JPS6019444B2 - Method for measuring temperature of materials in heating furnace - Google Patents

Method for measuring temperature of materials in heating furnace

Info

Publication number
JPS6019444B2
JPS6019444B2 JP53096919A JP9691978A JPS6019444B2 JP S6019444 B2 JPS6019444 B2 JP S6019444B2 JP 53096919 A JP53096919 A JP 53096919A JP 9691978 A JP9691978 A JP 9691978A JP S6019444 B2 JPS6019444 B2 JP S6019444B2
Authority
JP
Japan
Prior art keywords
temperature
steel material
shield member
furnace
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53096919A
Other languages
Japanese (ja)
Other versions
JPS5523473A (en
Inventor
洋一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP53096919A priority Critical patent/JPS6019444B2/en
Publication of JPS5523473A publication Critical patent/JPS5523473A/en
Publication of JPS6019444B2 publication Critical patent/JPS6019444B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0275Control or determination of height or distance or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/048Protective parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は加熱炉内において加熱されている鋼材等の材料
を放射温度計を用いて測定する方法に関し、更に詳述す
れば放射温度計のシールド部材の仕様及び側温対象と放
射温度計との位置関係が所定の条件を充足するようにし
て高精度の測定を可能とする温度測定方法を提案したも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of measuring materials such as steel materials being heated in a heating furnace using a radiation thermometer, and more specifically, the specifications of the shield member of the radiation thermometer and the measurement of side temperature. This paper proposes a temperature measurement method that enables highly accurate measurement by ensuring that the positional relationship between the object and the radiation thermometer satisfies predetermined conditions.

加熱炉内の鋼材の温度管理は、従前は鋼材を十分に加熱
しさえすればよいとの愛息点から炉温の管理、すなわち
側温の制御が行われていた。ところが近時電子計算機制
御を加熱炉にも適用しようとする試みがなされる一方、
鋼材を徒らに過熱させないことによりその品質を高め、
且つ省エネルギを促進せんとする趨勢にあるため、炉内
鋼材自体の温度を管理する必要が生じてきた。鋼材の温
度を測定するためには、サンプル測定では熱電対等接触
型の温度計を使用し得るものの、実製品については非接
触型の温度計を使用せざるを得ず、一般には、榎U溢対
象が発する赤外放射ェネルギを捉えてその表面温度を測
定する、いわゆる放射温度計を用いての柵温が試みられ
ている。ところが炉内鋼材の損。温については炉壁温度
の影響という問題がある。すなわち放射温度計を鋼材表
面温度を側定すべく配したとしても、鋼材より高温にあ
る炉壁から発せられた赤外放射ネルギが放射温度計の検
出部(赤外放射ヱネルギを感知して温度情報を有する電
気信号に変換する部分であり、一般にSiセルなどの赤
外線検出素子を用いてなる)に達し、実温度より高い測
定値が得られることになる。更に加熱炉がウオーキング
ビーム炉、ウオーキングハース炉である場合は鋼材が炉
内を移動する間、断続的に上昇、下降を操に返すので、
鋼材上方に配設される放射温度計と鋼材との離隔寸法は
、鋼材が上昇位置にある場合と下降位置にある場合とで
異り、夫々の場合において炉壁温度の影響が異ることに
なる。また炉癖温度は操業条件により変動し、要するに
測定データに適当な補正を施して鋼材の表面温度を求め
んとするような寸法は実用的ではない。従って実際には
放射温度計の赤外放射ェネルギ入射口周縁にシールド部
材を設け、炉壁から入射されるェネルギを抑制すること
としている。このシールド部材が大きければ大きい程、
また前記入射口及びシールド部材を鋼材に近づければ近
づける程炉壁温度の影響を少なからしめて測定精度を高
め得るが、物理的に実用上の制約がある。加熱炉内鋼材
の温度測定技術には叙上の如き事情が存在するので、測
定はしたものの測定精度が奈辺に在るのかが不明であり
、逆に所望の測定精度で洩り溢するにはどのような測定
をすればよいかが不明であり、その解明が待たれていた
Previously, the temperature of steel in a heating furnace was controlled by controlling the furnace temperature, that is, controlling the side temperature, based on the idea that it was only necessary to heat the steel sufficiently. However, while attempts have recently been made to apply electronic computer control to heating furnaces,
Improve the quality of steel by not overheating it unnecessarily,
Moreover, as there is a trend to promote energy saving, it has become necessary to control the temperature of the steel material itself in the furnace. In order to measure the temperature of steel materials, a thermocouple contact type thermometer can be used for sample measurement, but a non-contact type thermometer must be used for actual products. Attempts have been made to measure fence temperature using a so-called radiation thermometer, which captures the infrared radiation emitted by an object and measures its surface temperature. However, there was a loss of steel in the furnace. Regarding temperature, there is a problem of the influence of furnace wall temperature. In other words, even if a radiation thermometer is placed to measure the surface temperature of the steel material, the infrared radiation energy emitted from the furnace wall, which is at a higher temperature than the steel material, is detected by the radiation thermometer's detection section (which detects the infrared radiation energy and determines the temperature). This is the part that converts the temperature into an electrical signal containing information, and generally uses an infrared detection element such as a Si cell), resulting in a measured value higher than the actual temperature. Furthermore, if the heating furnace is a walking beam furnace or a walking hearth furnace, the steel material is intermittently raised and lowered by the operator as it moves through the furnace.
The distance between the radiation thermometer placed above the steel material and the steel material differs when the steel material is in the raised position and when it is in the lowered position, and the influence of the furnace wall temperature is different in each case. Become. Furthermore, the furnace habit temperature varies depending on the operating conditions, and in short, it is not practical to use dimensions that require appropriate correction to the measured data to determine the surface temperature of the steel material. Therefore, in practice, a shield member is provided around the infrared radiation energy entrance of the radiation thermometer to suppress the energy entering from the furnace wall. The larger this shield member is, the more
Further, the closer the injection port and shield member are to the steel material, the less the influence of the furnace wall temperature can be reduced and the measurement accuracy can be improved, but there are physical practical limitations. The above-mentioned circumstances exist in the technology for measuring the temperature of steel materials in a heating furnace, so even though measurements have been made, it is unclear whether the measurement accuracy is at a certain level, and conversely, it is difficult to obtain the desired measurement accuracy. It was unclear what kind of measurements should be taken, and clarification was awaited.

