JPH0992519A - Magnetic element and its manufacturing method - Google Patents
Magnetic element and its manufacturing methodInfo
- Publication number
- JPH0992519A JPH0992519A JP7247305A JP24730595A JPH0992519A JP H0992519 A JPH0992519 A JP H0992519A JP 7247305 A JP7247305 A JP 7247305A JP 24730595 A JP24730595 A JP 24730595A JP H0992519 A JPH0992519 A JP H0992519A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetic element
- region
- amorphous
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば、盗難防止
センサ、物品識別センサや磁歪センサ等各種センサに好
適な磁気素子およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic element suitable for various sensors such as an anti-theft sensor, an article identification sensor and a magnetostrictive sensor, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】従来、盗難防止センサ、物品識別センサ
等に使用される磁性材料にはパーマロイ合金やアモルフ
ァス合金等の軟磁性合金薄帯やワイヤ等が用いられてい
る。最近になり、特公平4−4393号に示されている
ようなFe−Cu−Nb−Si−B系に代表される超微
細な結晶粒からなるFe基ナノ結晶軟磁性合金が優れた
軟磁気特性を示し、磁歪が小さく経時変化も小さく優れ
た軟磁性材料と成り得ることが報告されている。また、
これらの合金が電流センサ材料等に適することも報告さ
れている。2. Description of the Related Art Conventionally, soft magnetic alloy ribbons such as permalloy alloy and amorphous alloy, wires and the like have been used as magnetic materials used in anti-theft sensors, article identification sensors and the like. Recently, Fe-based nanocrystalline soft magnetic alloys composed of ultrafine crystal grains represented by the Fe-Cu-Nb-Si-B system as shown in Japanese Patent Publication No. 4-4393 have excellent soft magnetic properties. It has been reported that it can be an excellent soft magnetic material that exhibits characteristics and has a small magnetostriction and a small change with time. Also,
It is also reported that these alloys are suitable for current sensor materials and the like.
【0003】[0003]
【発明が解決しようとする課題】前記ナノ結晶軟磁性合
金は、薄帯を製造する場合は単ロ−ル法、双ロール法
等、ワイヤの場合は回転液中紡糸法等の液体急冷法によ
りアモルファス合金薄帯あるいはワイヤを作製後これを
熱処理し結晶化させることにより粒径50nm以下の微
細なナノ結晶粒が組織の少なくとも50%を占める合金
薄帯や合金ワイヤを作製する製法が一般的である。しか
し、前記ナノ結晶合金は、軟磁気特性は優れているが磁
歪が小さいため磁歪を利用するセンサには不適である。The nanocrystalline soft magnetic alloy is produced by a liquid quenching method such as a single roll method or a twin roll method in the case of producing a ribbon, and a rotating liquid spinning method in the case of a wire. A typical method is to produce an amorphous alloy ribbon or wire and then heat-treat it to crystallize it to produce an alloy ribbon or an alloy wire in which fine nano-crystal grains with a grain size of 50 nm or less occupy at least 50% of the structure. is there. However, the nanocrystalline alloy is excellent in soft magnetic properties but small in magnetostriction, and is not suitable for a sensor that utilizes magnetostriction.
【0004】一方、Fe基アモルファス合金は、磁歪が
大きく磁歪を利用するセンサに適するが遅延線等に利用
する場合、軟磁気特性がナノ結晶合金よりも劣っている
ため、磁化するために大きな磁界を印加する必要があ
る。また、識別センサ等に用いる場合、従来は磁気特性
あるいは寸法の異なるアモルファス薄帯やワイヤを組み
合わせて、検出信号の違いから物品を識別する事が行わ
れている。しかし、この方法では、複数の材料を並べて
配置し使用することになり、小型化しにくい問題やセン
サ用の磁気素子を製造する際に作業が煩雑になる問題
や、これらの素材の組合せを変えるために、あらかじめ
いろいろな材質あるいは寸法の材料を準備しなければな
らず、粗合せパターンを任意に変えるのは困難で、ある
程度組合せの制約を受ける問題点がある。また、センサ
用磁気素子では永久磁石や半硬質磁石でバイアス磁界を
印加する使い方もあり、従来は別途永久磁石や半硬質磁
石を作製しセンサ材に付けて使用していたが、小型化、
薄型化が困難な問題や製造工数が増加する問題がある。On the other hand, the Fe-based amorphous alloy has a large magnetostriction and is suitable for a sensor utilizing magnetostriction, but when used in a delay line or the like, the soft magnetic characteristics are inferior to those of the nanocrystalline alloy, and therefore a large magnetic field for magnetization is generated. Need to be applied. When used as an identification sensor or the like, conventionally, an article is identified based on a difference in detection signal by combining amorphous ribbons or wires having different magnetic characteristics or dimensions. However, in this method, since a plurality of materials are arranged and used, it is difficult to miniaturize, the work becomes complicated when manufacturing the magnetic element for the sensor, and the combination of these materials is changed. In addition, it is necessary to prepare materials of various materials or dimensions in advance, it is difficult to arbitrarily change the rough alignment pattern, and there is a problem that the combination is limited to some extent. In addition, there is also a method of applying a bias magnetic field with a permanent magnet or a semi-hard magnet in a magnetic element for a sensor. Conventionally, a permanent magnet or a semi-hard magnet was separately manufactured and used by attaching it to a sensor material.
