JPS60177231A - Torque detector - Google Patents

Torque detector

Info

Publication number
JPS60177231A
JPS60177231A JP3238984A JP3238984A JPS60177231A JP S60177231 A JPS60177231 A JP S60177231A JP 3238984 A JP3238984 A JP 3238984A JP 3238984 A JP3238984 A JP 3238984A JP S60177231 A JPS60177231 A JP S60177231A
Authority
JP
Japan
Prior art keywords
torque
sensor
position sensor
microcomputer
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3238984A
Other languages
Japanese (ja)
Inventor
Shigeru Horikoshi
堀越 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3238984A priority Critical patent/JPS60177231A/en
Publication of JPS60177231A publication Critical patent/JPS60177231A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Abstract

PURPOSE:To detect torque stably with good responsibility without contacting by using a torque sensor which the reverse effect of magnetostriction and a position sensor, and averaging momentary torque. CONSTITUTION:The position sensor 1 arranged corresponding to the projection 29 of a torque transmission shaft 27 outputs one pulse on every turn. Momentary torque TQ outputted by a cross type torque sensor 2 constituted by putting a U- shaped exciting core 20 and a using core 21 in corss relation is read in a microcomputer 7 synchronously with the output of a pulse generator 12. Every time a pulse is outputted by the position sensor 1, data on the momentary torque TQ stored in one cycle are averaged and applied torque TQR is calculated from the difference TQZ in mean torque TQZ in an unloaded state.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、車輌回転時のトルクを測定するのに好適な磁
歪式のトルク検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a magnetostrictive torque detector suitable for measuring torque during rotation of a vehicle.

〔発明の背景〕[Background of the invention]

従来において応力により透磁率が変化するという磁歪の
逆効果を利用した1〜ルクセンサは公知であり、スウェ
ーデンのASEA社の雑誌ASEAJOURNAL、 
1960.VOL、33. &3.P23〜P32.U
、S、P、 Na4.135,391や特開昭53−7
7572号公報等に詳述されている。これら公知例は、
クロス形およびリング形と呼ばれるタイプのトルクセン
サである。
Conventionally, the 1~lux sensor that utilizes the reverse effect of magnetostriction in which magnetic permeability changes due to stress is well known, and is published in the magazine ASEA JOURNAL of Sweden's ASEA,
1960. VOL, 33. &3. P23-P32. U
, S, P, Na4.135,391 and JP-A-53-7
It is described in detail in Publication No. 7572 and the like. These known examples are:
These are cross-type and ring-type torque sensors.

ところでこのタイプのトルクセンサは、回転軸表層部の
透磁率のばらづきに基因する出力変動を吸収するため、
通常、ローパスフィルタを使用する。しかし、この場合
のカットオフ周波数は、トルク伝達軸の最低回転数によ
り制限され、自動車エンジンの場合は5〜10 HZで
ある。このため、このタイプのトルクセンサの応答性は
、回転数に無関係に低いという問題があった。
By the way, this type of torque sensor absorbs output fluctuations caused by variations in magnetic permeability in the surface layer of the rotating shaft.
Usually a low pass filter is used. However, the cut-off frequency in this case is limited by the minimum rotational speed of the torque transmission shaft, which is 5-10 Hz for automobile engines. For this reason, there is a problem in that the responsiveness of this type of torque sensor is low regardless of the rotational speed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、車輌の回転軸のトルクを非接触で応答
性良く、かつ安定し°C検出するトルク検吊器を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a torque detector that detects the torque of a rotating shaft of a vehicle in a non-contact manner with good responsiveness and stability in °C.