本発明は斯かる背景の下になされたものであって、前記
シールド部材の仕様と、核シールド部材及び側温対象た
る鋼材の離隔寸法とを一定の条件を充足するように定め
て所望測定精度を得ることを可能とする加熱炉内村料の
温度測定方法を提案するものである。
The present invention has been made against this background, and the desired measurement accuracy is achieved by determining the specifications of the shield member and the distance between the nuclear shield member and the steel material that is the object of the side temperature to satisfy certain conditions. This paper proposes a method for measuring the temperature of the heating furnace.

以下図面に基き本発明を具体的に説明する。The present invention will be specifically explained below based on the drawings.

第1図は放射温度計の配置を示した図面であって、1は
炉壁の天井部分、2は側溢対象の鋼材を示している。放
射温度計は炉壁1の上方に配設された検出部3と、適宜
位置に配され、これに連なるメータ又はデータ出力部等
(図示せず)とからなり、検出部3は水冷ジャケット4
に格納されている。5はキャスタプルよりなる円筒状の
シールド部材、6はこのシールド部材5の冷却水を通流
させる円筒状の冷却筒体であって、両者は冷却筒体6の
外周及び下端部内周にキャスタブルを被看するようにし
てシールド部材5を形成して一体構造としている。
FIG. 1 is a drawing showing the arrangement of the radiation thermometer, with reference numeral 1 indicating the ceiling portion of the furnace wall and reference numeral 2 indicating the steel material to be overflowed. The radiation thermometer consists of a detection section 3 disposed above the furnace wall 1, and a meter or data output section (not shown) arranged at an appropriate position and connected to the detection section 3.
is stored in. 5 is a cylindrical shield member made of caster pulls, 6 is a cylindrical cooling cylinder through which cooling water flows through the shield member 5, and both are covered with castables on the outer periphery and inner periphery of the lower end of the cooling cylinder 6. As shown, the shield member 5 is formed into an integral structure.