There are problems that it is difficult to reduce the thickness and that the number of manufacturing processes increases.
【0005】[0005]
【課題を解決するための手段】本発明は上記問題点を解
決するためになされたものであって、粒径50nm以下
の微細なナノ結晶粒が組織の少なくとも50%を占める
領域とアモルファス相が少なくとも50%を占める領域
が混在している合金薄帯、合金ワイヤあるいは合金薄膜
から構成されていることを特徴とする磁気素子である。
ここで、前記合金薄帯、合金ワイヤあるいは合金薄膜は
通常の組成のばらつきを有する単一組成の合金が用いら
れる。ここで各領域は、通常最も長い部分の長さが1μ
m以上あるものとして定義されるものであり、結晶粒径
サイズレベルの小さな領域を意味するものではない。図
6に従来の磁気素子、図1に本発明磁気素子の構造の一
例を示す。The present invention has been made in order to solve the above problems, in which a region in which fine nano-crystal grains having a grain size of 50 nm or less occupy at least 50% of the structure and an amorphous phase are formed. A magnetic element comprising an alloy ribbon, an alloy wire, or an alloy thin film in which a region occupying at least 50% is mixed.
Here, the alloy ribbon, the alloy wire or the alloy thin film is made of an alloy of a single composition having a usual composition variation. Here, the length of each region is usually 1μ.
It is defined as having m or more, and does not mean a region having a small crystal grain size size level. FIG. 6 shows an example of the structure of a conventional magnetic element, and FIG. 1 shows an example of the structure of the magnetic element of the present invention.
【0006】アモルファス相が少なくとも50%を占め
る領域は100%アモルファス相でも良く、通常の用途
ではこの領域を100%アモルファス相として使用する
場合が多い。粒径50nm以下の微細なナノ結晶粒が組
織の少なくとも50%を占める領域は実質的に結晶相だ
けからなる場合もあるが、通常は1部にアモルファス相
を含む状態で使用される。前記各領域は厚さ方向に層状
に存在していても良い。The region in which the amorphous phase occupies at least 50% may be the 100% amorphous phase, and in normal applications, this region is often used as the 100% amorphous phase. The region in which fine nano-crystal grains having a grain size of 50 nm or less occupy at least 50% of the structure may consist essentially of the crystal phase, but it is usually used in a state in which a part thereof contains the amorphous phase. Each of the regions may exist in a layered form in the thickness direction.
【0007】前記磁気素子を構成している合金がFeを
主体としCu,Auから選ばれる少なくとも1種の元素
及びTi,V,Zr,Nb,Mo,Hf,Ta,Wから
選ばれる少なくとも1種の元素を必須成分として含む場
合に特に微結晶化した領域の軟磁気特性が優れているた
め良好な磁気素子となり得る。より具体的にはFe−A
−M−Si−B系(A:Cu,Au、M:Ti,V,Z
r,Nb,Mo,Hf,Ta,W)の組成の合金を挙げ
ることができる。この他に必要に応じて耐蝕性等を改善
する目的でCrやAlを含んでも良い。The alloy constituting the magnetic element is Fe as a main component and at least one element selected from Cu and Au and at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta and W. When the element (1) is contained as an essential component, the soft magnetic characteristics of the microcrystallized region are excellent, and a good magnetic element can be obtained. More specifically, Fe-A
-M-Si-B system (A: Cu, Au, M: Ti, V, Z
An alloy having a composition of r, Nb, Mo, Hf, Ta, W) can be mentioned. In addition to these, Cr and Al may be contained for the purpose of improving the corrosion resistance and the like, if necessary.
【0008】前記磁気素子を構成している合金として
は、より具体的には、一般式:(Fe1-aMa)
1-x-y-z-bAxM’yM”zXb(原子%)で表され、式中
MはCo,Niから選ばれた少なくとも1種の元素を、
AはCu,Auから選ばれた少なくとも1種の元素、
M’はTi,V,Zr,Nb,Mo,Hf,Taおよび
Wから選ばれた少なくとも1種の元素、M”はCr,M
n,A1,Sn,Zn,Ag,In,白金属元素,M
g,Ca,Sr,Y,希土類元素,N,0およびSから
選ばれた少なくとも1種の元素、XはB,Si,C,G
e,GaおよびPから選ばれた少なくとも1種の元素を
示し、a,x,y,zおよびbはそれぞれ0≦a<0.
5、0≦x≦10、0.1≦y≦20、0≦z≦20、
2≦b≦30を満足する数で表される組成の合金が挙げ
られる。前述の組成の合金に存在する結晶は主にbcc
Fe相であり、Siを含む場合はbcc相中にはSiが
固溶し規則格子を含む場合もある。また、Si以外の元
素たとえばB,A1,Ge,Zr,Ga等を固溶してい
る場合もある。前記結晶相以外の残部は主にアモルファ
ス相である。[0008] As an alloy constituting the magnetic element, and more specifically, the general formula: (Fe 1-a M a )
1-xyzb A x M 'is represented by y M "z X b (atomic%), at least one element is M wherein selected Co, from Ni,
A is at least one element selected from Cu and Au,
M'is at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta and W, and M "is Cr, M
n, A1, Sn, Zn, Ag, In, white metal element, M
g, Ca, Sr, Y, at least one element selected from rare earth elements, N, 0 and S, X is B, Si, C, G
at least one element selected from e, Ga and P, and a, x, y, z and b are 0 ≦ a <0.
