6275328A (en) Torque sensor
JPS62249026A (en) Torque measuring instrument
JPH01187424A (en) Torque sensor
JPS5946526A (en) Electromagnetic stress sensor
JP3868495B2 (en) Torque transducer
JP3692494B2 (en) Torque sensor
US10746615B2 (en) Magnetizing ferromagnetic elements used in load and torque sensing devices
JPH0471451B2 (en)
JPS6141936A (en) Torque sensor
JPS59188968A (en) Torque sensor made of double layer structural amorphous magnetic thin band
JP2000266619A (en) Torque sensor and device for detecting torque of steering shaft
JPH1038714A (en) Torque measuring apparatus and paper currency feeding mechanism employing it
JPH05118938A (en) Torque transducer
JPH02102427A (en) Torque measuring instrument
JPH03269330A (en) Torque sensor
JP2514205B2 (en) Magnetostrictive torque sensor
JP2560781B2 (en) Strain detector
JPS63311136A (en) Magnetostriction type torque sensor
JPH0723713Y2 (en) Torque sensor
JPH06241924A (en) Torque detector
JPS6050429A (en) Torque sensor
JPS63317732A (en) Torque detector
JPH03186725A (en) Method and instrument for measuring magnetic stress
JPH02107910A (en) Magnetostrictive type torque detector