そして炉壁1に開設した挿入孔la内に、シールド部材
5が鉛直となるように、このシールド部材5を挿入し、
シールド部材5の下端を鋼材2に臨ませるようにしてい
る。鋼材2の表面から発せられた赤外放射ェネルギはシ
ールド部材5の下端関口から冷却筒体6内に入って検出
部3に達し、この検出部3で電気信号に変換され、鋼材
2の表面温度が測定されるようになっているのであるが
、シールド部材6の下端面と鋼材2との間には寸法dの
間隔を有しているので、炉壁1の天井部分又は図示しな
い側壁部分から発せられた赤外放射ェネルギも直接又は
間接的にシールド部材5の下端開口から冷却筒体6内に
侵入し、測定誤差の生じる原因となるのである。
Then, insert the shield member 5 into the insertion hole la opened in the furnace wall 1 so that the shield member 5 is vertical,
The lower end of the shield member 5 is made to face the steel material 2. The infrared radiation energy emitted from the surface of the steel material 2 enters the cooling cylinder 6 from the lower end entrance of the shield member 5 and reaches the detection section 3, where it is converted into an electrical signal and the surface temperature of the steel material 2 is increased. However, since there is a distance of dimension d between the lower end surface of the shield member 6 and the steel material 2, there is a distance between the ceiling part of the furnace wall 1 or the side wall part (not shown) The emitted infrared radiation energy also directly or indirectly enters into the cooling cylinder 6 through the opening at the lower end of the shield member 5, causing measurement errors.

而して本発明に係る温度測定方法は、鋼材2等の加熱炉
内村料の温度を測定精度aを満足させて測定するために
、シールド部村5の外周半径Rと、核シールド部村5及
び鋼材2の離隔寸法dとの関係を下記【1’式の条件を
充足させて測定することを特徴とする。
In the temperature measuring method according to the present invention, in order to measure the temperature of the heating furnace material such as the steel material 2 while satisfying the measurement accuracy a, the outer radius R of the shield part 5 and the nuclear shield part 5 are The relationship between the distance and the distance d of the steel material 2 is measured by satisfying the condition of formula 1' below.

真≦ ・ −・‐‐‐(1) 〔「aヅ畔)n・科q2 但し、n:放射温度計の検出部の特性により定まる定数
Ts:材料の温度(K)Tw:加熱炉の炉墜温度(K) ご:材料表面の放射率 次に{11式の導出過程を示す。
True ≦ ・ -・--- (1) ['azu畔)n・keq2 However, n: Constant determined by the characteristics of the detection part of the radiation thermometer Ts: Temperature of the material (K) Tw: Furnace of the heating furnace Cooling temperature (K): Emissivity of material surface Next, the derivation process of equation 11 is shown.

今第2図に示す如く検出部3の位置から鋼材2に向けて
光量1の光を投射する場合を考える。表面に酸化物を有
する鋼材2の反射特性は比較的高い拡散性を有している
ので、シールド部材5を黒体と見倣すとシールド部材5
の外方へ拡散する光量1′と前記1との間には公知の下
記‘2}式が成立する。子(・−ご)(・−フ寺南)=
日 …■ 但し、ご:鋼材2表面の放射率 K;d/R すなわち投射光量の日(日<1)倍が外方へ拡散してい
くことになる。
Now, let us consider a case where a light amount of 1 is projected from the position of the detection section 3 toward the steel material 2 as shown in FIG. Since the reflection characteristics of the steel material 2 having oxides on the surface have relatively high diffusivity, if the shield member 5 is assumed to be a black body, the shield member 5
The following well-known formula '2} holds between the amount of light 1' diffused outwardly and the above 1. Child (・-go) (・-fujiminami) =
However, the emissivity K of the surface of the steel material 2; d/R, that is, the amount of projected light multiplied by 1 (day < 1) will be diffused outward.

