JPS589034A - Torque sensor by thin amorphous magnetic strip - Google Patents

Torque sensor by thin amorphous magnetic strip

Info

Publication number
JPS589034A
JPS589034A JP10854281A JP10854281A JPS589034A JP S589034 A JPS589034 A JP S589034A JP 10854281 A JP10854281 A JP 10854281A JP 10854281 A JP10854281 A JP 10854281A JP S589034 A JPS589034 A JP S589034A
Authority
JP
Japan
Prior art keywords
torque
amorphous magnetic
magnetic
winding
magnitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10854281A
Other languages
Japanese (ja)
Other versions
JPS6228413B2 (en
Inventor
Kosuke Harada
原田 耕介
Ichiro Sasada
一郎 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10854281A priority Critical patent/JPS589034A/en
Publication of JPS589034A publication Critical patent/JPS589034A/en
Publication of JPS6228413B2 publication Critical patent/JPS6228413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To make the non-contact detection of torque possible by fixing a thin amorphous magnetic strip having a large magnetostriction constant by winding and fixing it to a revolving shaft. CONSTITUTION:Two magnetic heads 18, 19 are disposed in symmetrical positions with inclination at an equal angle with respect to the axial direction of a revolving shaft 4 spacially slightly from a thin amorphous magnetic strip 1. An easy- to-magnetize axis is applied to the strip 1 in the axial or rotating direction by a heat treatment. When the two heads 18, 19 are excited by a high frequency power source 14 via a diode 20, the inductance of either of the magnetic heads is increased by a magnetostrictive effect and that of the other is decreased on exertion of torque thereupon, thus producing a difference between the excition currents. If the difference in the excitation currents is drawn out as a DC differential output Vout 23, the direction and magnitude of the torque are detected from the code and magnitude thereof.

Description

【発明の詳細な説明】 電動機、自動車等の回転駆動部において、トルクは制御
を行なう場合の最も基本的変量であり、又システムの泡
出化の程度を示すパラメータとして、故障診断に利用す
ることもできる。トルクの検出には、非接触方式である
ことが必要で、正転、逆転及び静止時のトルクが検出で
き、精度が良く、信頼性が高いことが要求される。
[Detailed Description of the Invention] Torque is the most fundamental variable when controlling rotary drive parts such as electric motors and automobiles, and can also be used for failure diagnosis as a parameter indicating the degree of bubbling in the system. You can also do it. Torque detection requires a non-contact method, is capable of detecting torque in forward rotation, reverse rotation, and at rest, and is required to be highly accurate and reliable.

これまで光や磁気を利用して軸のねじシ角からトルクを
検出する間接方式や回転軸の磁気ひずみ・現象を利用し
て直接トルクを検出する直接方式がポみられているが、
いずれの方式も定着するに致っていない。その原因とし
て間接方式の場合は、トルクをねじり変位に変換するた
めに専用゛のトーションバーが必要であること、又光の
使用は耐環境性の点から問題であることなどがあげられ
る。
Until now, there have been indirect methods that use light or magnetism to detect torque from the screw angle of the shaft, and direct methods that use magnetostriction and phenomena of the rotating shaft to directly detect torque.
Neither method has taken hold. The reasons for this are that the indirect method requires a special torsion bar to convert torque into torsional displacement, and that the use of light poses a problem in terms of environmental resistance.

これに対し軸の磁気ひずみ現象を利用した直接方式は簡
単で信頼性の点で優れているが、元来回転軸は機械的強
度のみに注意が注がれており、磁気的性質は軸の回転方
向に対し一様で々〈検出出力に回転むらが生じ、又出力
に回転数依存性のあることが大きい欠点とされていた。
On the other hand, the direct method that utilizes the magnetostriction phenomenon of the shaft is simple and has excellent reliability, but originally, attention has been paid only to the mechanical strength of rotating shafts, and the magnetic properties of the shaft are The detection output is uniform in the direction of rotation (uneven rotation occurs), and the output is dependent on the rotation speed, which are considered to be major drawbacks.

本発明はこの様な欠点を除くため、アモルファス磁性薄
帯 ンサを提供することを目的としている。すなわち、適当
に熱処理を施こした著しい磁気ひずみ特性を有するアモ
ルファス磁性薄帯を回転軸に巻いて固定し、トルクによ
る軸のひずみ応力がアモルファス磁性薄帯に導入される
ようにして、磁気ひずみ現象によるアモルファス磁性薄
帯の磁気特性の変化を外部から非接触に検出することに
よシトルクを検出する直接方式である。
The object of the present invention is to provide an amorphous magnetic ribbon sensor in order to eliminate such drawbacks. That is, an amorphous magnetic ribbon that has been appropriately heat-treated and has remarkable magnetostrictive properties is wound and fixed around a rotating shaft, and the shaft strain stress due to torque is introduced into the amorphous magnetic ribbon, so that the magnetostrictive phenomenon can be induced. This is a direct method for detecting sitorque by externally and non-contactly detecting changes in the magnetic properties of an amorphous magnetic ribbon.