5, 0 ≦ x ≦ 10, 0.1 ≦ y ≦ 20, 0 ≦ z ≦ 20,
An alloy having a composition represented by a number satisfying 2 ≦ b ≦ 30 can be given. The crystals existing in the alloy having the above composition are mainly bcc.
When it is an Fe phase and contains Si, Si may form a solid solution in the bcc phase and may contain an ordered lattice. In addition, elements other than Si, such as B, A1, Ge, Zr, and Ga, may be solid-dissolved. The balance other than the crystalline phase is mainly an amorphous phase.
【0009】特にアモルファス相が少なくとも50%を
占める領域が合金の全体積の50%を越えている場合は
磁歪応用センサに適する磁気素子となる。すなわち、外
部から磁場を印加する部分に粒径50nm以下の微細な
ナノ結晶粒が組織の少なくとも50%を占める領域を形
成し、この部分に励磁コイルを配置し励磁することによ
り、磁化を容易にすることができる。たとえば磁歪によ
る磁気弾性波を利用した位置センサ等では駆動コイル部
の領域をナノ結晶化することにより、コイルに流す電流
を小さく、あるいはコイルの巻数を減少できるようにな
る。In particular, when the region where the amorphous phase occupies at least 50% exceeds 50% of the total volume of the alloy, the magnetic element is suitable for the magnetostrictive sensor. That is, by forming a region in which fine nano-crystal grains with a grain size of 50 nm or less occupy at least 50% of the structure in a portion to which a magnetic field is applied from the outside, and arranging an exciting coil in this portion to excite, magnetization can be easily performed can do. For example, in a position sensor or the like using magnetoelastic waves due to magnetostriction, by nanocrystallizing the region of the drive coil portion, the current flowing through the coil can be reduced or the number of turns of the coil can be reduced.
【0010】薄帯あるいはワイヤ−の場合は、粒径50
nm以下の微細なナノ結晶粒が組織の少なくとも50%
を占める領域とアモルファス相が少なくとも50%を占
める領域とが簿帯長手方向あるいはワイヤ長手方向に交
互に並んで存在している磁気素子がセンサとして使用し
やすい。ナノ結晶領域とアモルファスの領域の長さを変
え、いろいろなパターンの粗合せにすることにより、物
品の識別や人の識別に利用するセンサ用磁気素子が1種
類の素材を局所的に熱処理することにより容易に得られ
る。薄膜の場合は膜面内で2次元的にいろいろパタ−ン
を変えた磁気素子も作製可能であり集積化も可能とな
る。In the case of a ribbon or wire, the particle size is 50
At least 50% of the structure is composed of fine nano-grains of nm or less
The magnetic element in which the regions occupying and the regions occupying at least 50% of the amorphous phase are alternately arranged in the longitudinal direction of the strip or the longitudinal direction of the wire is easy to use as a sensor. By changing the lengths of the nano-crystal region and the amorphous region and making rough patterns of various patterns, the magnetic element for sensor used to identify articles and people can locally heat-treat one material. Can be easily obtained by. In the case of a thin film, it is possible to fabricate a magnetic element in which various patterns are two-dimensionally changed within the film surface, and integration is possible.
【0011】もう一つの本発明はアモルファス合金薄
帯、ワイヤ−、薄膜を作製後局所的に加熱し微結晶化さ
せ、粒径50nm以下の微細なナノ結晶粒が組織の少な
くとも50%を占める領域とアモルファス相が少なくと
も50%を占める領域がマクロ的に混在した合金にする
ことを特徴とする磁気素子の製造方法である。局所的加
熱の方法としては局所的に電流を通電する方法や、レー
ザ光を照射する方法がナノ結晶領域をいろいろなパター
ンで容易に生成することができるため適している。Another aspect of the present invention is a region in which amorphous alloy ribbons, wires, and thin films are produced and locally heated to be microcrystallized, and fine nanocrystal grains having a grain size of 50 nm or less occupy at least 50% of the structure. And a region in which the amorphous phase occupies at least 50% are formed in a macroscopically mixed alloy. As a method of local heating, a method of locally passing an electric current or a method of irradiating a laser beam is suitable because a nanocrystal region can be easily generated in various patterns.
