JP2001052933A - Magnetic core and current sensor using the magnetic core - Google Patents

Magnetic core and current sensor using the magnetic core

Info

Publication number
JP2001052933A
JP2001052933A JP11228623A JP22862399A JP2001052933A JP 2001052933 A JP2001052933 A JP 2001052933A JP 11228623 A JP11228623 A JP 11228623A JP 22862399 A JP22862399 A JP 22862399A JP 2001052933 A JP2001052933 A JP 2001052933A
Authority
JP
Japan
Prior art keywords
magnetic
permeability
magnetic field
magnetic core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11228623A
Other languages
Japanese (ja)
Inventor
Yasuaki Moriya
泰明 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11228623A priority Critical patent/JP2001052933A/en
Publication of JP2001052933A publication Critical patent/JP2001052933A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic core, having appropriately high initial permeability and high permeability to a strong magnetic field induced by a large current. SOLUTION: By a method, such as a heat treatment in a magnetic field using a magnetic field applied perpendicular to a magnetic path, an initial permeability μi is set to 50,000-100,000 and a permeability μ4A under a bias magnetic field of 4 A/m applied along the magnetic path is set to 0.4-0.6 times the initial permeability μi. As a result, a magnetic core can be obtained, which has appropriately high initial permeability and high permeability to a strong magnetic field induced by large current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い初透磁率を有
するとともに、強い磁界に対しても高い透磁率を有する
磁気コアおよびそれを用いた電流センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic core having a high initial magnetic permeability and a high magnetic permeability even with a strong magnetic field, and a current sensor using the same.

【0002】[0002]

【従来の技術】従来の高透磁率を有する磁気コアは、高
い初透磁率を有するが、強い磁界に対しては透磁率が小
さくなってしまうのが通常であった。しかしながら、磁
気コアの用途には、高い初透磁率を有するだけでなく、
強い磁界に対しても高い透磁率を有する磁気コアが望ま
しいものが少なくない。
2. Description of the Related Art Conventionally, a magnetic core having a high magnetic permeability has a high initial magnetic permeability, but usually has a small magnetic permeability for a strong magnetic field. However, for the application of the magnetic core, not only has a high initial permeability,
In many cases, a magnetic core having a high magnetic permeability even with a strong magnetic field is desirable.

【0003】電流センサ用の磁気コアはそのようなもの
の一つである。電流センサは電流の流れる導体の周囲に
発生する磁界を検出することによって、導体に流れる電
流の検出を行うものである。導体に流れる電流が交流で
あれば、導体を囲む環状の磁気コアに巻線を行えば、巻
線には電流に比例した電圧が発生するので、これを検出
コイルとすることによって電流センサが構成される。
A magnetic core for a current sensor is one such example. The current sensor detects a current flowing through a conductor by detecting a magnetic field generated around the conductor through which the current flows. If the current flowing through the conductor is alternating current, if a coil is wound on the annular magnetic core surrounding the conductor, a voltage is generated in the winding in proportion to the current. Is done.

【0004】この場合、電流センサとしての感度を高め
るには、磁気コアが高い透磁率を有することが必要であ
る。また電流センサは小電流だけでなく、所定の範囲の
大電流に対しても十分な感度を有することが必要があ
る。従ってこのような電流センサに用いられる磁気コア
としては、初透磁率が高く検出感度が高いことに加え
て、所定範囲の大きな電流による強い磁界に対しても、
適度の透磁率を有し、電流に対する感度を有しているこ
とが好ましい。
In this case, in order to increase the sensitivity as a current sensor, it is necessary that the magnetic core has a high magnetic permeability. Further, the current sensor needs to have sufficient sensitivity not only for a small current but also for a large current in a predetermined range. Therefore, as a magnetic core used in such a current sensor, in addition to having high initial permeability and high detection sensitivity, in addition to a strong magnetic field due to a large current in a predetermined range,
It is preferable that it has an appropriate magnetic permeability and has a sensitivity to current.

【0005】ところが、従来の磁気コアは、初透磁率が
数万ないし十数万と十分に高い値を示すが、磁界が大き
くなると磁化がすぐに飽和して、透磁率が極端に低くな
ってしまう。このため例えば電流センサの磁気コアとし
て用いると高い電流に対して感度が低下してしまうとい
う問題があった。
However, the conventional magnetic core has a sufficiently high initial magnetic permeability of tens of thousands to several hundred thousand, but when the magnetic field increases, the magnetization is immediately saturated and the magnetic permeability becomes extremely low. I will. For this reason, for example, when used as a magnetic core of a current sensor, there has been a problem that the sensitivity to a high current is reduced.