〔発明の概要〕[Summary of the invention]

本発明は、位置センサによりトルク伝達軸の一定角度を
検出し、その一定角度の間の一定時間毎に瞬間トルクを
複数回測定し、その平均をとることにより、印加トルク
を算出するようにしたものである。
The present invention detects a fixed angle of the torque transmission shaft using a position sensor, measures the instantaneous torque multiple times at fixed time intervals between the fixed angles, and calculates the applied torque by taking the average. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明によるトルク検出器を図面を用いて詳述す
る。第1図は本発明の一実施例を示すブロック図、第2
図は位置センサおよびトルクセンサの取付状態を示す構
造図、第3図は動作タイミング図、第4図はトルク特性
図、第5図、第1図におけるマイクロコンピュータの動
作フロー図である。
Hereinafter, a torque detector according to the present invention will be explained in detail with reference to the drawings. FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG.
The figures are structural diagrams showing the mounting state of the position sensor and torque sensor, FIG. 3 is an operation timing diagram, FIG. 4 is a torque characteristic diagram, and FIGS. 5 and 1 are operation flow diagrams of the microcomputer.

第1図において、1はトルク伝達軸の回転角を検出する
位置センサであり、第2図に示すように軸の突起部29
に対向してハウジング28に装着される。本実施例では
、突起部29は1個であり、1回転に1パルスを出力す
る。なおこの位置センため詳しい説明は省略する。次に
、2はトルクセンサであり、従来技術で述べたクロス形
である。
In FIG. 1, 1 is a position sensor that detects the rotation angle of the torque transmission shaft, and as shown in FIG.
The housing 28 is mounted opposite to the housing 28 . In this embodiment, there is one protrusion 29 and outputs one pulse per rotation. It should be noted that detailed explanation will be omitted since this position is limited. Next, 2 is a torque sensor, which is of the cross type described in the prior art.

クロス形とは、第2図に示すように、コの字形の励磁コ
ア之Oとコの字形の検出コア21を交差させた構造のも
のである。ここで、励磁コア20には励磁巻線がまた検
出コア21には検出巻線23が巻装され、励磁巻線22
は交流発振器5により励磁され、破線で示す磁路を形成
する。これらのコア20.21は取付板26に非磁性体
のスペーサを介して固定される。25はセンサのカバー
である。27は車輌の本棚であるため、機械強度的には
考慮され、表面処理等が行われているが、磁気的には全
く考慮されていないために表層部の透磁率は通常大きく
ばらついている。3は波形整形回路、4は全波整流回路
であり、トルクセンサ2の出力信号を増幅して全波整流
する。6はA/D変換器、7はマイクロコンピュータ、
11はゼロトルク設定用のスイッチ、12はパルス発生
器13は積分回路であり、これらはコントローラ8を構
成している。
The cross shape is a structure in which a U-shaped excitation core O and a U-shaped detection core 21 are crossed, as shown in FIG. Here, an excitation winding is wound around the excitation core 20, a detection winding 23 is wound around the detection core 21, and an excitation winding 22 is wound around the detection core 21.
is excited by the AC oscillator 5 and forms a magnetic path shown by a broken line. These cores 20 and 21 are fixed to the mounting plate 26 via non-magnetic spacers. 25 is a sensor cover. Since 27 is a bookshelf for a vehicle, mechanical strength is taken into consideration and surface treatment is performed, but magnetic permeability is not considered at all, so the magnetic permeability of the surface layer usually varies widely. 3 is a waveform shaping circuit, and 4 is a full-wave rectifier circuit, which amplifies the output signal of the torque sensor 2 and performs full-wave rectification. 6 is an A/D converter, 7 is a microcomputer,
11 is a zero torque setting switch, 12 is a pulse generator 13 is an integrating circuit, and these constitute the controller 8.

さて、第3図の回転角−トルク特性に示すように、;−
ルク伝達Ii!lI27の透磁率のばらつきによりトル
クセンサ2の出力電圧Q1は大きく変動する。
Now, as shown in the rotation angle-torque characteristics in Figure 3,;-
Luc transmission Ii! The output voltage Q1 of the torque sensor 2 varies greatly due to variations in the magnetic permeability of the lI27.