【0012】本発明磁気素子を構成する合金は単ロール
法や双ロール法、回転液中紡糸法等の液体急冷法や、ス
パッタ法、蒸着法、イオンプレ−ティング法等の気相急
冷法によりアモルファス合金を作製後、これを局所的に
加熱し微結晶化させ、粒径50nm以下の微細なナノ結
晶粒が組織の少なくとも50%を占める領域とアモルフ
ァス相が少なくとも50%を占める領域を混在した状態
にすることにより作製される。また、前記合金を液体急
冷法や気相急冷法により作製する際部分的に冷却速度が
遅くなるように、冷却ロールや基板の温度を上げる等の
方法により、直接ナノ結晶粒が組織の少なくとも50%
を占める領域を形成し本発明磁気素子を製造することも
できる。しかし、各領域の割合や組織を制御する観点か
らは、一旦アモルファス合金にした後に局所的に加熱し
た方が良い結果が得られる。局所加熱熱処理は通常45
0℃から700℃の範囲でかつ結晶化温度以上の温度に
合金が昇温される条件で行う。加熱は、窒素ガス雰囲
気、Arガス雰囲気等の不活性ガス雰囲気中あるいは、
大気中などの酸化性雰囲気で行われる。また、局所加熱
の前あるいは後に合金全体を結晶化温度以下の温度でア
モルファス相が少なくとも50%以上を占める領域の磁
気特性を改善するために熱処理しても良い。The alloy constituting the magnetic element of the present invention is amorphous by a liquid quenching method such as a single roll method, a twin roll method, a rotating submerged spinning method, or a vapor phase quenching method such as a sputtering method, a vapor deposition method or an ion plating method. After the alloy is produced, it is locally heated to be microcrystallized, and a region in which fine nano-crystal grains having a grain size of 50 nm or less occupy at least 50% of the structure and a region in which the amorphous phase occupies at least 50% are mixed It is produced by Further, when the alloy is produced by a liquid quenching method or a gas phase quenching method, at least 50 nanocrystalline grains of the structure are directly formed by raising the temperature of a cooling roll or a substrate so that the cooling rate is partially slowed. %
The magnetic element of the present invention can be manufactured by forming a region occupying the area. However, from the viewpoint of controlling the proportion and structure of each region, it is better to locally heat the amorphous alloy and then locally heat it. Local heating heat treatment is usually 45
It is performed under the condition that the temperature of the alloy is raised to a temperature in the range of 0 ° C. to 700 ° C. and above the crystallization temperature. The heating is performed in an inert gas atmosphere such as a nitrogen gas atmosphere or an Ar gas atmosphere, or
It is performed in an oxidizing atmosphere such as the atmosphere. Further, before or after the local heating, the entire alloy may be heat-treated at a temperature equal to or lower than the crystallization temperature in order to improve the magnetic characteristics of the region where the amorphous phase occupies at least 50% or more.
【0013】また、前記磁気素子を構成している合金と
して、Fe−R−X系合金を利用しても良い。ここで、
RはY,希土類元素から選ばれた少なくとも1種の元
素、XはB,N,Cから選ばれる少なくとも1種の元素
からなる合金を使用することもできる。また、必要に応
じてCo,Ni,Si,Ga,Ge,P,Cu,Au,
Ti,V,Zr,Nb,Mo,Hf,Ta,W,Cr,
Mn,A1,Sn,Zn,Ag,In,白金属元素,M
g,Ca,Sr,OおよびSから選ばれる少なくとも1
種の元素を含んでも良い。より具体的には、一般式:F
e100-x-y-zRxXyMz(原子%)で表され、式中Rは
Y,希土類元素から選ばれる少なくとも一種の元素、X
はB,C,Nから選ばれる少なくとも一種の元素、Mは
Co,Ni,Si,Ga,Ge,P,Cu,Au,T
i,V,Zr,Nb,Mo,Hf,Ta,W,Cr,M
n,A1,Sn,Zn,Ag,In,白金属元素,M
g,Ca,Sr,OおよびSから選ばれる少なくとも1
種の元素であり、1≦x≦30,1≦y≦20,0≦z
≦20を満足する組成の合金が挙げられる。この場合
は、ナノ結晶合金となった領域に化合物相が形成し、ア
モルファス合金の領域よりも保磁力が大きくなり、バイ
アス磁界を印加する必要がある磁気素子として使用可能
となる。ナノ結晶合金の領域にbcc相が存在する場合
もある。本磁気素子の例として、たとえば高磁歪希土類
−Feアモルファス合金にバイアス磁界を印加しなけれ
ばならない場合が挙げられる。ナノ結晶化した領域を磁
化することによりバイアス磁界をアモルファス領域に印
加することが可能となり、1つの素材から優れた磁気素
子を実現することができる。An Fe-R-X type alloy may be used as an alloy forming the magnetic element. here,
It is also possible to use an alloy in which R is at least one element selected from Y and rare earth elements, and X is at least one element selected from B, N and C. If necessary, Co, Ni, Si, Ga, Ge, P, Cu, Au,
Ti, V, Zr, Nb, Mo, Hf, Ta, W, Cr,
Mn, A1, Sn, Zn, Ag, In, white metal element, M
at least 1 selected from g, Ca, Sr, O and S
It may also contain seed elements. More specifically, the general formula: F
e 100-xyz R x X y M z (atomic%), wherein R is Y, at least one element selected from rare earth elements, X
Is at least one element selected from B, C, N, M is Co, Ni, Si, Ga, Ge, P, Cu, Au, T
i, V, Zr, Nb, Mo, Hf, Ta, W, Cr, M
n, A1, Sn, Zn, Ag, In, white metal element, M
at least 1 selected from g, Ca, Sr, O and S
It is a kind of element and 1 ≦ x ≦ 30, 1 ≦ y ≦ 20, 0 ≦ z
An alloy having a composition satisfying ≦ 20 can be mentioned. In this case, a compound phase is formed in the region that has become a nanocrystalline alloy, the coercive force is larger than that in the region of the amorphous alloy, and it can be used as a magnetic element that needs to be applied with a bias magnetic field. The bcc phase may exist in the region of the nanocrystalline alloy. An example of this magnetic element is a case where a bias magnetic field must be applied to a high magnetostrictive rare earth-Fe amorphous alloy. By magnetizing the nano-crystallized region, a bias magnetic field can be applied to the amorphous region, and an excellent magnetic element can be realized from one material.