第1図は本発明の原理図である。第1図(a)はリング
状に巻かれたアモルファス磁性薄帯(1)に熱処理によ
ってその長さ方向(2)に対し角αの傾きを持って一様
に磁化容易軸Ku(3)を付与したものである。説明を
簡単にするためにα〉45・とし、磁気ひずみ定数λg
)Oと仮定する。第1図(b)はこのアモルファス磁性
薄帯(1)を回転軸(4)に巻いて固定したもので、回
転軸(4)に第1図6)の様にトルク(5)が加わると
アモルファス磁性薄帯(1)には第1図Cb)の様に±
45°の方向にひずみ応力σ(6)が生じ、σの正の方
向にも磁気ひずみ効果によシー軸磁気異方性が誘導され
、結果として合成された磁化容易軸はKu(3)からK
M(ηに変化する。第1図(c)は逆方向のトルク(8
)が加わった場合で、この場合含酸された磁化容易軸K
19)は第1図(b)のKu(7)とは逆の関係になる
。一般に磁性体の透磁本社、励磁方向に対する磁化容易
軸の方向によって変化するから、第1図の様にトルクに
よって磁化容易軸が変化するよ1うにすれば、アモルフ
ァス磁性薄帯の透磁率の変化からトルクの検出が可能と
なる。
FIG. 1 is a diagram showing the principle of the present invention. Figure 1(a) shows that an amorphous magnetic ribbon (1) wound into a ring shape has an easy axis of magnetization Ku (3) uniformly tilted at an angle α with respect to its length direction (2) by heat treatment. It was given. To simplify the explanation, let α〉45・, and the magnetostriction constant λg
)O. Figure 1 (b) shows this amorphous magnetic ribbon (1) wrapped around a rotating shaft (4) and fixed, and when torque (5) is applied to the rotating shaft (4) as shown in Figure 1 (6). The amorphous magnetic ribbon (1) has ±
Strain stress σ(6) is generated in the 45° direction, and sea-axis magnetic anisotropy is induced also in the positive direction of σ due to the magnetostrictive effect, resulting in the synthesized easy axis of magnetization from Ku(3). K
M(η). Figure 1(c) shows the torque in the opposite direction (8
) is added, in which case the acidified easy axis of magnetization K
19) has an opposite relationship to Ku(7) in FIG. 1(b). Generally, the permeability of a magnetic material changes depending on the direction of the axis of easy magnetization with respect to the excitation direction, so if the axis of easy magnetization is changed by torque as shown in Figure 1, the permeability of the amorphous magnetic ribbon changes. Torque can be detected from

第2図は、コイルの巻き方を表示するための簡略表示法
の説明図である。第2図(a)の様にアモルファス磁性
薄帯(1)の周囲に巻かれた巻線(10)を第2図(b
)の巻線(11)の略記法によって表示する。
FIG. 2 is an explanatory diagram of a simplified display method for displaying the winding method of the coil. As shown in Fig. 2(a), the winding (10) wound around the amorphous magnetic ribbon (1) is shown in Fig. 2(b).
) is expressed by the abbreviation of the winding (11).

第3図は透磁率の変化をインダクタンスの変化として検
出する方法である。第3図(a)はアモルファス磁性薄
帯(1)の周囲に施こされた検出巻線(12)を用いて
、インピーダンス測定器(13)によってインダクタン
スを測定する方法である。第3図6)は高周波電源(1
4)を用いてインダクタンスの変化を励磁巻線(15)
と検出巻線(12)間の相互誘導による誘起電圧の変化
として交流電圧計(lのにて検出する方法である。第3
図(c)はアモルファス磁性薄帯(1)かられずかに離
して配置した磁気ヘッド(17)を用いてインダクタン
スの変化をインピーダンス測定器(13)で検出する方
法である。上記3つの方法においては、励磁周波数1は
回転軸(4)が磁化され々いように高くすることが必要
である0回転軸(4)の回転数に比べ励磁周波数を充分
高くすることによって第3図(e)の方法の回転数依存
性は除去できる0第3図の3つの方法のいずれかによれ
ば、トルクの大きさの検出と\もに、トルクの正転、逆
転の区別もトルクが加わってい危い時の検出値を基準に
選び、トルク印加時の検出値と規準値の大小関係から決
定することができる。又磁気ひずみ現象は軸の回転とは
無関係であるため静止時、回転時にか\わシなくトルク
検出が可能である。
FIG. 3 shows a method of detecting changes in magnetic permeability as changes in inductance. FIG. 3(a) shows a method of measuring inductance with an impedance measuring device (13) using a detection winding (12) placed around an amorphous magnetic ribbon (1). Figure 3 6) is a high frequency power supply (1
4) Change the inductance using the excitation winding (15)
This method uses an AC voltmeter (l) to detect changes in induced voltage due to mutual induction between the detection winding (12) and the detection winding (12).
Figure (c) shows a method in which a change in inductance is detected by an impedance measuring device (13) using a magnetic head (17) placed slightly away from the amorphous magnetic ribbon (1). In the above three methods, the excitation frequency 1 needs to be high so that the rotation axis (4) is hardly magnetized. The rotation speed dependence of the method shown in Figure 3 (e) can be removed. According to any of the three methods shown in Figure 3, it is possible to detect the magnitude of torque and also to distinguish between forward and reverse rotation of torque. It is possible to select the detection value based on the detected value when torque is applied and it is dangerous, and to determine based on the magnitude relationship between the detected value when torque is applied and the reference value. In addition, since the magnetostrictive phenomenon is unrelated to the rotation of the shaft, torque can be detected regardless of whether the shaft is stationary or rotating.