しかし、負荷が印加された時も同位相で変化するため常
にトルク伝達軸の同一箇所でトルク測定を行えば、正確
な印加トルクを検出出来る5回転角0°で瞬時トルクを
測定し、印加I−ルクと出力電圧の関係を表すと第4図
のように比例する車載状態では、振動、軸の偏心、回転
数等の影響により、位置センサJを利用しても正確に一
定回転角を検知すること回置でトルクセンサ出力に多少
のバラつきを生ずる。しかし、この点はトルクを多点で
測定してそれを平均化することにより解消出来る。
However, even when a load is applied, it changes in the same phase, so if you always measure the torque at the same location on the torque transmission shaft, you can accurately detect the applied torque. - When mounted on a vehicle, the relationship between torque and output voltage is proportional as shown in Figure 4. Even if position sensor J is used, a constant rotation angle can be accurately detected due to the effects of vibration, shaft eccentricity, rotation speed, etc. Rotation will cause some variation in the torque sensor output. However, this problem can be solved by measuring the torque at multiple points and averaging it.

次に第5図を用いてマイクロコンピュータ7の動作を詳
述する。まず、電源が投入されると、ステップl]、 
Oにおいてスイッチ1.1 (CAL−SW)のオン・
オフ判定を行いオンならば無負荷時のトルクを計測する
ルーチンへ移行し、オフならば通常のトルク計測ルーチ
ンへと移行する。*ず無負荷時トルク計測ルーチンにつ
いて述べる。最初に。
Next, the operation of the microcomputer 7 will be explained in detail using FIG. First, when the power is turned on, step l],
Turn on switch 1.1 (CAL-SW) at O.
It is determined that it is off, and if it is on, it moves to a routine that measures torque under no load, and if it is off, it moves to a normal torque measurement routine. *First, we will describe the no-load torque measurement routine. At first.

ステップ42でパルス発生器(以降TMと略す)12の
パルス数カウント値CNをクリヤして位置センサ1の信
号出力(以下、PS出力と略す)10の立上り判定を行
い、立上りでない時にはステップ45へ進み、ここでT
M12の立上り判定を行いカウント値CNをプラス1し
てその時の瞬時トルクTQを読み込みメモリQ (CN
)に記憶する。その後、ステップ43に戻って前述の動
作を繰り返す。この後、軸が一回転してPS1出力信号
が立上る時にステップ44に移行し、今まで記憶した瞬
時トルクTQの算術平均をめ、無負荷トルクとしてTQ
Zに記憶する。このように無負荷トルクを計測するため
には、車を無負荷状態とさせ、スイッチ11をオンする
だけでよく、必要に応じて何度でも設定可能である。
In step 42, the pulse number count value CN of the pulse generator (hereinafter abbreviated as TM) 12 is cleared and a rise of the signal output (hereinafter abbreviated as PS output) 10 of the position sensor 1 is determined, and if it is not a rise, the process proceeds to step 45. Go ahead and T here
Determine the rise of M12, add 1 to the count value CN, read the instantaneous torque TQ at that time, and store it in memory Q (CN
). Thereafter, the process returns to step 43 and the above-described operations are repeated. After this, when the shaft rotates once and the PS1 output signal rises, the process moves to step 44, where the arithmetic mean of the instantaneous torques TQ stored up to now is determined, and the no-load torque is determined as TQ.
Store in Z. In order to measure the no-load torque in this way, it is sufficient to put the vehicle in a no-load state and turn on the switch 11, and the setting can be made as many times as necessary.

次にトルク計測ルーチンを説明する。まずパルス数カウ
ント値CNをクリヤし、ステップ49へ移行し、PS出
力の立上り判定を行い、立上りでなければPS出力の一
周期の間このTM出力に同期して瞬時トルクTQを読み
込み、メモリQ(CN)を記憶する。続いて、ステップ
53に移行し、カウント値CNの上限値CCを設定し、
上限値CCを超えるとトルク算出ルーチン54に移る。
Next, the torque measurement routine will be explained. First, the pulse number count value CN is cleared, and the process moves to step 49, where the rise of the PS output is determined. (CN) is stored. Next, the process moves to step 53, where the upper limit value CC of the count value CN is set.
When the upper limit value CC is exceeded, the process moves to the torque calculation routine 54.