【0006】強い磁界において磁気コアが透磁率を保つ
方法として、磁気コアの磁路の一部に空隙即ちギャップ
を入れる方法が知られており、多く用いられている。し
かし、磁路にギャップを入れると、初透磁率は数百程度
にまで大幅に低下してしまい、使用範囲にわたって低透
磁率であるため、磁気センサ用の磁気コアとして用いる
には不充分であった。
As a method for maintaining the magnetic permeability of a magnetic core in a strong magnetic field, a method of forming a void in a part of a magnetic path of the magnetic core is known and widely used. However, if a gap is inserted in the magnetic path, the initial magnetic permeability is greatly reduced to about several hundreds, and the magnetic permeability is low over the range of use, which is insufficient for use as a magnetic core for a magnetic sensor. Was.

【0007】[0007]

【発明が解決しようとする課題】このため、磁気コアと
して、初透磁率が高く、しかも大電流による強い磁界に
対しても、高い透磁率を有する磁気コアが望まれてい
た。
Therefore, there has been a demand for a magnetic core having a high initial magnetic permeability and a high magnetic permeability even with a strong magnetic field caused by a large current.

【0008】本発明は、このような要求に応えるもので
あって、高い初透磁率とともに、高い磁界まで高い透磁
率を有する磁気コアを提供することを課題としている。
An object of the present invention is to meet such a demand and to provide a magnetic core having a high initial magnetic permeability and a high magnetic permeability up to a high magnetic field.

【0009】[0009]

【課題を解決するための手段】本発明の磁気コアは、初
透磁率μi が50,000 以上100,000 以下であり、且つ4
A/mの磁界に対する透磁率μ4Aが初透磁率μi の0.4 倍
以上0.6 倍以下であることを特徴とするものである。な
お、本発明において初透磁率および強い磁界に対する透
磁率は、いずれも1kHz で測定した値を用いることにす
る。
The magnetic core of the present invention has an initial magnetic permeability μ i of 50,000 or more and 100,000 or less and 4 μm or less.
The magnetic permeability μ 4A for a magnetic field of A / m is 0.4 to 0.6 times the initial magnetic permeability μ i . In the present invention, the values measured at 1 kHz are used for the initial permeability and the permeability to a strong magnetic field.

【0010】本発明において、初透磁率μi を50,000以
上としたのは、50,000未満では低い電流において十分な
感度を得ることができないからである。また初透磁率を
100,000 以下としたのは、初透磁率が100,000 を超える
ようにすると、強い磁界の下での高い透磁率が得られな
くなるからである。そして4 A/mの磁界に対する透磁率
μ4Aを初透磁率μi の0.4 倍以上0.6 倍以下としたの
は、強い磁界に対してこのように高い透磁率を有するこ
とによって、強い磁界に対し磁気コアとして有効に動作
させることができるからである。例えば電流センサに使
用した場合に、大きな電流による強い磁界に対して十分
に感度を高めることができるからである。また、本発明
の磁気コアは、初透磁率μi が50,000以上100,000 以下
であり、且つ飽和磁界の0.8 倍の磁界に対する透磁率μ
0.8 を、初透磁率μi の0.3 倍以上0.7 倍以下にしたも
のであってもよい。この限定を行って強い磁界に対して
このように高い透磁率を有することにより、強い磁界に
対し磁気コアとして有効に動作させることができる。例
えば電流センサに用いた場合に、弱い電流に対して感度
を得るとともに、大きい電流による強い磁界の下での感
度を高めることができる。なお、本発明において飽和磁
界は、磁束密度が飽和磁束密度の95% に達するときの磁
界とする。
In the present invention, the initial magnetic permeability μ i is set to 50,000 or more because if it is less than 50,000, sufficient sensitivity cannot be obtained at a low current. Also, the initial permeability
The reason why it is not more than 100,000 is that if the initial permeability exceeds 100,000, a high permeability under a strong magnetic field cannot be obtained. The reason why the magnetic permeability μ 4A for a magnetic field of 4 A / m is set to 0.4 times or more and 0.6 times or less of the initial magnetic permeability μ i is that, because of having such a high magnetic permeability for a strong magnetic field, This is because it can be effectively operated as a magnetic core. For example, when used in a current sensor, the sensitivity can be sufficiently increased with respect to a strong magnetic field due to a large current. Further, the magnetic core of the present invention has an initial magnetic permeability μ i of 50,000 to 100,000 and a magnetic permeability μ with respect to a magnetic field 0.8 times the saturation magnetic field.
0.8 may be 0.3 times or more and 0.7 times or less the initial magnetic permeability μ i . By performing this limitation and having such a high magnetic permeability with respect to a strong magnetic field, it is possible to effectively operate as a magnetic core with respect to a strong magnetic field. For example, when used in a current sensor, it is possible to obtain sensitivity to a weak current and enhance sensitivity under a strong magnetic field due to a large current. In the present invention, the saturation magnetic field is a magnetic field when the magnetic flux density reaches 95% of the saturation magnetic flux density.