【0014】また、ナノ結晶化した領域に磁気異方性の
大きいFe−B化合物、Fe−C化合物やFe−P化合
物を形成し保磁力の大きい領域を形成し、Rを含まない
合金系でも同様な効果を実現することもできる。保磁力
の大きい領域を磁化したり消磁したりすることにより軟
磁性を示す領域を磁化したりしない状態を作りだし、信
号を検出できる状態にしたり検出できない状態にする。
これにより検出信号が変化するため盗難防止センサ等に
も使用できる。局所的に加熱熱処理した前記磁気素子は
破損や耐環境性を改善するため必要に応じてケースやチ
ューブに入れたり、表面を樹脂で被覆したり、樹脂テー
プや紙のテープで挟んだり、片面を覆ったりして使用し
ても良い。また、合金薄帯の場合は積層したり編んだ
り、ワイヤの場合は束ねたり編んだりして使用しても良
い。また、薄帯やワイヤはトロイダル状に巻いて複合特
性を示す磁心として使用したり、積層磁心として使用す
ることもできる。磁気素子表面に絶縁層を形成したり、
メッキ等を行っても良い。Further, even in an alloy system containing no R, an Fe-B compound, an Fe-C compound or an Fe-P compound having large magnetic anisotropy is formed in the nanocrystallized region to form a region having large coercive force. The same effect can be realized. By magnetizing or demagnetizing a region having a large coercive force, a state in which a region exhibiting soft magnetism is not magnetized is created, and a signal can be detected or a signal cannot be detected.
As a result, the detection signal changes, so it can also be used as an antitheft sensor or the like. The magnetic element that has been locally heat-treated is put in a case or tube as needed to improve damage or environmental resistance, the surface is covered with resin, it is sandwiched with resin tape or paper tape, and one side is You may cover it and use it. Further, alloy ribbons may be laminated or knitted, and wires may be bundled or knitted. Further, the ribbon or the wire may be wound in a toroidal shape to be used as a magnetic core exhibiting composite characteristics, or may be used as a laminated magnetic core. Forming an insulating layer on the surface of the magnetic element,
You may perform plating etc.
【0015】アモルファス合金薄帯、ワイヤ−、薄膜を
作製後局所的に加熱し微結晶化させ、粒径50nm以下
の微細なナノ結晶粒が組織の少なくとも50%を占める
領域とアモルファス相が少なくとも50%を占める領域
がマクロ的に混在した合金とし、これから磁気素子を構
成することにより、複数の素子を組み合わせて使用する
場合に比べて小型の磁気素子が実現できる。更に、局所
的に加熱する際に加熱の場所や大きさや温度を変えるこ
とにより、磁気特性や寸法の異なる磁性材料を1材料で
実現できるため、従来の異なる材質や異なる寸法の磁性
体を準備し組み合わせるよりも、パターンの自由度を大
きくできる。After the amorphous alloy ribbon, the wire, and the thin film are produced, they are locally heated to be finely crystallized, and fine nanocrystal grains having a grain size of 50 nm or less occupy at least 50% of the structure and at least 50 amorphous phases. By forming an alloy in which the region occupying% is mixed macroscopically and forming a magnetic element from this alloy, a smaller magnetic element can be realized as compared with the case where a plurality of elements are used in combination. Furthermore, by changing the heating location, size, and temperature when locally heating, magnetic materials with different magnetic properties and dimensions can be realized with one material. Therefore, conventional magnetic materials with different materials and different dimensions must be prepared. The degree of freedom of the pattern can be increased as compared with the combination.
【0016】[0016]
【発明の実施の形態】以下本発明を実施例にしたがって
説明するが本発明はこれらに限定されるものではない。 (実施例1)単ロール法により幅1.5mm厚さ17μ
mのFebalCu1Nb3Si15.5B7アモルファス合金薄
帯を作製した。次にこの合金簿帯を長さ100mmに切
断した。次にこの薄帯の一部に電流を流し局所的に加熱
し、粒径12nmの微細なナノ結晶粒が組織の約80%
を占める領域Aを形成し、本発明磁気素子を作製した。
図2にその構造の模式図を示す。領域Bはアモルファス
相の領域である。次にこの素子を識別センサとして物品
に貼り付け、外部より交流励磁し、検出コイルにより出
力の高調波を検出した。局所加熱の長さやパタ−ンによ
り、検出波形が変化し、十分識別センサ用磁気素子とし
て利用できることが分かった。このように、本発明によ
れば、1つの薄帯だけでも識別センサを構成することが
可能となる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to Examples, but the present invention is not limited thereto. (Example 1) Width 1.5 mm and thickness 17μ by the single roll method
m Fe bal Cu 1 Nb 3 Si 15.5 B 7 amorphous alloy ribbon was prepared. The alloy strip was then cut to a length of 100 mm. Next, an electric current is applied to a part of this ribbon to locally heat it, and the fine nano-crystal grains with a grain size of 12 nm make up about 80% of the structure.
The region A occupying the area was formed, and the magnetic element of the present invention was produced.
FIG. 2 shows a schematic diagram of the structure. Area B is an amorphous phase area. Next, this element was attached to an article as an identification sensor, subjected to alternating-current excitation from the outside, and the output harmonic was detected by a detection coil. It was found that the detected waveform changes depending on the length of the local heating and the pattern, and can be sufficiently used as a magnetic element for an identification sensor. As described above, according to the present invention, the identification sensor can be configured with only one ribbon.