実際のトルクの検出に際し、高い安定性、良好な精度を
得るために、出力を得る方法としては差動的構成にする
のが望ましい。以下実施例を用いて説明する。
In order to obtain high stability and good accuracy during actual torque detection, it is desirable to use a differential configuration as a method for obtaining the output. This will be explained below using examples.

第1実施例 第4図は第3図(c)の原理を拡張し差動出力が得られ
るようにしたトルクセンサの基本構成であゐ02つの磁
気ヘッド(18)、(19)を回転軸(4)の軸方向に
対し等角度傾けて対称の位置に、アモルファス磁性薄帯
(1)かられずかに離して配置し又アモルファス磁性薄
帯(1)には磁化容易軸Kuを軸方向かもしくは、回転
方向に熱処理によって付与する0この2つの磁気ヘッド
(18)、(19)を高周波電源(14)でダイオード
(2のを介して励磁すると、トルク(5)の印加されて
いない時は、2−)の磁気ヘッドのインダクタンスは対
称性から等しくなり励磁電流も等しくなるが、トルクが
加わると磁気ひずみ効果によっていずれかの磁気ヘッド
のインダクタンスが増加し、他方線減少するため励磁電
流間に差が生じる。この励磁電流の差を出力抵抗(21
)と平滑用コンデンサ(22)とで直流差動出力%Vo
ut (23)として取シ出せば、その符号と大きさか
らトルクの方向と大きさが検出可能となる。
1st Embodiment Figure 4 shows the basic configuration of a torque sensor that extends the principle of Figure 3(c) to obtain a differential output. The amorphous magnetic ribbon (1) is placed at a symmetrical position tilted at an equal angle with respect to the axial direction of (4), and slightly separated from the amorphous magnetic ribbon (1). Alternatively, if the two magnetic heads (18) and (19) are excited by a high frequency power source (14) through the diode (2), when the torque (5) is not applied, , 2-), the inductances of the magnetic heads are equal due to symmetry, and the excitation currents are also equal, but when torque is applied, the inductance of one of the magnetic heads increases due to the magnetostrictive effect, and the inductance of the other decreases, so there is a gap between the excitation currents. It makes a difference. This difference in excitation current is calculated by the output resistance (21
) and smoothing capacitor (22), DC differential output %Vo
If it is extracted as ut (23), the direction and magnitude of the torque can be detected from its sign and magnitude.

第2実施例 第6図は磁気回路シ1ツヂによ石ト〃クセ&f−tの基
本構成でTo石。励声用磁気ヘッド(24)と検出用磁
気ヘッド(25)紘アモルファス磁性薄帯(1)かられ
ずかに離して、互いに直角になるように設置する。励磁
用磁気ヘッド(24)は高周波電源(14)と励磁巻線
゛(2のとによってアモルファス磁性薄帯(1)を高周
波で励磁する。励磁方向は回転軸(4)の軸方向に対し
、平行又は垂直とし、磁化容易軸も軸方向に対し平行又
は垂直になる様に付与する。トルクが印加されていない
時は、対称性からAIBI間磁気低磁気抵抗B2間の磁
気抵抗は等しくなり、又A2B1間の磁気抵抗とA2B
2間の磁気抵抗も同様に等しくなる≠為ら、磁気回路ブ
リッヂはバランスが保たれ励磁用磁気ヘッド(24)に
よる磁束は、検出用磁気ヘッド(25)の中を通らず出
力は表われない。これに対し、第5図の様にトルク(5
)が印加されると、磁気ひずみ効果によ−p AlB1
間及びA2B2間の磁気抵抗の大きさと、AlB2間及
びA2B1間の磁気抵抗の太き。
Second Embodiment FIG. 6 shows the basic configuration of a magnetic circuit. An excitation magnetic head (24) and a detection magnetic head (25) are installed slightly apart from the amorphous magnetic ribbon (1) and at right angles to each other. The excitation magnetic head (24) excites the amorphous magnetic ribbon (1) with high frequency using a high frequency power supply (14) and an excitation winding (2).The excitation direction is relative to the axial direction of the rotating shaft (4). Parallel or perpendicular, and the easy axis of magnetization is also applied parallel or perpendicular to the axial direction. When no torque is applied, the magnetic resistance between AIBI and low magnetic resistance B2 is equal due to symmetry, Also, the magnetic resistance between A2B1 and A2B
Since the magnetic resistance between the two is also equal≠, the magnetic circuit bridge is balanced and the magnetic flux from the excitation magnetic head (24) does not pass through the detection magnetic head (25) and no output appears. . On the other hand, as shown in Figure 5, the torque (5
) is applied, due to the magnetostrictive effect -p AlB1
The magnitude of the magnetic resistance between AlB2 and A2B2, and the thickness of the magnetic resistance between AlB2 and A2B1.

