JPS6044840A - Torque detecting device - Google Patents

Torque detecting device

Info

Publication number
JPS6044840A
JPS6044840A JP58153723A JP15372383A JPS6044840A JP S6044840 A JPS6044840 A JP S6044840A JP 58153723 A JP58153723 A JP 58153723A JP 15372383 A JP15372383 A JP 15372383A JP S6044840 A JPS6044840 A JP S6044840A
Authority
JP
Japan
Prior art keywords
magnetic
torque
shaft
driven shaft
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58153723A
Other languages
Japanese (ja)
Inventor
Yoshio Sekine
関根 義夫
Yasuyuki Makikawa
牧川 安之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58153723A priority Critical patent/JPS6044840A/en
Publication of JPS6044840A publication Critical patent/JPS6044840A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Abstract

PURPOSE:To measure the torque of a driven shaft without providing rotation dependence of the driven shaft, by imparting a magnetic field in the circumferential direction of the driven shaft, and detecting the component of magnetic flux in the axial direction by a detecting coil. CONSTITUTION:A magnetic field is imparted in the circumferential direction of a driven shaft 1 by exciting devices 3a and 3b. A thin, ribbon shaped magnetic layer 2 is fixed to the outer surface of the driven shaft 1. When torque is applied to the driven shaft 1, magnetic change is yielded in the magnetic layer 2. Then, unbalance is yielded in the magnetic resistance in the magnetic layer 2, and the magnetic flux is changed in the direction having an angle, which is proportional to the torque. The component of the magnetic flux in the axial direction is detected by a detecting coil 9, and the torque, which is applied to the driven shaft 1, is measured.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は例えば回転軸などの受動軸の軸トルクを非接
触で測定するトルク検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a torque detection device that non-contactly measures the shaft torque of a passive shaft such as a rotating shaft.

[従来技術] 従来、受動軸例えば回転軸の軸トルクを測定する方法と
しては、ストレンゲージを回転軸に貼り付けて、トルク
による軸のねじれに起因するストレンゲージの抵抗値変
化によりトルクを検出する方法、既知のヤング率を有す
る中間軸を駆動側と負荷側との間に挿入して、その中間
軸のねじれを位相差として検出する方法、さらには外力
つまりトルクにより磁性材軸即ち回転軸の透磁率が変化
するいわゆる磁歪効果を利用する方法等がある。
[Prior art] Conventionally, the method of measuring shaft torque of a passive shaft, such as a rotating shaft, is to attach a strain gauge to the rotating shaft and detect the torque by detecting the change in resistance value of the strain gauge due to twisting of the shaft due to torque. There is a method in which an intermediate shaft with a known Young's modulus is inserted between the drive side and the load side, and the torsion of the intermediate shaft is detected as a phase difference. There is a method that utilizes the so-called magnetostrictive effect in which magnetic permeability changes.

ストレンゲージを回転軸に貼り付ける方法は、ストレン
ゲージの貼り付けの良否如何により精度が左右されると
いう不都合があるうえ、加えて出力信号の取り出しにス
リップリング、テレメータ等を取り付ける必要があり、
装置が大きくなる。さらに加えて、高速回転、長時間運
転になると、スリップリングの電気抵抗値が変化してノ
イズが発生しやすいなどの欠点がある。中間軸のねじれ
による位相差を検出する方法は、電気回路が複雑となる
ため高価であり、また回転軸の高速回転時と低速回転時
の検出が両立しがたいという不都合をもつ。磁性材軸を
用いて磁歪効果を利用する方法、は、実際の軸が利用で
きるという利点はあるが。
The method of attaching the strain gauge to the rotating shaft has the disadvantage that accuracy is affected by how well the strain gauge is attached, and in addition, it is necessary to attach a slip ring, telemeter, etc. to take out the output signal.
The device becomes larger. In addition, there is a drawback that when rotating at high speeds and operating for long periods of time, the electrical resistance value of the slip ring changes and noise is likely to occur. The method of detecting the phase difference due to the torsion of the intermediate shaft requires a complicated electric circuit and is therefore expensive, and has the disadvantage that it is difficult to detect both high-speed rotation and low-speed rotation of the rotary shaft. The method of utilizing the magnetostrictive effect using a magnetic material shaft has the advantage that an actual shaft can be used.