【0011】前記磁気コアとして、Co系アモルファス
合金または微細結晶構造を有する磁性合金を好ましく用
いることができる。これらの磁気コアは高い飽和磁化を
有し、適度の磁気異方性を与えることができるので、適
度に高い初透磁率を有し、しかも強い磁界中においても
適度に高い透磁率を持たせることができる。
As the magnetic core, a Co-based amorphous alloy or a magnetic alloy having a fine crystal structure can be preferably used. These magnetic cores have a high saturation magnetization and can give a moderate magnetic anisotropy, so they have a moderately high initial permeability and a moderately high permeability even in a strong magnetic field. Can be.

【0012】前記磁気コアは、磁界中熱処理されたもの
を好ましく用いることができる。磁気コアの磁路に対し
て垂直な方向に磁界中熱処理を行うことによって初透磁
率を適度な値に抑えるとともに、強い磁界に対する透磁
率を高めることができる。
Preferably, the magnetic core is heat-treated in a magnetic field. By performing the heat treatment in a magnetic field in a direction perpendicular to the magnetic path of the magnetic core, the initial magnetic permeability can be suppressed to an appropriate value, and the magnetic permeability for a strong magnetic field can be increased.

【0013】本発明の電流センサは、上記磁気コアを用
いたことを特徴とする電流センサである。上記の磁気コ
アを用いることにより、広い電流範囲にわたって検出感
度の良好な電流センサを得ることができる。
A current sensor according to the present invention is a current sensor using the above magnetic core. By using the above magnetic core, a current sensor having good detection sensitivity over a wide current range can be obtained.

【0014】[0014]

【発明の実施の形態】本発明を実施の形態に基づいて、
さらに具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION
This will be described more specifically.

【0015】図1は本発明の一実施形態の磁界中熱処理
したCo系アモルファス薄帯積層磁気コアの磁界と磁化
との関係(a)、および磁界と透磁率との関係(b)を
示したものである。図1において、磁気コアの初透磁率
は80,000であって、飽和磁界5 A/m の0.8 倍の4A/mにお
いて透磁率40,000を示している。
FIG. 1 shows the relationship (a) between the magnetic field and the magnetization and the relationship (b) between the magnetic field and the magnetic permeability of the Co-based amorphous ribbon laminated magnetic core heat-treated in a magnetic field according to one embodiment of the present invention. Things. In FIG. 1, the initial magnetic permeability of the magnetic core is 80,000, and the magnetic permeability is 40,000 at 4 A / m, which is 0.8 times the saturation magnetic field of 5 A / m.

【0016】図2は本発明の磁気コアを用いて電流を検
出する場合の構成を示す模式図である。図2において符
号1は磁気コア、符号2は検出用巻線、符号3は電流の
流れる導体である。導体3に流れる電流により、導体の
周囲に磁界が発生し、磁気コア1には磁束が生じる。導
体に流れる電流が交流であれば、磁気コア1に生じる磁
束が変化し、巻線2には電流に対応する電圧が誘起され
る。
FIG. 2 is a schematic diagram showing a configuration for detecting a current using the magnetic core of the present invention. In FIG. 2, reference numeral 1 denotes a magnetic core, reference numeral 2 denotes a detection winding, and reference numeral 3 denotes a conductor through which current flows. Due to the current flowing through the conductor 3, a magnetic field is generated around the conductor, and a magnetic flux is generated in the magnetic core 1. If the current flowing through the conductor is an alternating current, the magnetic flux generated in the magnetic core 1 changes, and a voltage corresponding to the current is induced in the winding 2.