さけ互いに逆に変化するため磁気回路のブリッヂバラン
スが破れて、検出用磁気ヘッドの中を磁束が通り検出巻
線(27)に誘起電圧が生じる。この電圧を同期整流器
(28)によって直流として取り出せば、その符号と大
きさからトルクの向きと大きさが検出可能となる。
Since the magnetic fluxes change in opposite directions, the bridge balance of the magnetic circuit is broken, magnetic flux passes through the detection magnetic head, and an induced voltage is generated in the detection winding (27). If this voltage is extracted as a direct current by the synchronous rectifier (28), the direction and magnitude of the torque can be detected from its sign and magnitude.

回転軸の強磁性体としての性質を利用する従来の方式に
比べ、アモルファス磁性薄帯を用いるた・め、回転方向
の磁気特性の不均一性がなく、又微小な励磁電流で高周
波励磁する点が異なっており、本方式の優れている所で
ある。
Compared to the conventional method that uses the ferromagnetic properties of the rotating shaft, it uses an amorphous magnetic ribbon, so there is no non-uniformity in magnetic properties in the rotation direction, and high-frequency excitation is performed using a minute excitation current. This is the advantage of this method.

第3実廉例 第6図は、第3図(b)の原理を応用し、同一組成のア
モルファス磁性薄帯(1)を2個使用して出力を差動的
に取シ出す様にしたトルクセンサの基本構成である。検
出巻線(12)は誘起電圧を互いに打消す方向に接続す
る。巻線に付けられた小さな黒丸(29)は巻線の極性
を示すものとする。アモルファス磁性薄帯(1)の磁化
容易軸Ku(3)はアモルファス磁性薄帯の長さ方向に
対し第1図の傾斜角αが各々±α度の角に々るよう熱処
理によって付与する。
The third practical example, Figure 6, applies the principle shown in Figure 3(b) and uses two amorphous magnetic ribbons (1) of the same composition to extract output differentially. This is the basic configuration of a torque sensor. The detection winding (12) is connected in such a way that the induced voltages cancel each other out. The small black circle (29) attached to the winding indicates the polarity of the winding. The easy axis of magnetization Ku (3) of the amorphous magnetic ribbon (1) is provided by heat treatment so that the inclination angle α shown in FIG. 1 is at an angle of ±α degrees with respect to the longitudinal direction of the amorphous magnetic ribbon.

トルクが印加されていない時は2つのアモルファス磁性
薄帯(1)の透磁率は等しく、従って2つの検出巻線(
12)の誘起電圧は互いに等しく逆極性讐あるから打消
し合うため出力は表われない。トルク(5)が印加され
た場合は、アモルファス磁性薄帯(1)の磁気ひずみ定
数λB が正の場合を例にとると、第1図かられかるよ
うに磁化容易軸が各々第6図面(7)及びKuC9)の
方向に変化するため、左側のアモルファス磁性薄帯の透
磁率よりも右側の方の透磁率が大きくなり結果として右
側の検出巻線の誘起電圧が大きくなる。この誘起電圧の
差を同期整流器(28)により直流電圧として出力する
ものである。
When no torque is applied, the permeability of the two amorphous magnetic ribbons (1) is equal, so the two sensing windings (
12) Since the induced voltages are equal and have opposite polarities, they cancel each other out, so no output is produced. When the torque (5) is applied, taking as an example the case where the magnetostriction constant λB of the amorphous magnetic ribbon (1) is positive, the axis of easy magnetization is as shown in FIG. 7) and KuC9), the magnetic permeability on the right side becomes larger than the magnetic permeability of the amorphous magnetic ribbon on the left side, and as a result, the induced voltage in the detection winding on the right side becomes larger. This difference in induced voltage is outputted as a DC voltage by a synchronous rectifier (28).