【0017】(実施例2)Heガス減圧雰囲気中の単ロ
−ル法により幅lmm、厚さ15μmのFebalCu1Z
r7B6アモルファス合金薄帯を作製した。次にこの合金
簿帯を長さ80mmに切断した。次にこの薄帯の一部に
発熱体を接触させ、粒径約18nmの微細なナノ結晶粒
か組織の約85%を占める領域Cを形成し、本発明磁気
素子を作製した。図3にその構造の模式図を示す。領域
Dはアモルファス相の領域である。次にこの素子を、外
部より交流励磁し、検出コイルにより出力の高調波を検
出した。局所加熱の長さやパターンにより、検出波形が
変化し、十分識別センサ用磁気素子として利用できるこ
とが分かった。このように、本発明によれば、1つの薄
帯だけでも識別センサを機成することが可能となる。(Embodiment 2) Fe bal Cu 1 Z having a width of 1 mm and a thickness of 15 μm by a single roll method in a He gas depressurized atmosphere.
to prepare a r 7 B 6 amorphous alloy ribbon. The alloy strip was then cut to a length of 80 mm. Next, a heating element was brought into contact with part of this ribbon to form fine nano-crystal grains having a grain size of about 18 nm or a region C occupying about 85% of the structure, to fabricate the magnetic element of the present invention. FIG. 3 shows a schematic diagram of the structure. Area D is an amorphous phase area. Next, this element was externally excited with an alternating current, and the output coil was used to detect harmonics in the output. It was found that the detected waveform changes depending on the length and pattern of local heating and can be sufficiently used as a magnetic element for an identification sensor. As described above, according to the present invention, it is possible to implement the identification sensor with only one ribbon.
【0018】(実施例3)単ロ−ル法により幅lmm、
厚さ15μmのFebalCu1Ta2.5Si14B8アモルフ
ァス合金薄帯を作製した。次にこの合金薄帯を長さ80
mmに切断した。次にこの薄帯の一部にレ−ザ光を照射
し、粒径約14nmの微細なナノ結晶粒が組織の約85
%を占める領域を形成し、本発明磁気素子を作製した。
X線回折の結果この領域にはFe2Bが形成していた。
素子構造は図3と同様である。次にこの素子を、外部よ
り交流励磁し、検出コイルにより出力の高調波を検出し
た。次にこの素子に直流磁界を印加し、結晶化部分を磁
化し、同様に交流励磁を行った。十分識別センサ用磁気
素子として利用できることが分かった。このように、本
発明によれば、1つの薄帯だけでも識別センサを構成す
ることが可能となる。(Embodiment 3) A width of 1 mm by a single roll method,
A Fe bal Cu 1 Ta 2.5 Si 14 B 8 amorphous alloy ribbon having a thickness of 15 μm was produced. Next, this alloy ribbon is
Cut into mm. Next, a laser beam is irradiated on a part of the ribbon, and fine nano-crystal grains having a grain size of about 14 nm form a structure of about 85 nm.
By forming a region occupying 100%, a magnetic element of the present invention was manufactured.
As a result of X-ray diffraction, Fe 2 B was formed in this region.
The element structure is similar to that shown in FIG. Next, this element was externally excited with an alternating current, and the output coil was used to detect harmonics in the output. Next, a direct current magnetic field was applied to this element to magnetize the crystallized portion, and similarly subjected to alternating current excitation. It has been found that it can be sufficiently used as a magnetic element for an identification sensor. As described above, according to the present invention, the identification sensor can be configured with only one ribbon.
【0018】(実施例4)回転液中紡糸法により直径1
00μmのFebalCu1Nb3.5Si14.5B9アモルファ
ス合金ワイヤを作製した。次にこの合金を線引きし直径
40μmとした。この合金ワイヤを長さ200mmに切
断し、局所的に電流を流し加熱し本発明磁気素子を作製
した。X線回折およびミクロ組織観察の結果、この加熱
部分Eは粒径約1lnmのbcc結晶粒が75%形成し
ていることが確認された。素子構造を図4に示す。次に
この合金ワイヤの前記結晶化した領域に励磁コイルFを
巻き励磁し、磁気弾性波を発生させ位置センサを構成し
た。検出コイルGは図のように配置した。結果を表1に
示す。一部をナノ結晶化させた方が検出信号が大きかっ
た。(Example 4) A diameter of 1 was obtained by a spinning liquid spinning method.
A 00 μm Fe bal Cu 1 Nb 3.5 Si 14.5 B 9 amorphous alloy wire was prepared. Next, this alloy was drawn to have a diameter of 40 μm. This alloy wire was cut into a length of 200 mm, and an electric current was locally applied to heat the alloy wire to manufacture the magnetic element of the present invention. As a result of X-ray diffraction and microstructure observation, it was confirmed that 75% of bcc crystal grains having a grain size of about 1 nm were formed in the heated portion E. The device structure is shown in FIG. Next, an exciting coil F was wound around the crystallized region of this alloy wire to be excited to generate a magnetoelastic wave, thereby constructing a position sensor. The detection coil G is arranged as shown. The results are shown in Table 1. The detection signal was larger when a part of them was nanocrystallized.