しかし一方では通常の軸は強度にその多くの注意が払わ
れ、磁気特性についてはあまり考慮されていないので、
磁気的にははなはだ不均一である。
However, on the other hand, most of the attention is paid to the strength of ordinary shafts, and not much consideration is given to the magnetic properties.
Magnetically it is extremely non-uniform.

このためこの軸の磁気的不均一性による出力の回転角依
存性すなわち軸の回転に伴なう出力のドリフトを持つ、
換言すれば回転角によって出力が変動するという欠点を
持っている。もっともこの出力のドリフトつまり出力変
動は、軸のまわりに複数個の検出器を設けることなどに
よって補正することはできるが、構造がそれだけ複雑に
なり、好ましい方法とはいえない。
Therefore, due to the magnetic non-uniformity of this axis, the output has rotation angle dependence, that is, the output drifts as the axis rotates.
In other words, it has the disadvantage that the output varies depending on the rotation angle. However, this output drift, that is, output fluctuation, can be corrected by providing a plurality of detectors around the axis, but this increases the complexity of the structure and is not a preferable method.

[発明の概要] 、この発明は上記のような従来方法の欠点を除去するた
めになされたものであり、励磁装置忙よって受動軸の円
周方向に磁界を付与し、受動軸にトルクが加えられたと
きに発生する上記磁束の軸方向成分を、受動軸に近接し
て巻回した検出コイルによって検出することにより、受
動軸の軸トルクを検出しようとするものである。
[Summary of the Invention] This invention was made to eliminate the drawbacks of the conventional method as described above, and uses an exciting device to apply a magnetic field in the circumferential direction of the passive shaft, thereby applying torque to the passive shaft. The axial torque of the passive shaft is detected by detecting the axial component of the magnetic flux generated when the magnetic flux is applied by a detection coil wound close to the passive shaft.

[発明の実施例] ・第1図はこの発明の一実施例を示す斜視図であり、第
2図はその縦断面図、第3図は横断面図。
[Embodiments of the Invention] - Fig. 1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a longitudinal sectional view thereof, and Fig. 3 is a transverse sectional view thereof.

第4図は励磁コイル接続図である。図において。FIG. 4 is an excitation coil connection diagram. In fig.

(1)は回転軸などの受動軸(以下回転軸として説明を
進める)であり、ステンレス等の非磁性材からなり、ト
ルクに耐える十分な機械的強度をもつものである。(2
)は薄いリボン状の磁性層であり、接着剤等によりしっ
かりと上記回転軸+11の外周に固着されている。この
磁性層(2)は、軟磁性で高磁気ひずみ特性をもつもの
が望ましく、非晶質金属がよい。何故なら、非晶質金属
は高磁気ひずみ特性をもち9機械的強度もすぐれ、温度
による特性変化も小さいからである。またひずみ取り焼
鈍を行なうこと罠より均一な磁気的特性をもつものを作
ることができるからである。(3a)はヨーク(4a)
及び励磁コイル(5a) t (Sa)からなる第1の
励磁装置。
(1) is a passive shaft such as a rotating shaft (hereinafter referred to as a rotating shaft), which is made of a non-magnetic material such as stainless steel and has sufficient mechanical strength to withstand torque. (2
) is a thin ribbon-shaped magnetic layer, which is firmly fixed to the outer periphery of the rotating shaft +11 with an adhesive or the like. This magnetic layer (2) is preferably soft magnetic and has high magnetostriction characteristics, and is preferably an amorphous metal. This is because amorphous metals have high magnetostrictive properties, excellent mechanical strength, and little change in properties due to temperature. Also, by performing strain relief annealing, it is possible to produce a material with more uniform magnetic properties. (3a) is the yoke (4a)
and an excitation coil (5a) t (Sa).