トルクの方向が逆の場合も、まったく同じ原理から今度
は左側の誘起電圧の方が大きくなシ同期整流器(28)
の直流出力電圧の符号が反転する。従ってトルクの方向
と大きさが検出可能と々る。磁気ひずみ定数λ8〈0の
場合も上記と同じ原理によって、トルクセンサが構成さ
れる。
Even if the direction of torque is reversed, the same principle applies to the synchronous rectifier (28) in which the induced voltage on the left side is larger.
The sign of the DC output voltage is reversed. Therefore, the direction and magnitude of torque can be detected. In the case where the magnetostriction constant λ8<0, the torque sensor is constructed according to the same principle as above.

第4実施例 第7図は、第3図(a)の原理を応用して、同一組成の
アモルファス磁性薄帯(1)を2個用いて、トルク検出
出力が差動的に出力されるようにしたトルクセンサの基
本構成で、回路方式は第4図の第1実施例の場合と同じ
である。アモルファス磁性薄帯(1)の磁化容易軸Ku
 (3)は第6図第3実施例の場合と同様に付与する。
The fourth embodiment, FIG. 7, applies the principle of FIG. 3(a) to use two amorphous magnetic ribbons (1) of the same composition so that the torque detection output is differentially output. The basic configuration of the torque sensor is the same as the circuit system of the first embodiment shown in FIG. Easy magnetization axis Ku of amorphous magnetic ribbon (1)
(3) is provided in the same manner as in the case of the third embodiment in FIG.

この場合第7図の様にトルク(5)を印加した時のアモ
ルファス磁性薄帯(1)の透゛磁率の変化は第6図第3
実施例の場合と同様である。このトルク(5)による透
磁率変化を励磁電流の変化によって第4図第1実施例と
同様の方式で検出することによりトルクの検出が可能と
なる。
In this case, the change in magnetic permeability of the amorphous magnetic ribbon (1) when torque (5) is applied as shown in Figure 7 is shown in Figure 6.
This is the same as in the embodiment. Torque can be detected by detecting the change in magnetic permeability due to this torque (5) by changing the excitation current in the same manner as in the first embodiment in FIG.

第5実施例 第8図は、第4図第1実施例において、アモルファス磁
性薄帯(1)を1個使用し、2個の検出用磁気ヘッド(
18) 、(19)を回転軸(4)の面にそって斜めに
配置した代りに、第3実施例及び第4実施例と同様アモ
ルファス磁性薄帯(1)を2個用いて、検出用磁気ヘッ
ド(3のの取シ付けを容易にしたトルクセンサである。
5th Embodiment FIG. 8 shows that in the first embodiment shown in FIG. 4, one amorphous magnetic ribbon (1) is used and two detection magnetic heads (
18) , (19) are arranged obliquely along the plane of the rotating shaft (4), two amorphous magnetic ribbons (1) are used for detection as in the third and fourth embodiments. This is a torque sensor that makes it easy to install the magnetic head (No. 3).

磁化容易軸Ku(3) は第6図第3実施例及び第7図
第4実施例の場合と同様に付与する。回路方式は第4図
第1実施例の場合と同じである。従ってトルク(ム)に
よる透磁率変化を励磁電流の変化によって検出すること
でトルクの検出が可能となる。
The easy axis of magnetization Ku(3) is provided in the same manner as in the third embodiment of FIG. 6 and the fourth embodiment of FIG. 7. The circuit system is the same as that of the first embodiment shown in FIG. Therefore, torque can be detected by detecting changes in magnetic permeability due to torque (mu) based on changes in excitation current.

第6実施例 第9図は、第6図第3実施例において、2個のアモルフ
ァス磁性薄帯(1)が同種の磁気ひずみ特性、すなわち
、2つのアモルファス磁性薄帯の磁気ひずみλ8が共に
正もしくは共に負であったのに対し、異種の磁気ひずみ
特性を持つ2個のアモルファス磁性薄帯(1)、(31
)  を用い、第6図第3実施例と同じ回路方式による
トルクセンサの基本構成である。磁化容易軸Ku (3
)の方向は、第9図に示している様に同方向に付与する
0トルク(5)によるひず−み応力が引き起こすところ
の磁気ひずみ効果によ、って誘導される一軸磁気異方性
の方向が互いに逆になるためにトルク(5)に比例した
差動出力が表われる。この方式によると2種のアモルフ
ァス磁性薄帯(t) 、(31)の熱処理が同時にでき
る場合は、磁化容易軸Ku(3)の方向を正確に合せら
れ\る利点を持っている。異種の磁気ひずみ特性を持つ
アモルファス磁性薄帯を組み合わせて用いる方法は、第
4、第5の各実施例においても同様に適用可能である。
Embodiment 6 FIG. 9 shows that in the third embodiment of FIG. Alternatively, two amorphous magnetic ribbons (1) and (31
), and FIG. 6 shows the basic configuration of a torque sensor using the same circuit system as the third embodiment. Easy axis of magnetization Ku (3
) direction is the uniaxial magnetic anisotropy induced by the magnetostrictive effect caused by the strain stress due to zero torque (5) applied in the same direction as shown in Figure 9. Since the directions of are opposite to each other, a differential output proportional to torque (5) appears. According to this method, if the two types of amorphous magnetic ribbons (t) and (31) can be heat-treated at the same time, it has the advantage that the direction of the easy axis of magnetization Ku (3) can be precisely aligned. The method of using a combination of amorphous magnetic ribbons having different magnetostrictive characteristics can be similarly applied to each of the fourth and fifth embodiments.