【0017】本発明に用いる磁気コアとしては、磁性合
金薄帯を積層したものが好ましく用いられ、磁性合金薄
帯としては、パーマロイ合金、けい素鋼板、アモルファ
ス合金または微結晶構造の磁性合金などを用いることが
できるが、特にアモルファス合金または微結晶構造の磁
性合金が、より高い飽和磁化を有し、より高い磁界まで
高い透磁率を得ることができることから、本発明におい
て好ましく用いることができる。
As the magnetic core used in the present invention, a laminated magnetic alloy ribbon is preferably used. As the magnetic alloy ribbon, a permalloy alloy, a silicon steel plate, an amorphous alloy or a magnetic alloy having a microcrystalline structure is used. Although it can be used, in particular, an amorphous alloy or a magnetic alloy having a microcrystalline structure has a higher saturation magnetization and can obtain a high magnetic permeability up to a higher magnetic field, and thus can be preferably used in the present invention.

【0018】本発明において磁気コアとして用いるアモ
ルファス合金薄帯としては、Co系、Fe系、Fe−N
i系などを用いることができ、Co系のアモルファス合
金が特に好ましく用いられる。Co系合金は、一般式: (M1 1-a M2 a 100-b b 、 (式中、M1 はCoを主成分とし、これにFeおよびN
iを少量成分として含有させることができる。XはB、
Si、C、Pから選ばれる少なくとも1種の元素を示
し、0≦a≦0.5、10≦b≦35(各数字はat
%))であって、M2元素は、熱安定性、耐食性、結晶
化温度の制御のために必要な元素であり、好ましくはC
r.Mn.Zr.Nb、Moを用いるのがよく、X元素
はアモルファス合金を得るのに必要な元素であり、特に
Bはアモルファス化するのに有効な元素であり、Siは
アモルファス形成を助成すること及び結晶化温度の上昇
に有効な元素である。
As the amorphous alloy ribbon used as the magnetic core in the present invention, Co-based, Fe-based, Fe--N
An i-type or the like can be used, and a Co-type amorphous alloy is particularly preferably used. Co alloy has the general formula: (M1 1-a M2 a ) 100-b X b, ( wherein, M1 is a main component Co, this Fe and N
i can be contained as a minor component. X is B,
Represents at least one element selected from Si, C and P, and 0 ≦ a ≦ 0.5, 10 ≦ b ≦ 35 (each numeral is at
%)), Wherein the M2 element is an element necessary for controlling thermal stability, corrosion resistance and crystallization temperature, and is preferably C
r. Mn. Zr. It is preferable to use Nb and Mo. The X element is an element necessary for obtaining an amorphous alloy. In particular, B is an element effective for amorphization, and Si promotes amorphous formation and has a crystallization temperature. Is an element that is effective in increasing the value of

【0019】アモルファス合金薄帯の製造方法としては
液体急冷法が好ましく.具体的には所定の組成比に調整
した合金素材を溶融状態から105 ℃/秒以上の冷却速
度で急冷することによって得られる。このような液体急
冷法により製造されたアモルファス合金薄帯の厚みは、
20μm 以下が好ましく、さらに好ましくは8〜15μ
m であり、薄帯の厚さを制御することにより低損失のコ
アを得ることが可能となる。
As a method for producing the amorphous alloy ribbon, a liquid quenching method is preferable. Specifically, it can be obtained by rapidly cooling an alloy material adjusted to a predetermined composition ratio from a molten state at a cooling rate of 10 5 ° C / sec or more. The thickness of the amorphous alloy ribbon produced by such a liquid quenching method is as follows.
It is preferably 20 μm or less, more preferably 8 to 15 μm.
m, and a low-loss core can be obtained by controlling the thickness of the ribbon.