(6b)はヨーク(4b)及び励磁コイル(sb) 、
 (sb)からなる第2の励磁装置である。ヨーク(4
a) 、 (4b)は図示のとうり回転軸fl)の外周
面に近接対向したそれぞれ2個の磁極(7a)(8a)
 、 (711X81))を有したトロイダル状をなし
ており、一方のヨーク(4a)には上記磁極(7a) 
、 (8a)をはさんで巻き数の等しい2個の励磁コイ
ル(5a) 、 (6a)が巻回され、他方のヨーク(
4b)にも同様に上記磁極(7’b) 、 (8’b)
をはさんで巻き数の等しい2個の励磁コイル(5b) 
9 (6b)が巻回されている。(9)は上記ヨーク(
4a)と(4b)の間に近接配置され9回転軸fi+と
同一の長袖方向中心軸をもち9回転軸+13の外周面近
くに所定のギャップを隔てて回転軸+1)に巻回された
検出コイルでbる。
(6b) is a yoke (4b) and an exciting coil (sb),
(sb). York (4
a) and (4b) are two magnetic poles (7a) and (8a), respectively, which are closely opposed to the outer peripheral surface of the rotating shaft fl) as shown in the figure.
, (711X81)), and one yoke (4a) has the above-mentioned magnetic pole (7a).
, (8a) are wound with two excitation coils (5a) and (6a) having the same number of turns, and the other yoke (
Similarly for 4b), the above magnetic poles (7'b) and (8'b)
Two excitation coils (5b) with the same number of turns across the
9 (6b) is wound. (9) is the above yoke (
4a) and (4b), has the same central axis in the long sleeve direction as the 9th rotating shaft fi+, and is wound around the rotating shaft +1) with a predetermined gap near the outer circumferential surface of the 9th rotating shaft +13. Brush with a coil.

さて、上記励磁コイル(5a) I (6a) l (
51:+) 、 (6b>は第4図に示すように定電流
交流電源員にすべて同じ向きに並列接続される。したが
ってトロイダル状ヨーク(4a)を通る磁束は、励磁コ
イル(5a) 、 (Sa)によって磁極(7a) t
 (8a)をはさんで互いに対向する向きに生じ、この
磁束は磁極(7a) 、 (8a)を介して回転軸(1
)の外周面に固着された磁性層(2)まで導かれるため
、第2図点線に示すような2つの閉ループ磁路な形成す
る。他方のトロイダル状ヨーク(4b)についても同様
に励磁コイル(5t+) ? (6b)による磁束は、
磁性層(2)まで導かれて2つの閉ループ磁路を形成す
る。したがって磁性層(2)Kは第2図。
Now, the above excitation coil (5a) I (6a) l (
51:+), (6b> are all connected in parallel to the constant current AC power supply members in the same direction as shown in Fig. 4. Therefore, the magnetic flux passing through the toroidal yoke (4a) is caused by the excitation coil (5a), ( Sa) by magnetic pole (7a) t
(8a) are generated in opposite directions, and this magnetic flux is transmitted through the magnetic poles (7a) and (8a) to the rotating shaft (1).
) is guided to the magnetic layer (2) fixed to the outer peripheral surface of the magnetic layer (2), thus forming two closed loop magnetic paths as shown by dotted lines in FIG. The excitation coil (5t+) is similarly applied to the other toroidal yoke (4b)? The magnetic flux due to (6b) is
It is guided to the magnetic layer (2) to form two closed loop magnetic paths. Therefore, the magnetic layer (2) K is as shown in FIG.

第3図の矢印に示すような円周方向の交番磁界が付与さ
れる。なお上記ヨーク(4a)及び励磁コイル(5a)
 、 (6a)からなる第1の励磁装置(5a)によっ
て付与される磁性層(2)上の交番磁界と、上記ヨーク
(4b)及び励磁コイル(5b)、(6h)からなる第
2の励磁装置(3b)によって付与される磁性層(2)
上の交番磁界とが同相となるように、各励磁コイル(5
a) 、 (6a) t(sb) 、 (6b)の巻き
方向を選ぶものとする。
An alternating magnetic field in the circumferential direction as shown by the arrows in FIG. 3 is applied. Note that the above yoke (4a) and excitation coil (5a)
, an alternating magnetic field on the magnetic layer (2) applied by a first excitation device (5a) consisting of (6a), and a second excitation consisting of the yoke (4b) and excitation coils (5b) and (6h). Magnetic layer (2) applied by device (3b)
Each excitation coil (5
Select the winding direction of a) , (6a) t(sb) , and (6b).