以上のようにして、本発明によシ、トルクを一旦ねじシ
変位に変換するための専用のトーションバーを必要とせ
ず、静止トルクを始めとして、正転、逆転のトルクを安
定かつ精度良く非接触で検出することのできる簡潔で工
業上適切なトルクセンナが得られる。
As described above, the present invention eliminates the need for a dedicated torsion bar for once converting torque into screw displacement, and stabilizes and accurately converts not only static torque but also forward and reverse rotation torque. A simple and industrially suitable torque sensor that can be detected by contact is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図は巻線の略記法
に関する説明図、第3図は透磁率の検出法に関する説明
図、第4図は本発明の第1実施例におけるトルクセンサ
の原理図、第5図は本発明の第2実施例におけるトルク
センサの原理図、第6図は本発明の第3実施例における
トルクセンサの原理図、第7図は本発明の第4実施例に
おけるトルクセンサの原理図、第8図は本発明の第5実
施例におけるトルクセンサの原理図、第9図は本発明の
第6実施例におけるトルクセンナの原理図を表わす〇 (1)アモルファス磁性薄帯 (2)アモルファス磁性薄帯の長さ方向(3)熱処理に
よって付与された磁化容易軸(4)回転軸 (5)トルクの方向 (6)トルクによるひずみ応力の分布 (7)トルク印加によって変化した磁化容易軸(8)ト
ルクの方向 (9)トルク印加によ、って変化した磁化容易軸(lO
)巻線 (11)略記法によって書かれた巻線 (I2)検出巻線 (13)インピーダンス測定器 (14)高周波電源 (15)励磁巻線 (16)交流電圧計 (17)磁気ヘッド (18)磁気ヘッド (19)磁気ヘッド (20)ダイオード (21)抵抗 (22)コンデンサ (23)出力電圧 (24)励磁用磁気ヘッド (25)検出用磁気ヘッド (26)励磁用巻線 (27)  検出巻線 (28)  同期整流器 (29)巻線の極性を示す記号 (30)磁気ヘッド (31)負の磁気ひずみ定数を有するアモルファス磁性
薄帯 特許出願人、原田耕介 他1名 図面の浄7(内容に変更なL) (bl (cl 第1図 第2図 fc) 第3図 第4図 第5図 第6図 3 第7図 3 第8図 第9図 手続補正書(方式) %式% 1、事件の表示  昭和56年特許願第108542号
2、発明の名称 3、補正をする者 事件との関係  特許出願人 住 所  福岡県福岡市中央区桜坂2丁目4番6号4、
補正命令の日付   昭和56年11月 5日図面の浄
書(内容に変更なし)
Fig. 1 is a detailed explanatory diagram of the present invention, Fig. 2 is an explanatory diagram regarding the abbreviation of windings, Fig. 3 is an explanatory diagram regarding the magnetic permeability detection method, and Fig. 4 is an explanatory diagram of the first embodiment of the present invention. 5 is a principle diagram of a torque sensor according to a second embodiment of the present invention, FIG. 6 is a principle diagram of a torque sensor according to a third embodiment of the present invention, and FIG. 7 is a principle diagram of a torque sensor according to a third embodiment of the present invention. 〇(1) Amorphous magnetic ribbon (2) Length direction of amorphous magnetic ribbon (3) Axis of easy magnetization imparted by heat treatment (4) Axis of rotation (5) Direction of torque (6) Distribution of strain and stress due to torque (7) Torque Axis of easy magnetization (8) Direction of torque (9) Axis of easy magnetization (lO
) Winding (11) Winding written in abbreviated notation (I2) Detection winding (13) Impedance measuring device (14) High frequency power supply (15) Excitation winding (16) AC voltmeter (17) Magnetic head (18 ) Magnetic head (19) Magnetic head (20) Diode (21) Resistor (22) Capacitor (23) Output voltage (24) Magnetic head for excitation (25) Magnetic head for detection (26) Winding for excitation (27) Detection Winding (28) Synchronous rectifier (29) Symbol indicating the polarity of the winding (30) Magnetic head (31) Amorphous magnetic ribbon with negative magnetostriction constant Patent applicant: Kosuke Harada and one other person Change the content L) (bl (cl Figure 1 Figure 2 fc) Figure 3 Figure 4 Figure 5 Figure 6 Figure 3 Figure 7 Figure 8 Figure 9 Procedural amendment (method) % formula % 1. Indication of the case Patent Application No. 108542 filed in 19822. Name of the invention 3. Relationship with the case by the person making the amendment Patent applicant address 2-4-6-4 Sakurazaka, Chuo-ku, Fukuoka-shi, Fukuoka Prefecture.
Date of amendment order: November 5, 1980 Engraving of drawings (no change in content)