従って逆に炉壁1から検出部3に達する放射ェネルギは
シールド部材5の効果によりH倍になる。さて炉壁等か
らの反射による誤差を考慮した測定精度をaとする、す
なわち鋼材温度(絶対温度)のaの割合で反射光量が測
定されるときは、炉墜1からの反射光量と鋼材2からの
放射光量との比Gと測定精度a(a《1)との関係は下
記{31式で与えられる。
Therefore, conversely, the radiation energy reaching the detection section 3 from the furnace wall 1 is multiplied by H due to the effect of the shield member 5. Now, if the measurement accuracy considering the error due to reflection from the furnace wall etc. is a, that is, when the amount of reflected light is measured at the ratio of the steel material temperature (absolute temperature), then the amount of reflected light from the furnace wall 1 and the amount of reflected light from the steel material 2 The relationship between the ratio G to the amount of emitted light from and the measurement accuracy a(a<<1) is given by the following equation {31.

G=nS+aTS)n・ど一ごrSn≠an …
{3,TSn・ご但し、Ts:鋼材温度(K) n:検出部3の特性で定まる定数 ところで炉墜温度Tw(K)は鋼材温度Ts(K)より
△Tdeg高いとすると、炉壁1の放射ェネルギが鋼材
2で反射して検出部3に入射する光量1″は、炉墜1を
黒体と見倣す場合は下記【4}式で与えられる。
G=nS+aTS)n・DoichigorSn≠an...
{3, TSn・However, Ts: Steel temperature (K) n: Constant determined by the characteristics of the detection part 3 If the furnace down temperature Tw (K) is △Tdeg higher than the steel temperature Ts (K), then the furnace wall 1 The amount of light 1'' reflected by the steel material 2 and incident on the detection unit 3 is given by the following formula [4} when the furnace core 1 is assumed to be a black body.

r=b.(Ts+△T)n×日 …【41但し
、b:温度計による定数従って測定精度aを満足させる
、すなわち測定精度をa以下とするには{3’式の関係
からb・(TS+△TrXHミG≠an “
‐【51b・TSn・どが成立する。
r=b. (Ts + △T) n × days ... [41 However, b: constant by thermometer Therefore, in order to satisfy measurement accuracy a, that is, to make the measurement accuracy less than a, from the relationship of equation {3', b・(TS+△TrXH MiG≠an “
- [51b, TSn, etc. are established.

上記{5}式は下記■式の如く書き直され、この不等式
をTw=Ts+△Tとしてk=d/Rについて解くと前
掲{11式が得られることになる。an(・十帯)nX
÷X(1‐戸声2..着)而して本発明は前掲‘1}式
及び上述のその導出過程における鋼材温度Tsの取扱い
により2通りの意味を有することになる。
The above equation {5} is rewritten as the following equation (2), and when this inequality is solved for k=d/R with Tw=Ts+ΔT, the above equation {11 is obtained. an (・ten belts) nX
÷X (1-Dosei 2.. Arrival) Therefore, the present invention has two meanings depending on the treatment of the steel material temperature Ts in the above-mentioned equation '1} and the above-mentioned derivation process.

すなわち所望の測定精度aを満足させるためにシールド
部材5の外周半径R及び/又はシールド部材5と鋼材2
との離隔寸法dの決定をするためには鋼材温度Tsを既
知のデータ又は操業条件等から予測した値として取扱う
必要がある。次に本発明の妥当性を証明するためにウオ
ーキングハース炉における測定例を示す。
That is, in order to satisfy the desired measurement accuracy a, the outer radius R of the shield member 5 and/or the shield member 5 and the steel material 2
In order to determine the separation dimension d from the steel material temperature Ts, it is necessary to treat the steel material temperature Ts as a value predicted from known data or operating conditions. Next, an example of measurement in a walking hearth furnace will be shown to prove the validity of the present invention.