上記の構成において9回転軸(1)にトルクが付与され
ていない場合には9回転軸(1)の外周面に固着された
磁性層(2)の磁気的特性が一様であるから磁性層12
)上に発生する磁束は、第3図の実線の如く回転軸(1
)の円周方向と平行となり、したがって検出コイル(9
)に鎖交する磁束は現われず、検出コイル(9)には起
電力は生じない。
In the above configuration, when no torque is applied to the 9-rotation shaft (1), the magnetic layer (2) fixed to the outer peripheral surface of the 9-rotation shaft (1) has uniform magnetic properties. 12
) The magnetic flux generated on the rotation axis (1
) is parallel to the circumferential direction of the detection coil (9
) does not appear, and no electromotive force is generated in the detection coil (9).

ところが回転軸(1)にトルクが付加されると、磁性層
(2)K磁気的変化が生ずる。すなわち9回転軸長手方
向中心軸に対して±45°方向で一方では引張り応力を
受けて透磁率が増加し、他方では圧縮応力を受けて透磁
率が減少する。このため磁性層(2)′内の磁気抵抗に
不手衡が生じ、磁性層(2)上に発生する磁束は、第3
図点線で示すように、トルクに比例した角度を有する方
向に変化する。このように傾斜した磁束は円周方向成分
と軸方向成分とに部分することができる。検出コイル(
9)にはこの軸方向成分が鎖交するため検出コイル(9
)には起電力が発生する。このようにトルクが付加され
ると軸方向磁束が発生し、その大きさが付加トルクに比
例することになるので、検出コイル(9)に発生する起
電力の大きさを検出することにより9回転軸(11に付
加されたトルクを測定することができる。
However, when torque is applied to the rotating shaft (1), a magnetic change occurs in the magnetic layer (2). That is, in the ±45° direction with respect to the longitudinal center axis of the nine rotational axes, the magnetic permeability increases on the one hand due to tensile stress, and decreases on the other side due to compressive stress. This causes an imbalance in the magnetic resistance within the magnetic layer (2)', and the magnetic flux generated on the magnetic layer (2) is
As shown by the dotted line in the figure, it changes in a direction having an angle proportional to the torque. The tilted magnetic flux can be divided into a circumferential component and an axial component. Detection coil (
This axial component interlinks with the detection coil (9).
) generates an electromotive force. When torque is applied in this way, an axial magnetic flux is generated, and its magnitude is proportional to the additional torque. Therefore, by detecting the magnitude of the electromotive force generated in the detection coil (9), it is possible to rotate 9 times. The torque applied to the shaft (11) can be measured.

なお、上記実施例では励磁装置を、2個のトロイダル状
ヨーク(4a) t (4b)を用いて分割して構成し
In the above embodiment, the excitation device is divided into two toroidal yokes (4a) and (4b).

4個の励磁コイル(5a) 、 (6a) 、 (5b
) 、 (6b)を用いるものとしたが、第5図、第6
図、第7図に示すように励磁装置を1個にすることもで
きる。即ち第5図、第6図の実施例は、励磁装置(3)
を磁極(7)。
Four excitation coils (5a), (6a), (5b
), (6b) were used, but Figures 5 and 6
As shown in FIGS. 7 and 7, the number of excitation devices can be reduced to one. That is, the embodiment shown in FIGS. 5 and 6 is an excitation device (3)
the magnetic pole (7).

(8)を有する1個のヨーク(4)とこれに巻回された
2個の励磁コイル+5) 、 (e)とにより構成した
例を示し。
An example is shown in which one yoke (4) having a yoke (8) and two excitation coils (+5) and (e) are wound around the yoke.

ヨーク(4)の磁極+71 、 fslを切り欠いた部
分に検出コイル(9)を配置するものとしている。第7
図の実施例は、ヨーク(4)及びこれに巻回された励磁
コイル(図示せず)からなる励磁装置(3)を検出コイ
ル(9)の外側に近接配置したものであり、01>は検
出コイル【9)のコイルボビ/である。
A detection coil (9) is arranged in the cutout portion of the magnetic pole +71 and fsl of the yoke (4). 7th
In the illustrated embodiment, an excitation device (3) consisting of a yoke (4) and an excitation coil (not shown) wound around the yoke (4) is placed close to the outside of the detection coil (9). This is the coil bobby of the detection coil [9].