Claims (1)

【特許請求の範囲】[Claims] 大きな磁気ひずみ定数を有するアモルファス磁性薄帯を
回転軸に巻いて固定し、上記回転軸に加えられたトルク
によりアモルファス磁性薄帯の磁気特性が変化すること
を利用してトルクの非接触検出を可能としたアそルファ
ス磁性薄帯によるトルクセンサ。
Non-contact detection of torque is possible by wrapping an amorphous magnetic ribbon with a large magnetostriction constant around a rotating shaft and fixing it, and using the fact that the magnetic properties of the amorphous magnetic ribbon change due to the torque applied to the rotating shaft. Torque sensor using amorphous magnetic ribbon.
JP10854281A 1981-07-09 1981-07-09 Torque sensor by thin amorphous magnetic strip Granted JPS589034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10854281A JPS589034A (en) 1981-07-09 1981-07-09 Torque sensor by thin amorphous magnetic strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10854281A JPS589034A (en) 1981-07-09 1981-07-09 Torque sensor by thin amorphous magnetic strip

Publications (2)

Publication Number Publication Date
JPS589034A true JPS589034A (en) 1983-01-19
JPS6228413B2 JPS6228413B2 (en) 1987-06-19

Family

ID=14487457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10854281A Granted JPS589034A (en) 1981-07-09 1981-07-09 Torque sensor by thin amorphous magnetic strip

Country Status (1)