【0020】本発明の磁気コアに用いるアモルファス合
金薄帯は、磁界中熱処理を行ったものであることが好ま
しい。磁界中熱処理の条件としては、170 ℃ないし230
℃において、磁路となる方向に対し垂直な方向に10 Oe
以上、好ましくは100 Oe以上、さらに好ましくは1,000
Oe以上の印加磁界にて、1時間以上、好ましくは3時間
以上の熱処理を行うことができる。熱処理時間は長時間
処理することも可能であるが、長時間の熱処理は生産性
の観点からあまり好ましいものではないため、3〜5時
間を望ましい範囲とする。このように本発明の磁気コア
は、磁界中熱処理条件が、印加磁界10 Oe 以上にて熱処
理時間1時間以上、好ましくは印加磁界100 Oe以上にて
3時間以上、さらに好ましくは1,000 Oe以上にて3〜5
時間とするものである。
It is preferable that the amorphous alloy ribbon used for the magnetic core of the present invention has been subjected to a heat treatment in a magnetic field. The conditions for heat treatment in a magnetic field are 170 ° C to 230 ° C.
At 10 ° C, 10 Oe in the direction perpendicular to the direction of the magnetic path
Or more, preferably 100 Oe or more, more preferably 1,000 Oe
Heat treatment can be performed for 1 hour or more, preferably 3 hours or more with an applied magnetic field of Oe or more. The heat treatment can be performed for a long time, but a long heat treatment is not preferable from the viewpoint of productivity. As described above, the magnetic core of the present invention has a heat treatment condition in a magnetic field of at least 1 hour at an applied magnetic field of 10 Oe or more, preferably at least 3 hours at an applied magnetic field of 100 Oe or more, more preferably at 1,000 Oe or more. 3-5
Time.

【0021】この磁界中熱処理によって、初透磁率が少
し低下するが磁路に沿ったバイアス磁界の下での透磁率
の低下が少ない磁気コア、即ち、μi が50,000以上100,
000以下、磁路に沿って加えられた4 A/mのバイアス磁
界の下での透磁率μ4Aが初透磁率μi の0.4 倍以上0.6
倍以下の磁気コアを得ることができる。あるいは磁路に
沿って加えられる飽和磁界の0.8 倍のバイアス磁界の下
での透磁率μ0.8 が、初透磁率μi の0.3 倍以上0.8 倍
以下の磁気コアを得ることができる。
The heat treatment in a magnetic field slightly reduces the initial magnetic permeability but the magnetic permeability under the bias magnetic field along the magnetic path, that is, the magnetic core, that is, μ i is 50,000 or more,
000 or less, the magnetic permeability μ 4A under a bias magnetic field of 4 A / m applied along the magnetic path is 0.4 times or more 0.6 of the initial magnetic permeability μ i
It is possible to obtain a magnetic core that is twice or less. Alternatively, a magnetic core having a magnetic permeability μ 0.8 under a bias magnetic field of 0.8 times the saturation magnetic field applied along the magnetic path and having a magnetic permeability μ 0.3 to 0.8 times the initial magnetic permeability μ i can be obtained.

【0022】また、本発明において磁気コアとして用い
る微細結晶構造を有する磁性合金については、一般式: Fea Cub c Sid e 、 (式中、M:周期律表4a.5a、6a族元素又はM
n.Ni.Co.Alから選ばれる少なくとも1種以
上、a +b 十c 十d +e =100at%、0.01≦b
≦4、0.01≦c≦10、10≦d≦25、3≦e≦
12、17≦d+e≦30)、ここでCuは耐食性を高
め、結晶粒の粗大化を防ぐとともに、鉄損や透磁率等の
軟磁気特性を改善するのに有効な元素であり、M元素は
結晶径の均一化に有効であるとともに、磁歪及び磁気異
方性の低減、温度変化に対する磁気特性,の改善に有効
な元素である。微細結晶構造としては、50〜300オ
ングストロームの結晶粒を合金中に面槓比で50〜90
%以上存在することが好ましい。
Further, the magnetic alloy having a fine crystalline structure is used as a magnetic core in the present invention, the general formula: Fe a Cu b M c Si d B e, ( wherein, M: Periodic Table 4A.5A, 6a Group element or M
n. Ni. Co. At least one or more selected from Al, a + b10c10d + e = 100 at%, 0.01 ≦ b
≦ 4, 0.01 ≦ c ≦ 10, 10 ≦ d ≦ 25, 3 ≦ e ≦
12, 17 ≦ d + e ≦ 30), where Cu is an element effective for improving corrosion resistance, preventing coarsening of crystal grains, and improving soft magnetic properties such as iron loss and magnetic permeability. It is an element that is effective in making the crystal diameter uniform and also effective in reducing magnetostriction and magnetic anisotropy and improving magnetic properties against temperature change. As the fine crystal structure, a crystal grain of 50 to 300 angstroms is contained in the alloy at a face ratio of 50 to 90 Å.
% Is preferably present.