また上記各実施例では、ヨークをトロイダル状にした例
を示しているが、ヨークは回転軸上に磁界を付与するた
めの磁路な提供するためのものであるから、トロイダル
状でなくてもよいことはいうまでもなく、他の磁路提供
手段があればヨークを省略することもできる。また各実
施例では励磁装置に2個のコイルを用いる場合を説明し
たが原理的には1個の励磁コイルでも可能なことはいう
までもない。
Furthermore, in each of the above embodiments, an example is shown in which the yoke has a toroidal shape, but since the yoke is used to provide a magnetic path for applying a magnetic field on the rotating shaft, it does not need to be toroidal. Needless to say, the yoke can be omitted if other magnetic path providing means are available. Further, in each of the embodiments, a case has been described in which two coils are used in the excitation device, but it goes without saying that in principle, it is also possible to use one excitation coil.

また上記説明では1回転軸を非磁性材とし、外周面に磁
性層を固着する場合罠ついて述べたが。
Furthermore, in the above description, a case has been described in which the one-rotation shaft is made of a non-magnetic material and a magnetic layer is fixed to the outer peripheral surface.

回転軸自体はもちろん少なくとも回転軸外周面が磁性材
であれば所期の目的を達成できることは説明するまでも
ない。また上記説明では受動軸が回転軸である場合につ
いて説明したが9回転軸に限られるものではない。
Needless to say, the intended purpose can be achieved if not only the rotating shaft itself but also at least the outer peripheral surface of the rotating shaft is made of magnetic material. Further, in the above description, the case where the passive shaft is a rotary shaft has been described, but it is not limited to nine rotary shafts.

[発明の効果] 以上のようにこの発明によれば、少なくとも外周面が磁
性材からなる受動軸の表面に円周方向の磁界を付与して
おき、トルクが加わった時に生ずる軸方向の磁束成分を
、受動軸と同一中心軸をもち、かつ軸外周に近接して回
転対称に巻回された検出コイルの起電力によって検出す
るように構成したので、受動軸の回転角依存性をもたせ
ることなく検出できるとい5効果を得ることができる。
[Effects of the Invention] As described above, according to the present invention, a circumferential magnetic field is applied to the surface of a passive shaft whose outer peripheral surface is made of a magnetic material, and the axial magnetic flux component generated when torque is applied is is configured to be detected by the electromotive force of a detection coil that has the same central axis as the passive shaft and is wound rotationally symmetrically close to the outer circumference of the shaft, so there is no dependence on the rotation angle of the passive shaft. If it can be detected, five effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す斜視図で。 第2図はその縦断面図、第3図をj横断面図、第4図は
電気回路藺、第5図、第6図、第7図はこの発明の他の
実施例を示す図であり9図において(1)は回転軸など
の受動軸、(2)は磁性層、 (31、(3a) 。 (3b)は励磁装置* t4g、(4a) t (4b
)はヨーク* (5) t (5a)。 (51)) 、 (6) I (sa) 、 (sb)
は励磁コイ/l’ I (719(7a) ? (7b
) e(811(8a) I (8b)は磁極、(9)
は検出コイル、onは定電流交流電源である。なお、各
図中同一符号は同一または相当部分を示すものとする。 代理人 大 岩 増雄 (ほか2名) 第 4 図 第 5 図 第 7 図 石 6 図
FIG. 1 is a perspective view showing one embodiment of the invention. 2 is a longitudinal sectional view thereof, FIG. 3 is a lateral sectional view, FIG. 4 is an electric circuit diagram, and FIGS. 5, 6, and 7 are diagrams showing other embodiments of the present invention. In Figure 9, (1) is a passive shaft such as a rotating shaft, (2) is a magnetic layer, (31, (3a). (3b) is an excitation device * t4g, (4a) t (4b)
) is yoke * (5) t (5a). (51)), (6) I (sa), (sb)
is the excited carp/l' I (719 (7a)? (7b
) e(811(8a) I (8b) is the magnetic pole, (9)
is a detection coil, and ON is a constant current AC power supply. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (and 2 others) Figure 4 Figure 5 Figure 7 Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも外周面が磁性材からなる受動軸の表面
に円周方向の磁束を発生させる励磁装置。 上記受動軸に所定のギャップを隔てて巻回され。 上記受動軸にトルクが加わったときに生ずる上記磁束の
軸方向成分に応じた出力を導出する検出コイルを備えた
ことを特徴とするトルク検出装置。
(1) An excitation device that generates a circumferential magnetic flux on the surface of a passive shaft, at least the outer peripheral surface of which is made of a magnetic material. It is wound around the passive shaft with a predetermined gap therebetween. A torque detection device comprising a detection coil that derives an output according to an axial component of the magnetic flux generated when torque is applied to the passive shaft.
(2)受動軸の外周面が軟磁性の非晶質金属であること
を特徴とする特許請求の範囲第1項記載のトルク検出装
置。
(2) The torque detection device according to claim 1, wherein the outer peripheral surface of the passive shaft is made of soft magnetic amorphous metal.
(3)励磁装置が、受動軸外周面に近接対向する磁極を
有するヨークとこのヨークに巻回された励磁コイルとか
らなることを特徴とする特許請求の範囲第1項記載のト
ルク検出装置。
(3) The torque detection device according to claim 1, wherein the excitation device comprises a yoke having magnetic poles that closely oppose the outer peripheral surface of the passive shaft, and an excitation coil wound around the yoke.
(4) 検出コイルの受動軸軸方向両側に励磁装置を近
接配置することを特徴とする特許請求の範囲第1項記載
のトルク検出装置。
(4) The torque detection device according to claim 1, characterized in that an excitation device is disposed close to both sides of the detection coil in the axial direction of the passive shaft.
(5)検出コイルの外側に励磁装置を近接配置すること
を特徴とする特許請求の範囲第1項記載のトルク検出装
置。
(5) The torque detection device according to claim 1, characterized in that an excitation device is disposed close to the outside of the detection coil.
JP58153723A 1983-08-23 1983-08-23 Torque detecting device Pending JPS6044840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58153723A JPS6044840A (en) 1983-08-23 1983-08-23 Torque detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58153723A JPS6044840A (en) 1983-08-23 1983-08-23 Torque detecting device