Country Link
JP (1) JPS589034A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180338A (en) * 1983-03-31 1984-10-13 Toshiba Corp Torque sensor
JPS60143735A (en) * 1983-10-12 1985-07-30 ベントリ− ネバダ コ−ポレ−シヨン Device for measuring torque or bending force applied to shaft
JPS60192233A (en) * 1984-03-13 1985-09-30 Toshiba Corp Torque sensor
JPS60194085A (en) * 1984-03-14 1985-10-02 Nippon Denso Co Ltd Amorphous coated body
JPS60196635A (en) * 1984-03-19 1985-10-05 Toshiba Corp Torque sensor
JPS6182126A (en) * 1984-09-29 1986-04-25 Toshiba Corp Torque sensor
JPS61155827A (en) * 1984-12-28 1986-07-15 Toshiba Corp Torque detecting device
US4760745A (en) * 1986-12-05 1988-08-02 Mag Dev Inc. Magnetoelastic torque transducer
US4780671A (en) * 1985-04-26 1988-10-25 Matsushita Electric Industrial Co., Ltd. Magnetically operated non-contact magnetic torque sensor for shafts
US4896544A (en) * 1986-12-05 1990-01-30 Mag Dev Inc. Magnetoelastic torque transducer
US4906306A (en) * 1987-06-29 1990-03-06 Nippon Oil And Fats Co., Ltd. Amorphous metal-metal composite article, a method for producing the same, and a torque sensor using the same
US5165286A (en) * 1990-06-29 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Strain detector
DE19533135A1 (en) * 1994-09-07 1996-03-14 Honda Motor Co Ltd Load measurement in ferromagnetic element
US5639038A (en) * 1994-10-05 1997-06-17 Daiwa Seiko, Inc. Fishing reel with a line tension measuring device
WO2004029569A1 (en) * 2002-09-25 2004-04-08 Fast Technology Ag. Torque signal transmission
JP2005527832A (en) * 2002-05-29 2005-09-15 ザ ティムケン カンパニー In-bearing torque sensor device
JP2008256662A (en) * 2007-04-09 2008-10-23 Honda Motor Co Ltd Method of manufacturing magnetostrictive torque sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024216U (en) * 1988-06-22 1990-01-11
JP2005283247A (en) * 2004-03-29 2005-10-13 Koyo Seiko Co Ltd Sensor-equipped roller bearing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2939566A1 (en) * 1979-09-29 1981-04-09 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen MAGNETOSTRICTIVE MEASURING PROCESS, IN PARTICULAR FOR TORQUE MEASUREMENT ON SHAFTS
JPS57211030A (en) * 1981-06-01 1982-12-24 Aisin Seiki Co Ltd Torque sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2939566A1 (en) * 1979-09-29 1981-04-09 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen MAGNETOSTRICTIVE MEASURING PROCESS, IN PARTICULAR FOR TORQUE MEASUREMENT ON SHAFTS
JPS57211030A (en) * 1981-06-01 1982-12-24 Aisin Seiki Co Ltd Torque sensor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180338A (en) * 1983-03-31 1984-10-13 Toshiba Corp Torque sensor
JPS60143735A (en) * 1983-10-12 1985-07-30 ベントリ− ネバダ コ−ポレ−シヨン Device for measuring torque or bending force applied to shaft
JPS60192233A (en) * 1984-03-13 1985-09-30 Toshiba Corp Torque sensor
JPH0522858B2 (en) * 1984-03-13 1993-03-30 Tokyo Shibaura Electric Co
JPS60194085A (en) * 1984-03-14 1985-10-02 Nippon Denso Co Ltd Amorphous coated body
JPS60196635A (en) * 1984-03-19 1985-10-05 Toshiba Corp Torque sensor
JPH0522859B2 (en) * 1984-03-19 1993-03-30 Tokyo Shibaura Electric Co
JPS6182126A (en) * 1984-09-29 1986-04-25 Toshiba Corp Torque sensor
JPS61155827A (en) * 1984-12-28 1986-07-15 Toshiba Corp Torque detecting device
US4780671A (en) * 1985-04-26 1988-10-25 Matsushita Electric Industrial Co., Ltd. Magnetically operated non-contact magnetic torque sensor for shafts
US4882936A (en) * 1986-12-05 1989-11-28 Mag Dev Inc. Magnetoelastic torque tool
US4896544A (en) * 1986-12-05 1990-01-30 Mag Dev Inc. Magnetoelastic torque transducer
US4760745A (en) * 1986-12-05 1988-08-02 Mag Dev Inc. Magnetoelastic torque transducer
US4906306A (en) * 1987-06-29 1990-03-06 Nippon Oil And Fats Co., Ltd. Amorphous metal-metal composite article, a method for producing the same, and a torque sensor using the same
US5165286A (en) * 1990-06-29 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Strain detector
DE19533135A1 (en) * 1994-09-07 1996-03-14 Honda Motor Co Ltd Load measurement in ferromagnetic element
DE19533135C2 (en) * 1994-09-07 2000-10-26 Honda Motor Co Ltd Method for measuring the load in a ferromagnetic metal element, method for measuring the load distribution in a flat sensor and a measuring arrangement for measuring load distributions
US5639038A (en) * 1994-10-05 1997-06-17 Daiwa Seiko, Inc. Fishing reel with a line tension measuring device
JP2005527832A (en) * 2002-05-29 2005-09-15 ザ ティムケン カンパニー In-bearing torque sensor device
JP4879483B2 (en) * 2002-05-29 2012-02-22 ザ ティムケン カンパニー In-bearing torque sensor device
WO2004029569A1 (en) * 2002-09-25 2004-04-08 Fast Technology Ag. Torque signal transmission
GB2408349A (en) * 2002-09-25 2005-05-25 Fast Technology Ag Torque signal transmission
GB2408349B (en) * 2002-09-25 2006-11-08 Fast Technology Ag Torque signal transmission
JP2008256662A (en) * 2007-04-09 2008-10-23 Honda Motor Co Ltd Method of manufacturing magnetostrictive torque sensor

Also Published As

Publication number Publication date
JPS6228413B2 (en) 1987-06-19

Similar Documents

Publication Publication Date Title
JPS589034A (en) Torque sensor by thin amorphous magnetic strip
JP4357841B2 (en) Magnetoelastic torque sensor
US5591925A (en) Circularly magnetized non-contact power sensor and method for measuring torque and power using same
JPS6275328A (en) Torque sensor
JP2004108934A (en) Torque sensor
JPH01189971A (en) Toque sensor
US20040187605A1 (en) Integrating fluxgate for magnetostrictive torque sensors
JP4305271B2 (en) Magnetostrictive torque sensor
JP3868495B2 (en) Torque transducer
JP5081353B2 (en) Torque transducer
JPH0745704B2 (en) Measured shaft for torque sensor
JPS6044839A (en) Torque detecting device
JPS59192930A (en) Torque detection system
JP2004191069A (en) Torque sensor
JP2002071476A (en) Torque detecting device and manufacturing method thereof
JP4852056B2 (en) Torque detection device
JPS62162934A (en) Detecting device for rotary torque
JPS6044841A (en) Torque detecting device
JPH0333216B2 (en)
JPH0373819A (en) Magnetostriction type torque detector
JP2004191068A (en) Torque sensor
JPH0262925A (en) Magnetostrictive torque sensor
JP2009257898A (en) Non-contact torque sensor
JPH02107910A (en) Magnetostrictive type torque detector
JPH1114473A (en) Magnetostrictive torque sensor