【0023】微細結晶楕造を有する磁性合金の製造方法
としては、液体急冷法によりアモルファス薄帯を得た
後、前記アモルファスの結晶化温度に対し−50〜十1
20℃、1分〜5時間の熱処埋を行い、微細結晶を析出
させる方法、または液体急冷法の急冷速度を制御して微
細結晶を直接析出させる方法などにより、得ることが可
能となる。このようにして得た微細結晶構造を有する磁
性合金薄帯からコアを形成した後、幅方向に磁場をかけ
ながら熱処理することにより、低周波で測定した初透磁
率μi が5,000 以上100,000 以下であり、且つ磁路に沿
って加えられた4A/mのバイアス磁界の下での透磁率μ
4Aが、初透磁率μi の0.4 倍以上0.6 倍以下の磁気コ
ア、あるいは磁路に沿って加えられる飽和磁界の0.8 倍
のバイアス磁界の下での透磁率μ0.8 が、初透磁率μi
の0.3 倍以上0.8 倍以下の磁気コアを得ることができ
る。
As a method for producing a magnetic alloy having a fine crystal ellipse, an amorphous ribbon is obtained by a liquid quenching method, and then a temperature of -50 to 11 to crystallization temperature of the amorphous is obtained.
It can be obtained by a method in which heat treatment is performed at 20 ° C. for 1 minute to 5 hours to precipitate fine crystals, or a method in which fine crystals are directly precipitated by controlling the quenching rate of the liquid quenching method. After forming a core from a magnetic alloy ribbon having a fine crystal structure obtained in this way, by performing a heat treatment while applying a magnetic field in the width direction, the initial permeability μ i measured at a low frequency is 5,000 or more and 100,000 or less. And the magnetic permeability μ under a bias field of 4 A / m applied along the magnetic path
4A is 0.4 μm or more and 0.6 μm or less of the initial magnetic permeability μ i , or the magnetic permeability μ 0.8 under a bias magnetic field of 0.8 times the saturation magnetic field applied along the magnetic path is the initial magnetic permeability μ i
A magnetic core 0.3 times or more and 0.8 times or less of the above can be obtained.

【0024】そして、こうして作られた磁気コアを用
い、コアに巻線を行って検出コイルとすれば、大きな電
流まで感度の良好な電流センサが得られる。
By using the magnetic core thus manufactured and winding the core to form a detection coil, a current sensor having good sensitivity to a large current can be obtained.

【0025】本発明の磁気コアは、電流センサ用磁気コ
アとして好適であることは勿論のこと、強い磁界似て使
用される多くの用途、例えば各種トランス用コア、チョ
ークコイル、ノイズフィルターなどに幅広く適用でき
る。
The magnetic core of the present invention is not only suitable as a magnetic core for a current sensor, but also widely used in many applications where a strong magnetic field is used, such as a core for various transformers, a choke coil, and a noise filter. Applicable.

【0026】(実施例および比較例)Co系アモルファ
ス合金薄帯( 板厚18μm)を巻回して、外径12 mm 内径8
mm厚さ4.5mm の環状の磁気コアを作製した。磁気コア
は、組成、製造条件および表1に示したように垂直磁界
中処理の条件を異ならせることにより、表2に示したよ
うに初透磁率およびバイアス下の透磁率の異なるものを
得ることができた。なお、比較例3の従来コアは磁界中
熱処理を施さないものである。
(Examples and Comparative Examples) A Co-based amorphous alloy ribbon (having a thickness of 18 μm) was wound around an outer diameter of 12 mm and an inner diameter of 8 mm.
An annular magnetic core having a thickness of 4.5 mm was fabricated. As shown in Table 2, magnetic cores having different initial magnetic permeability and magnetic permeability under bias as shown in Table 2 can be obtained by changing the composition, manufacturing conditions, and conditions of treatment in a vertical magnetic field as shown in Table 1. Was completed. The conventional core of Comparative Example 3 was not subjected to a heat treatment in a magnetic field.