Publications (1)

Publication Number Publication Date
JPS6044840A true JPS6044840A (en) 1985-03-11

Family

ID=15568685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58153723A Pending JPS6044840A (en) 1983-08-23 1983-08-23 Torque detecting device

Country Status (1)

Country Link
JP (1) JPS6044840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086248A2 (en) 2007-01-06 2008-07-17 Magcanica, Inc. Devices and methods for detecting rates of change of torque

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086248A2 (en) 2007-01-06 2008-07-17 Magcanica, Inc. Devices and methods for detecting rates of change of torque
EP2126650A2 (en) * 2007-01-06 2009-12-02 Magcanica, Inc. Devices and methods for detecting rates of change of torque
EP2126650A4 (en) * 2007-01-06 2011-04-06 Magcanica Inc Devices and methods for detecting rates of change of torque
US8438937B2 (en) 2007-01-06 2013-05-14 Ivan J. Garshelis Devices and methods for detecting rates of change of torque
US9250147B2 (en) 2007-01-06 2016-02-02 Magcanica, Inc. Devices and methods for detecting rates of change of torque

Similar Documents

Publication Publication Date Title
JP2992351B2 (en) Circumferential magnetization non-contact torque / power detection device and torque / power measurement method using the same
JPS6275328A (en) Torque sensor
JPH01187424A (en) Torque sensor
JPS6228413B2 (en)
US5705756A (en) Differential torque measuring device
JPH0422830A (en) Torque sensor
JPS6044840A (en) Torque detecting device
JP4305271B2 (en) Magnetostrictive torque sensor
JPS6044839A (en) Torque detecting device
JP2516489B2 (en) Force sensor and force measuring device
JPH1194658A (en) Torque sensor
JPS60173433A (en) Torque detector
JP3067437B2 (en) Magnetostrictive stress sensor
JPS62108120A (en) Torque transducer
JPS6050429A (en) Torque sensor
JPS6161026A (en) Shaft torque meter
JP2771171B2 (en) Torque meter
JPS6044841A (en) Torque detecting device
JPS63182535A (en) Torque sensor
GB2140565A (en) Magnetoelastic torque transducer
JPS60236041A (en) Torque detecting device
JPH02102427A (en) Torque measuring instrument
JPS59188968A (en) Torque sensor made of double layer structural amorphous magnetic thin band
JPH055661A (en) Torque sensor with multifunction
JPH01430A (en) torque meter