測定例 1 炉壁温度Tw:950oo 鋼材の予測温度Ts:90
00○n:13 ご:。
Measurement example 1 Furnace wall temperature Tw: 950oo Predicted temperature of steel material Ts: 90
00○n:13 Go:.

・8とし、測定精度aを1%以下とすべ〈d/Rを1.
027(鋼材が上昇位置にあるとき)とし、又はaを1
.9%以下とすべ〈dノRを2.067(鋼材が下降位
置にあるとき)となるようにシールド部材の外周半径R
及びその取付位置を定めた。
・8, measurement accuracy a should be 1% or less (d/R should be 1.
027 (when the steel is in the raised position), or a is 1
.. The outer radius R of the shield member should be 9% or less.
and its mounting position was determined.

その結果放射温度計の測定値は鋼材が上昇位置にあると
きには916℃、下降位置にあるときは928℃となっ
た。
As a result, the measured value of the radiation thermometer was 916°C when the steel material was in the raised position, and 928°C when it was in the lowered position.

他方、鋼材に熱電対を取付けて測定した値905℃を鋼
材の真の温度とすると測定精度は夫々0.93%、1.
95%となり、所期の測定精度が満たされていることが
確認され、本発明方法の妥当性が明らかとなつた。
On the other hand, if the true temperature of the steel is 905°C, which is the value measured by attaching a thermocouple to the steel, the measurement accuracy is 0.93% and 1.
The result was 95%, confirming that the expected measurement accuracy was met, and the validity of the method of the present invention became clear.

測定法 2 炉壁温度Tw,n,ご並びに鋼材が上昇位置及び下降位
置夫々にある場合の,d/Rを前記測定例1の場合と同
様の値として、{1’又は【6}式の不等号を等号に贋
換えて、熱電対による鋼材表面温度の実測値(850午
C)をTsとし、鋼材が上昇位置、下降位置夫々にある
場合の放射温度計の指示する値を夫々につき計算により
求めると870oo、887℃となった。
Measurement method 2 Using the furnace wall temperature Tw, n, and d/R when the steel material is in the raised position and the lowered position, respectively, as the same values as in measurement example 1, the equation {1' or [6} is used. Replace the inequality sign with an equality sign, set the actual value of the steel material surface temperature measured by the thermocouple (850 pm C) as Ts, and calculate the values indicated by the radiation thermometer when the steel material is in the raised position and the lowered position, respectively. The temperature was determined to be 870oo and 887°C.

一方放射温度計による実測値は夫々8総℃、884qo
となり、このように計算値と放射温度計による実測値と
がよく一致していることから本発明方法の妥当性が明ら
かとなった。以上のように本発明による場合は加熱炉内
鋼材の側温を行うにあたり、測定精度の管理が可能にな
るので、鋼材温度実測値に基く精密な炉温制御を行うこ
とが可能になる。従って、不要に鋼材を過加熱すること
がなくなり、省エネルギの促進、鋼材抽出温度の精度向
上が図れ、本発明が生産コストの低減、製品品位の向上
に寄与する所多大である。
On the other hand, the actual values measured by the radiation thermometer were 8 degrees Celsius and 884 qo, respectively.
Thus, the validity of the method of the present invention has become clear from the fact that the calculated value and the actual value measured by the radiation thermometer are in good agreement. As described above, according to the present invention, it is possible to manage the measurement accuracy when measuring the side temperature of the steel material in the heating furnace, so it is possible to perform precise furnace temperature control based on the actual measured value of the steel material temperature. Therefore, the steel material is not overheated unnecessarily, energy saving can be promoted, and accuracy of steel material extraction temperature can be improved, and the present invention greatly contributes to reducing production costs and improving product quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を説明するためのシールド部材と鋼
材との位置関係を示す立面断面図、第2図は【21式を
説明するための模式図である。 1・・・・・・炉壁、2・・・・・・鋼材、3・・・・
・・検出部、5・・・.・・シールド部材。 多’図 多2図
FIG. 1 is an elevational sectional view showing the positional relationship between the shield member and the steel material for explaining the method of the present invention, and FIG. 2 is a schematic diagram for explaining the formula [21]. 1...Furnace wall, 2...Steel material, 3...
...detection section, 5... ...Shield member. Multi-figure multi-figure 2