【0027】[0027]

【表1】 [Table 1]

【表2】 [Table 2]

【0028】表2に示されたように、高い飽和磁化を有
するアモルファス合金を用い、磁路と垂直な方向に磁界
を与えて磁界中熱処理を行うことによって、初透磁率を
100,000 以下に抑えることにより、バイアス下の透磁率
を高く保つことができる。この結果、磁気コアとして望
ましい特性を得ることができた。
As shown in Table 2, by using an amorphous alloy having a high saturation magnetization and applying a magnetic field in a direction perpendicular to the magnetic path and performing a heat treatment in a magnetic field, the initial magnetic permeability is reduced.
By keeping it below 100,000, the magnetic permeability under bias can be kept high. As a result, desirable characteristics as a magnetic core could be obtained.

【0029】本実施例および比較例はCo系アモルファ
ス合金の場合について述べたが、微結晶構造の磁性合金
を用いた場合も、結果は同様である。
Although the present embodiment and the comparative example have described the case of using a Co-based amorphous alloy, the results are the same when a magnetic alloy having a microcrystalline structure is used.

【0030】[0030]

【発明の効果】本発明により、高い飽和磁化を有する磁
性合金を用いて、垂直磁界による磁界中熱処理などの方
法で、初透磁率の大きさを50,000以上100,000 以下に抑
えることにより、大きな電流による強い磁界中でも高い
透磁率を維持することができ、この磁気コアを電流セン
サに用いることにより、小電流から大電流の範囲まで高
い感度を保つことができる。
According to the present invention, by using a magnetic alloy having a high saturation magnetization and suppressing the magnitude of the initial permeability to 50,000 or more and 100,000 or less by a method such as heat treatment in a magnetic field using a perpendicular magnetic field, a large current can be obtained. High magnetic permeability can be maintained even in a strong magnetic field. By using this magnetic core for a current sensor, high sensitivity can be maintained from a small current to a large current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態の磁気コアの磁界と飽和
磁化との関係、および磁界と透磁率の関係を示す図であ
る。
FIG. 1 is a diagram illustrating a relationship between a magnetic field and a saturation magnetization and a relationship between a magnetic field and a magnetic permeability of a magnetic core according to an embodiment of the present invention.

【図2】 本発明の磁気コアを用いた電流センサの構成
例を模式的に示す斜視図である。
FIG. 2 is a perspective view schematically showing a configuration example of a current sensor using the magnetic core of the present invention.

【符号の説明】[Explanation of symbols]

1……磁気コア、 2……検出用巻線、 3……電流の
流れる導体
1 ... magnetic core, 2 ... winding for detection, 3 ... conductor through which current flows

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 初透磁率μi が50,000 以上100,000 以
下であり、且つ4 A/mの磁界に対する透磁率μ4Aが、初
透磁率μi の0.4 倍以上0.6 倍以下であることを特徴と
する磁気コア。
An initial magnetic permeability μ i is 50,000 or more and 100,000 or less, and a magnetic permeability μ 4A for a magnetic field of 4 A / m is 0.4 to 0.6 times the initial magnetic permeability μ i. Magnetic core.
【請求項2】 初透磁率μi が50,000 以上100,000 以
下であり、且つ飽和磁界の0.8 倍の磁界に対する透磁率
μ0.8 が、初透磁率μi の0.3 倍以上0.7 倍以下である
ことを特徴とする磁気コア。
2. The method according to claim 1, wherein the initial magnetic permeability μ i is 50,000 or more and 100,000 or less, and the magnetic permeability μ 0.8 with respect to a magnetic field 0.8 times the saturation magnetic field is 0.3 to 0.7 times the initial magnetic permeability μ i. And the magnetic core.
【請求項3】 前記磁気コアが、Co系アモルファス合
金またはFe系微細結晶合金を有することを特徴とする
請求項1または請求項2記載の磁気コア。
3. The magnetic core according to claim 1, wherein the magnetic core comprises a Co-based amorphous alloy or a Fe-based microcrystalline alloy.
【請求項4】 前記磁気コアが、磁界中熱処理されたも
のであることを特徴とする請求項1ないし請求項3のい
ずれか1項記載の磁気コア。
4. The magnetic core according to claim 1, wherein the magnetic core has been heat-treated in a magnetic field.
【請求項5】 前記請求項1ないし請求項4記載の磁気
コアを電流による磁界検出に用いたことを特徴とする電
流センサ。
5. A current sensor, wherein the magnetic core according to claim 1 is used for detecting a magnetic field by a current.
JP11228623A 1999-08-12 1999-08-12 Magnetic core and current sensor using the magnetic core Pending JP2001052933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11228623A JP2001052933A (en) 1999-08-12 1999-08-12 Magnetic core and current sensor using the magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228623A JP2001052933A (en) 1999-08-12 1999-08-12 Magnetic core and current sensor using the magnetic core