逆に超えない時は、ステップ49へ戻り、前述した動仇
を繰り返す。そして、PS出力の立上り時点で今まで記
憶した瞬時トルクデータTQの算術平均をめ、無負荷平
均トルクTQZとの差により印加トルクTQRを算出し
、ステップ58で出力する。その後、ステップ48に戻
って前述の動作を繰り返す。
On the other hand, if it does not exceed the limit, the process returns to step 49 and the above-described process is repeated. Then, at the time of the rise of the PS output, the arithmetic mean of the instantaneous torque data TQ stored so far is calculated, and the applied torque TQR is calculated from the difference from the no-load average torque TQZ, and is output in step 58. Thereafter, the process returns to step 48 and the above-described operations are repeated.

以上のように本実施例によれば、軸の一回転毎にトルク
を算出するために、回転数60Orpm以上において回
転後に応じて検出時間が早くなり、応答性が改善される
。また一回転に複数回瞬時トルクTQを測定し、その平
均値を印加トルクとして算出するため、振動や軸の偏心
等による出力のばらつきも軽減される。また、無負荷ト
ルクの較正をスイッチ1つで容易に伝えるという利点も
ある。
As described above, according to the present embodiment, since the torque is calculated for each revolution of the shaft, the detection time becomes faster depending on the rotation after rotation at a rotation speed of 60 rpm or more, and responsiveness is improved. Furthermore, since the instantaneous torque TQ is measured multiple times per rotation and the average value is calculated as the applied torque, variations in output due to vibrations, shaft eccentricity, etc. are also reduced. Another advantage is that the no-load torque calibration can be easily transmitted with a single switch.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば磁歪の逆
効果を利用したトルクセンサおよび位置センサを用い、
瞬時トルクの平均化を行うことにより、非接触で応答性
良く、しかも安定したトルク計測を行うことが出来ると
いう優れた効果がある。
As is clear from the above description, according to the present invention, a torque sensor and a position sensor that utilize the reverse effect of magnetostriction are used.
By averaging the instantaneous torque, there is an excellent effect of being able to perform non-contact, highly responsive, and stable torque measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図における位置センサおよびトルクセンサの取付構
造図、第3図は第1図の動作タイミング図、第4図は第
1図の実施例における印加トルクの特性図、第5図は第
1図におけるマイクロコンピュータの動作フロー図であ
る。 1・・・位置センサ、2・・・トルクセンサ、4・・・
全波整流回路、5・・・励磁用発振器、6・・・A/D
変換器、7・・・マイクロコンピュータ、11・・・ス
イッチ、12・・・パルス発生器、27・・・トルク伝
達軸、29・・・突起部。 弔、5/J 乃41jJ fpjBトノLり
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a mounting structure diagram of the position sensor and torque sensor in Fig. 1, Fig. 3 is an operation timing diagram of Fig. 1, and Fig. 4 is a FIG. 1 is a characteristic diagram of applied torque in the embodiment, and FIG. 5 is an operation flow diagram of the microcomputer in FIG. 1. 1...Position sensor, 2...Torque sensor, 4...
Full-wave rectifier circuit, 5...excitation oscillator, 6...A/D
Converter, 7... Microcomputer, 11... Switch, 12... Pulse generator, 27... Torque transmission shaft, 29... Projection. Condolence, 5/J No41jJ fpjB Tono Lri

Claims (1)