Claims (1)

【特許請求の範囲】 1 加熱炉内において加熱されている材料の温度を放射
温度計を用いて測定する方法において、前記材料の温度
を測定精度aを満足させて測定するために、放射温度計
の検出部に測温対象外から入射する放射エネルギを抑制
すべく測温対象に臨ませる部分に設けるシールド部材の
外周半径Rと、該シールド部材及び前記材料の離隔寸法
dとの関係を下記(1)式の条件を充足させて測定する
ことを特徴とする加熱炉内材料の温度測定方法。 ▲数式、化学式、表等があります▼ 但し、n:放射温度計の検出部の特性により定まる定数
Ts:材料の予測温度(°K) Tw:加熱炉の炉壁
温度(°K) ε:材料表面の放射率
[Claims] 1. In a method of measuring the temperature of a material being heated in a heating furnace using a radiation thermometer, the radiation thermometer is used to measure the temperature of the material while satisfying measurement accuracy a. The relationship between the outer circumferential radius R of the shield member provided in the part facing the temperature measurement object in order to suppress radiant energy that enters the detection part from outside the temperature measurement object and the separation dimension d of the shield member and the material is shown below ( 1) A method for measuring the temperature of a material in a heating furnace, characterized in that the temperature is measured while satisfying the conditions of the formula. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ However, n: Constant determined by the characteristics of the detection part of the radiation thermometer Ts: Predicted temperature of the material (°K) Tw: Furnace wall temperature (°K) ε: Material surface emissivity
JP53096919A 1978-08-08 1978-08-08 Method for measuring temperature of materials in heating furnace Expired JPS6019444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53096919A JPS6019444B2 (en) 1978-08-08 1978-08-08 Method for measuring temperature of materials in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53096919A JPS6019444B2 (en) 1978-08-08 1978-08-08 Method for measuring temperature of materials in heating furnace

Publications (2)

Publication Number Publication Date
JPS5523473A JPS5523473A (en) 1980-02-19
JPS6019444B2 true JPS6019444B2 (en) 1985-05-16

Family

ID=14177758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53096919A Expired JPS6019444B2 (en) 1978-08-08 1978-08-08 Method for measuring temperature of materials in heating furnace

Country Status (1)

Country Link
JP (1) JPS6019444B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127822A (en) * 1981-01-31 1982-08-09 Daido Steel Co Ltd Method of measuring temperature of furnace material with radiation thermometer
JP2007056840A (en) * 2005-08-26 2007-03-08 Yamaha Motor Co Ltd Fuel vapor discharge structure of fuel tank in engine device

Also Published As

Publication number Publication date
JPS5523473A (en) 1980-02-19

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
PL373803A1 (en) Analytical system and method for measuring and controlling a production process
JPS6019444B2 (en) Method for measuring temperature of materials in heating furnace
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
US3285069A (en) Instrument for measuring temperature of extended surfaces
JP3953170B2 (en) Specific heat measurement method and differential scanning calorimeter
JPS57160029A (en) Surface temperature measuring method of body within furance
JPS6146767B2 (en)
JPS634651B2 (en)
JPS6222089B2 (en)
JPS6239733A (en) Black-body furnace type radiation thermometer
CN215414052U (en) Online infrared temperature measuring device of vacuum glass
JPS6160364B2 (en)
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
CN220670726U (en) Radiation temperature error measuring device
JPS6322500Y2 (en)
KR100507606B1 (en) A Calibration Device Of A Contact Type Surface Temperature Indicator
JPS6226692B2 (en)
JPS62145122A (en) Radiation thermometer
JPS6022635A (en) Radiation-type temperature measuring method
JPH0663849B2 (en) Measuring method of material temperature in continuous heating furnace
JPS6219947Y2 (en)
JPS6225973B2 (en)
JPS6038646B2 (en) emissivity measurement method
JPH02296121A (en) Surface-temperature measuring of object in heating furnace