Publications (1)

Publication Number Publication Date
JP2001052933A true JP2001052933A (en) 2001-02-23

Family

ID=16879252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228623A Pending JP2001052933A (en) 1999-08-12 1999-08-12 Magnetic core and current sensor using the magnetic core

Country Status (1)

Country Link
JP (1) JP2001052933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537631A (en) * 2002-02-08 2005-12-08 メトグラス・インコーポレーテッド Current transformer having a core mainly composed of amorphous Fe
WO2006064920A1 (en) * 2004-12-17 2006-06-22 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer and watthour meter
WO2007125690A1 (en) * 2006-04-28 2007-11-08 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer, and watt-hour meter
CN106575567A (en) * 2014-07-28 2017-04-19 日立金属株式会社 Current transformer core, method for manufacturing same, and device equipped with said core
WO2020174521A1 (en) * 2019-02-25 2020-09-03 日新電機株式会社 Voltage transformer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537631A (en) * 2002-02-08 2005-12-08 メトグラス・インコーポレーテッド Current transformer having a core mainly composed of amorphous Fe
WO2006064920A1 (en) * 2004-12-17 2006-06-22 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer and watthour meter
JP4716033B2 (en) * 2004-12-17 2011-07-06 日立金属株式会社 Magnetic core for current transformer, current transformer and watt-hour meter
JPWO2006064920A1 (en) * 2004-12-17 2008-06-12 日立金属株式会社 Magnetic core for current transformer, current transformer and watt-hour meter
US7473325B2 (en) 2004-12-17 2009-01-06 Hitachi Metals, Ltd. Current transformer core, current transformer and power meter
US7837807B2 (en) 2006-04-28 2010-11-23 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer, and watt-hour meter
EP2015321A1 (en) * 2006-04-28 2009-01-14 Hitachi Metals, Limited Magnetic core for current transformer, current transformer, and watt-hour meter
WO2007125690A1 (en) * 2006-04-28 2007-11-08 Hitachi Metals, Ltd. Magnetic core for current transformer, current transformer, and watt-hour meter
EP2015321A4 (en) * 2006-04-28 2011-09-21 Hitachi Metals Ltd Magnetic core for current transformer, current transformer, and watt-hour meter
CN106575567A (en) * 2014-07-28 2017-04-19 日立金属株式会社 Current transformer core, method for manufacturing same, and device equipped with said core
WO2020174521A1 (en) * 2019-02-25 2020-09-03 日新電機株式会社 Voltage transformer
JPWO2020174521A1 (en) * 2019-02-25 2021-12-23 日新電機株式会社 Voltage transformer
JP7127730B2 (en) 2019-02-25 2022-08-30 日新電機株式会社 voltage transformer

Similar Documents

Publication Publication Date Title
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
US10546674B2 (en) Fe-based soft magnetic alloy ribbon and magnetic core comprising same
US10347405B2 (en) Alloy, magnet core and method for producing a strip from an alloy
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JPH01242755A (en) Fe-based magnetic alloy
US20230298788A1 (en) Fe-based nanocrystal soft magnetic alloy and magnetic component
JPH0617204A (en) Soft magnetic alloy and its manufacture and magnetic core
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
JPS6332244B2 (en)
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JP2001052933A (en) Magnetic core and current sensor using the magnetic core
JP2005520931A (en) Iron-based amorphous alloy with linear BH loop
JP2000277357A (en) Saturatable magnetic core and power supply apparatus using the same
JPH0885821A (en) Production of nano-crystal alloy with high magnetic permeability
JP2778697B2 (en) Fe-based soft magnetic alloy
JPH11297521A (en) Nano-crystalline high-magnetostrictive alloy and sensor using the alloy
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JP2005187917A (en) Soft magnetic alloy, and magnetic component
JP3228427B2 (en) Ultra-microcrystalline soft magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH053126A (en) Manufacture of wound magnetic core of large squareness ratio in high frequency and wound magnetic core
JPH0853739A (en) Soft magnetic alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091109

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110928