【0019】[0019]
【表1】 [Table 1]
【0020】(実施例5)スパッタ法により表2に示す
組成のアモルファス合金膜を作製した。Example 5 An amorphous alloy film having the composition shown in Table 2 was prepared by the sputtering method.
【0021】[0021]
【表2】 [Table 2]
【0022】次にこの膜表面にレーザ光を照射し、局所
的に加熱し、結晶化させた。結晶化させた部分は組織観
察の結果、粒径50nm以下の微細な結晶粒からなるこ
とが確認された。素子構造を図5に示す。次にこの素子
を、外部より交流励磁し、検出コイルにより出力の高調
波を検出した。次にこの素子に直流磁界を印加し、結晶
化部分を磁化し、同様に交流励磁を行った。十分識別セ
ンサ用磁気素子として利用できることが分かった。この
ように、本発明によれば、1つの薄帯だけでも識別セン
サを構成することが可能となる。Next, the surface of this film was irradiated with laser light to locally heat and crystallize. As a result of microstructure observation, it was confirmed that the crystallized portion was composed of fine crystal grains having a grain size of 50 nm or less. The device structure is shown in FIG. Next, this element was externally excited with an alternating current, and the output coil was used to detect harmonics in the output. Next, a direct current magnetic field was applied to this element to magnetize the crystallized portion, and similarly subjected to alternating current excitation. It has been found that it can be sufficiently used as a magnetic element for an identification sensor. As described above, according to the present invention, the identification sensor can be configured with only one ribbon.
【0023】[0023]
【発明の効果】本発明によれば、盗難防止センサ、物品
識別センサや磁歪応用センサ等各種センサに好適な磁気
素子およびその製造方法を提供できるためその効果は著
しいものがある。According to the present invention, it is possible to provide a magnetic element suitable for various sensors such as an anti-theft sensor, an article identification sensor, and a magnetostrictive sensor, and a method for manufacturing the same, so that the effect is remarkable.
【図1】本発明の磁気素子の構造の一例を示した図であ
る。FIG. 1 is a diagram showing an example of a structure of a magnetic element of the present invention.
【図2】本発明の磁気素子の構造の一例を示した図であ
る。FIG. 2 is a diagram showing an example of a structure of a magnetic element of the present invention.
【図3】本発明の磁気素子の構造の一例を示した図であ
る。FIG. 3 is a diagram showing an example of a structure of a magnetic element of the present invention.
【図4】本発明の磁気素子の構造の一例を示した図であ
る。FIG. 4 is a diagram showing an example of a structure of a magnetic element of the present invention.
【図5】本発明の磁気素子の構造の一例を示した図であ
る。FIG. 5 is a diagram showing an example of a structure of a magnetic element of the present invention.
【図6】従来の磁気素子の構造の一例を示した図であ
る。FIG. 6 is a diagram showing an example of a structure of a conventional magnetic element.
A ナノ結晶粒が組織の80%を占める領域 B アモルファス相の領域 C ナノ結晶粒が組織の85%を占める領域 D アモルファス相の領域 E ナノ結晶粒が組織の75%を占める領域 F 励磁コイル G 検出コイル A area where nano-crystal grains occupy 80% of the structure B area of amorphous phase C area where nano-crystal grains occupy 85% of the structure D area of amorphous phase E area where nano-crystal grains occupy 75% of the structure F exciting coil G Detection coil
Claims (7)
組織の少なくとも50%を占める領域とアモルファス相
が少なくとも50%を占める領域が混在している合金薄
帯、合金ワイヤあるいは合金薄膜から構成されているこ
とを特徴とする磁気素子。1. An alloy ribbon, an alloy wire, or an alloy thin film in which a region where at least 50% of a structure is occupied by fine nanocrystal grains having a grain size of 50 nm or less and a region where at least 50% of an amorphous phase are mixed are mixed. A magnetic element characterized by being used.
合金ワイヤあるいは合金薄膜がFeを主体としCu,A
uから選ばれる少なくとも1種の元素及びTi,V,Z
r,Nb,Mo,Hf,Ta,Wから選ばれる少なくと
も1種の元素を必須成分として含むことを特徴とする請
求項1に記載の磁気素子。2. An alloy ribbon forming the magnetic element,
Alloy wire or alloy thin film is mainly composed of Fe, Cu, A
at least one element selected from u and Ti, V, Z
2. The magnetic element according to claim 1, which contains at least one element selected from r, Nb, Mo, Hf, Ta, and W as an essential component.
める領域が合金薄帯、合金ワイヤあるいは合金薄膜の全
体積の50%を越えていることを特徴とする請求項1又
は請求項2に記載の磁気素子。3. The magnetic material according to claim 1, wherein the region where the amorphous phase occupies at least 50% exceeds 50% of the total volume of the alloy ribbon, the alloy wire or the alloy thin film. element.