【特許請求の範囲】 1、車輌のトルク伝達軸の一定回転角位置を検出する位
置センサ、トルク伝達軸のトルクを透磁率の変化により
検出するトルクセンサ、トルクセンサの信号を受けて軸
トルクを算出するマイクロコンピュータと71Xら構成
されるトルク検出器において、前記位置センサからの信
号に同期して瞬時トルク複数回を検出し、位置センサか
らの信号発生毎に平均化トルクを前記マイクロコンピュ
ータにより算出することを特徴とするトルク検出器。 2、あらかじめ無負荷時のトルクを前記マイクロコンピ
ュータの記憶部に記憶しておき、測定トルクと無負荷時
1ヘルクとの差を印加トルクとして算出することを特徴
とする特許請求の範囲第1項記載の1−ルク検出器。
[Scope of Claims] 1. A position sensor that detects a constant rotation angle position of a torque transmission shaft of a vehicle, a torque sensor that detects torque of a torque transmission shaft by a change in magnetic permeability, and a shaft torque that detects a shaft torque in response to a signal from the torque sensor. In a torque detector composed of a calculating microcomputer and a 71X, instantaneous torque is detected multiple times in synchronization with the signal from the position sensor, and the averaged torque is calculated by the microcomputer each time the signal from the position sensor is generated. A torque detector characterized by: 2. The torque under no load is stored in advance in the storage section of the microcomputer, and the difference between the measured torque and 1 herk under no load is calculated as the applied torque. The 1-lux detector described.
JP3238984A 1984-02-24 1984-02-24 Torque detector Pending JPS60177231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3238984A JPS60177231A (en) 1984-02-24 1984-02-24 Torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238984A JPS60177231A (en) 1984-02-24 1984-02-24 Torque detector

Publications (1)

Publication Number Publication Date
JPS60177231A true JPS60177231A (en) 1985-09-11

Family

ID=12357593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238984A Pending JPS60177231A (en) 1984-02-24 1984-02-24 Torque detector

Country Status (1)

Country Link
JP (1) JPS60177231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192233A (en) * 1984-03-13 1985-09-30 Toshiba Corp Torque sensor
JPS60196635A (en) * 1984-03-19 1985-10-05 Toshiba Corp Torque sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192233A (en) * 1984-03-13 1985-09-30 Toshiba Corp Torque sensor
JPH0522858B2 (en) * 1984-03-13 1993-03-30 Tokyo Shibaura Electric Co
JPS60196635A (en) * 1984-03-19 1985-10-05 Toshiba Corp Torque sensor
JPH0522859B2 (en) * 1984-03-19 1993-03-30 Tokyo Shibaura Electric Co

Similar Documents

Publication Publication Date Title
US7692566B2 (en) Angle detection device
US4199718A (en) Bearing wear detector for AC rotary electric instrument
US6356847B1 (en) Method and device for determining the torque exerted on a rotating body which can be rotationally driven around a rotational axis
JPH08166397A (en) Method and device for detecting rotating speed
JPS60177231A (en) Torque detector
JPS6093327A (en) Torque detector
JP2002520997A (en) Motor control device
JPH1151608A (en) Angular position detector
JPH02212732A (en) Stop controller for object to be tested for dynamic balance tester
JP2003302312A (en) Method for measuring moment of inertia of engine
CN109075736A (en) The control system of motor
JPH0750998B2 (en) Step motor abnormality detection device
JP2540865B2 (en) Torque detector
JPH1114474A (en) Method and device for detecting transfer torque in wave motion decelerator
JP2005192331A (en) Device for controlling generator for vehicle
JP2566617B2 (en) Axis rotation speed detection device
US3319470A (en) Balancing system
SU1516818A1 (en) Method of diagnosis of rotary machines
JPH023930B2 (en)
JPH04175626A (en) Method of compensating characteristic of torque sensor
RU1584539C (en) Measuring unit for balancing machine
JP2698670B2 (en) Flow compensator for flow meter
JPH0711839B2 (en) Temperature measuring device in high-speed rotating body
JPH06317493A (en) Torque sensor
JPH048385Y2 (en)