組織の少なくとも50%を占める領域とアモルファス相
が少なくとも50%を占める領域とが薄帯長手方向ある
いはワイヤ長手方向に交互に並んで存在していることを
特徴とする請求項1乃至請求項3のいずれかに記載の磁
気素子。4. A region in which fine nano-crystal grains having a grain size of 50 nm or less occupy at least 50% of a structure and a region in which an amorphous phase occupies at least 50% are alternately arranged in the ribbon longitudinal direction or the wire longitudinal direction. The magnetic element according to any one of claims 1 to 3, wherein:
金ワイヤあるいはアモルファス合金薄膜を作製後局所的
に加熱し微結晶化させ、粒径50nm以下の微細なナノ
結晶粒が組織の少なくとも50%を占める領域とアモル
ファス相が少なくとも50%を占める領域を混在させる
ことを特徴とする前記磁気素子の製造方法。5. A region where an amorphous alloy ribbon, an amorphous alloy wire or an amorphous alloy thin film is locally heated and microcrystallized, and fine nanocrystal grains having a grain size of 50 nm or less occupy at least 50% of the structure. A method of manufacturing the magnetic element, wherein a region in which an amorphous phase occupies at least 50% is mixed.
モルファス合金ワイヤあるいはアモルファス合金薄膜に
電流を通電し行なうことを特徴とする請求項5に記載の
磁気素子の製造方法。6. The method of manufacturing a magnetic element according to claim 5, wherein the local heating is performed by passing a current through the amorphous alloy ribbon, the amorphous alloy wire or the amorphous alloy thin film.
モルファス合金ワイヤあるいはアモルファス合金薄膜に
レーザ光を照射し行なうことを特徴とする請求項5に記
載の磁気素子の製造方法。7. The method for producing a magnetic element according to claim 5, wherein the local heating is performed by irradiating the amorphous alloy ribbon, the amorphous alloy wire or the amorphous alloy thin film with laser light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24730595A JP3627875B2 (en) | 1995-09-26 | 1995-09-26 | Magnetic element and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24730595A JP3627875B2 (en) | 1995-09-26 | 1995-09-26 | Magnetic element and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0992519A true JPH0992519A (en) | 1997-04-04 |
JP3627875B2 JP3627875B2 (en) | 2005-03-09 |
Family
ID=17161442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24730595A Expired - Fee Related JP3627875B2 (en) | 1995-09-26 | 1995-09-26 | Magnetic element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3627875B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6091333A (en) * | 1998-03-20 | 2000-07-18 | Wovenac Factory Inc. | Shoplifting prevention device and article with shoplifting prevention device |
JP2005209010A (en) * | 2004-01-23 | 2005-08-04 | Fuji Xerox Co Ltd | Medium identification method using magnetic tag and magnetic tag-provided medium |
JP2006501541A (en) * | 2002-09-10 | 2006-01-12 | インゲニア・ホールディングス・リミテッド | Security devices and systems |
-
1995
- 1995-09-26 JP JP24730595A patent/JP3627875B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6091333A (en) * | 1998-03-20 | 2000-07-18 | Wovenac Factory Inc. | Shoplifting prevention device and article with shoplifting prevention device |
JP2006501541A (en) * | 2002-09-10 | 2006-01-12 | インゲニア・ホールディングス・リミテッド | Security devices and systems |
JP2005209010A (en) * | 2004-01-23 | 2005-08-04 | Fuji Xerox Co Ltd | Medium identification method using magnetic tag and magnetic tag-provided medium |
JP4525086B2 (en) * | 2004-01-23 | 2010-08-18 | 富士ゼロックス株式会社 | Medium identification method using magnetic tag and medium provided with magnetic tag |
Also Published As
Publication number | Publication date |
---|---|
JP3627875B2 (en) | 2005-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11609281B2 (en) | Tunable anisotropy of co-based nanocomposites for magnetic field sensing and inductor applications | |
JP3233313B2 (en) | Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics | |
JP3411626B2 (en) | Magnetic multilayer film, magnetoresistive effect element, and method of manufacturing the same | |
US5340413A (en) | Fe-NI based soft magnetic alloys having nanocrystalline structure | |
US20170323712A1 (en) | Fe-BASED SOFT MAGNETIC ALLOY RIBBON AND MAGNETIC CORE COMPRISING SAME | |
EP0086485B1 (en) | Wound iron core | |
US20230298788A1 (en) | Fe-based nanocrystal soft magnetic alloy and magnetic component | |
JPH07268566A (en) | Fe-based soft magnetic alloy and method for manufacturing laminated magnetic core using the same | |
JP3231149B2 (en) | Noise filter | |
JPH0375343A (en) | Soft magnetic alloy | |
KR950014314B1 (en) | Iron-base soft magnetic alloy | |
JPH1088294A (en) | Hard magnetic material | |
JP2848667B2 (en) | Method for manufacturing ultra-thin soft magnetic alloy ribbon | |
JP3627875B2 (en) | Magnetic element and manufacturing method thereof | |
JPH01247557A (en) | Manufacture of hyperfine-crystal soft-magnetic alloy | |
JPH11297521A (en) | Nano-crystalline high-magnetostrictive alloy and sensor using the alloy | |
US11008643B2 (en) | Tunable anisotropy of co-based nanocomposites for magnetic field sensing and inductor applications | |
JPH0917623A (en) | Nano crystal alloy magnetic core and its manufacture | |
JP2000119821A (en) | Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same | |
JP2919886B2 (en) | Fe-based soft magnetic alloy | |
JP3322407B2 (en) | Fe-based soft magnetic alloy | |
JP2001052933A (en) | Magnetic core and current sensor using the magnetic core | |
JP2005187917A (en) | Soft magnetic alloy, and magnetic component | |
KR0153174B1 (en) | High Permeability Fe-Al Soft Magnetic Alloys | |
JPH03271346A (en) | Soft magnetic alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040430 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040624 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040812 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041012 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20041101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |