JP3953170B2 - Specific heat measurement method and differential scanning calorimeter - Google Patents

Specific heat measurement method and differential scanning calorimeter Download PDF

Info

Publication number
JP3953170B2
JP3953170B2 JP00419298A JP419298A JP3953170B2 JP 3953170 B2 JP3953170 B2 JP 3953170B2 JP 00419298 A JP00419298 A JP 00419298A JP 419298 A JP419298 A JP 419298A JP 3953170 B2 JP3953170 B2 JP 3953170B2
Authority
JP
Japan
Prior art keywords
cell
temperature
sample
flow meter
heat flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00419298A
Other languages
Japanese (ja)
Other versions
JPH11201923A (en
Inventor
明一 前園
洋一 高崎
幸男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Riko Inc
Original Assignee
Ulvac Riko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Riko Inc filed Critical Ulvac Riko Inc
Priority to JP00419298A priority Critical patent/JP3953170B2/en
Publication of JPH11201923A publication Critical patent/JPH11201923A/en
Application granted granted Critical
Publication of JP3953170B2 publication Critical patent/JP3953170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料の比熱を高精度に測定することができる比熱測定方法及び示差走査熱量計に関する。
【0002】
【従来の技術】
物質の比熱の値を温度の関数として精密に求めることが、物質の工学的な応用と、物性理論の両方から要求されている。この物質の比熱を求めるものとして、従来、図3に示す双子型示差走査熱量計(熱流束型)が提案されている。
【0003】
この示差走査熱量計は、図3に示すように、外周に配置された電気炉(図示しない)により加熱される均熱容器a内に、両端を均熱容器aに熱的に接触させて熱流計板である金属薄板bを設け、該金属薄板bの熱的に対称位置(No.1,No.2)に、試料用セルc1 及び空セルc2 をそれぞれ配置し、金属薄板bの、該試料用セルc1 及び空セルc2 に対応する位置に試料温度用熱電対d1 及び空セル用熱電対d2 をそれぞれ取り付けた構造を有しており、試料の比熱は、これを用いて次のような方法によって求める。
【0004】
この測定は、2回行なわれる。第1回目の測定では、熱量計のNo.1の位置に試料、No.2の位置に空セルc2 を配置する。次に、第2回目の測定では、熱量計のNo.1の位置に熱容量が既知の標準試料、No.2の位置に空セルc2 を配置する。
【0005】
▲1▼ 第1回目の測定。
【0006】
金属薄板bの均熱容器a(熱源)からの熱流束(Φ)は、熱源温度[Th (Th1、Th2)]と試料温度測定点の温度[Tm (Tm1、Tm2)]との間の温度差を熱抵抗(R)で割ったものに等しい。
【0007】
Φ=(Th ーTm )/R …(1)
この熱流束により、熱容量がCm (Cm1、Cm2)の試料温度測定点の部分(試料セルを載せる位置の周辺)、熱容量がC(C1 、C2 )の空セル、熱容量が
s の試料は温度上昇し、その昇温速度がdT/dt=φとなる。No.1のセルc1 については、
(Th1ーTm1)/R1 =φ1 (Cm1+C1 +Cs ) …(2)
No.2のセルc2 についても同様に、
(Th2ーTm2)/R2 =φ2 (Cm2+C2 ) …(3)
理想的条件の下では、
h1=Th21 =R2 =R(1) φ1 =φ2 =φ(1)
m1=Cm2=Cm 1 =C2 …(4)
この条件の下で、(2)、(3)式より、
(Tm2ーTm1)/R(1) =φ(1) ・Cs …(5)
ΔT(1) =Tm2ーTm1=R(1) φ (1) ・Cs …(5´)
ここで、添字の(1)は第1回目の測定を示す。
【0008】
▲2▼ 第2回目の測定。
【0009】
No.1のセルc1 に、熱容量が既知の標準試料を入れ、No.2のセルは空とする。上と同じように、理想的条件下では、(2)、(3)、(5)式と同様に、(6)(7)(8)式が成り立つ。標準試料の熱容量をCr とする。
【0010】
(Th1ーTm1)/R1 =φ1 (Cm1+C1 +Cr ) …(6)
(Th2ーTm2)/R2 =φ2 (Cm2+C2 ) …(7)
(Tm2ーTm1)/R(2) =φ(2) ・Cr …(8)
ΔT(2) =Tm2ーTm1=R(2) ・φ(2) ・Cr …(8´)
ここで、添字の(2)は第2回目の測定を示す。
【0011】
▲3▼ 上記の2回の測定結果から、試料の熱容量が求められる。
【0012】
(5´)と(8´)式より、
ΔT(1) /ΔT(2) ・R(2) /R(1) =φ(1) /φ(2) ・Cs /Cr …(9)
2回の測定で、次の理想的条件を仮定する。
【0013】
(2) =R(1) φ(1) =φ(2) …(10)
したがって、(9)式は、
ΔT(1) /ΔT(2) =Cs /Cr …(11)
s =Cr ・ΔT(1) /ΔT(2) …(12)
ΔT(1) 、ΔT(2) はいずれも測定できる数値であるから、(12)式により試料の熱容量Cs を求めることができる。
【0014】
(4)式のR1 =R2 の理想条件が満たされない場合がある。この場合は、第3回目の測定を行う。第3回目の測定は、No.1、No.2の両セルとも空セルで行う。この測定の場合のNo.1とNo.2の温度差をΔT(3) とすると、R1 =R2 でない場合にも次式でCs が求められる。
【0015】
s =Cr ・(ΔT(1) −ΔT(3) )/(ΔT(2) −ΔT(3) )…(12´)
第3回目の測定は、同一測定条件の場合には省略することができる。しかし、試料の比熱を求めるには、最低2回の測定をしなければならない。
【0016】
【発明が解決しようとする課題】
前述した従来の双子型示差走査熱量計による比熱測定においては、理想的条件として示した(4)式の中で、Th1=Th2としたが、これは、No.1とNo.2の位置の温度分布が均一であることを意味する。しかし、実際には、両者の間には、多少の温度差が生じ、(5)(8)式に誤差を伴うとみなければならない。
【0017】
特に、試料温度が高温度になれば、温度制御の揺らぎと共にこの傾向が増大する。
【0018】
更に、(10)式も実際には誤差を伴う。試料の測定と標準試料の測定の2回の測定を全く同一の条件とする(10)式は理想上の仮定で、実際は等しくなく、誤差を生ずる。
【0019】
実際に上記熱量計を用いて比熱を測定すると、室温付近で±5%、500℃以上では、±8%のばらつきを生ずる。特に1000℃以上では±10%以上のばらつきを生ずる。
【0020】
したがって、室温から高温度の広い範囲において、示差走査熱量計を用いて精密な比熱を測定するためには、
a.熱量計の面内の温度分布の存在に対する対応策。
【0021】
b.2回の測定ではなく、1回の測定で、試料と標準試料の測定を可能にする方法。
【0022】
の2つの問題点を解決しなければならない。
【0023】
従来、前記bの問題解決の方法が提案された。
【0024】
それは、B.Wunderlichによるトリプルセル方式の示差走査熱量計[B.Wunderlich著、J.Thermal Anal.,32,P.1949-1955 (1987)]である。
【0025】
図4はその示差走査熱量計の原理図を示す。
【0026】
同一面上の熱流束計の上に、3等配の位置に基準試料、標準試料及び試料を配置して、基準試料ー試料間の温度差と、基準試料と標準試料間の温度差をそれぞれ同時に測定すれば、1回の測定で済む。
【0027】
この熱量計による測定方法について説明する。
【0028】
No.1のセルc1 は空セル(基準試料)とし、No.2のセルc2 には試料を、No.3のセルc3 には標準試料を入れて、一定速度で加熱する。各セルについて、上記(2)式と同様な式が成り立つ。
【0029】
(Th1ーTm1)/R1 =φ1 (Cm1+C) …(13)
(Th2ーTm2)/R2 =φ2 (Cm2+C+Cs ) …(14)
(Th3ーTm3)/R3 =φ3 (Cm3+C+Cr ) …(15)
ここで、Th1=Th2=Th3=Th 1 =R2 =R3 =R
φ1 =φ2 =φ3 =φ
m1=Cm2=Cm3=Cm
と理想条件を仮定すると、(14)式ー(13)式及び(15)式ー(13)式により
m2ーTm1=R・φ・Cs =ΔT21 …(16)
m3ーTm1=R・φ・Cr =ΔT31 …(17)
(16)(17)式より
ΔT21/ΔT31=Cs /Cr (18)
したがって、
s =Cr ・ΔT21/ΔT31 (19)
により、No.2とNo.1の温度差及びNo.3とNo.1の温度差を測定すれば、試料の熱容量を求めることができる。
【0030】
このトリプルセル方法により、ただ1回の測定で試料の熱容量を求め得たが、上記のa.の問題点については未解決である。Th1=Th2=Th3の仮定は、試料周辺の温度の不均一がある場合には成り立たない。この現象は、特に500℃以上の高温度域では顕著となり、測定のばらつきが大きくなり、±3%以内の誤差範囲の精密な比熱測定は不可能となっている。
【0031】
このように、従来の技術は、500℃〜600℃より高温度では、高精度で試料の比熱を測定することができない。
【0032】
本発明は、上述した従来の問題点に鑑み、試料周辺の温度が不均一である場合でも、高温度域における比熱を高精度に測定することができる比熱測定方法及び示差走査熱量計を提供することを課題とする。
【0033】
【課題を解決するための手段】
上記の課題を解決するために、本発明の示差走査熱流計は、熱流束型示差走査熱流量計であって、昇降温可能な均熱容器内に、第1のセルと、第2のセルと、第1のセル及び第2のセルのそれぞれを温度測定可能に取り付けられた温度センサとを有する第1の熱流計板と、基準試料となる第3のセルと、基準試料となる第4のセルと、第3のセル及び第4のセルのそれぞれを温度測定可能に取り付けられた温度センサとを有する第2の熱流計板とを備え、第1の熱流計板の両端部と、第2の熱流計板の両端部とを、それぞれ均熱容器内に同一位置にて熱的に接触させて装架しており、第1のセルが、試料を入れたセル、空のセル及び標準試料を入れたセルのいずれかであり、第2のセルが、空のセル及び標準試料を入れたセルのいずれかであり、第3のセル及び第4のセルが空のセルであり、試料、標準試料及び基準試料の温度差に基づいて、試料の比熱を求める構成を有している。
請求項2記載の発明は、上記構成に加え、第1の熱流計板と第2の熱流計板とが対称な構造かつ位置にて均熱容器内に設けられている構成を有している。
請求項3記載の発明は、第1の熱流計板及び第2の熱流計板において、第1のセル、第2のセル、第3のセル及び第4のセルを配置する周囲に孔が設けられている構成を有している。
請求項4記載の発明の比熱測定方法は、熱流束型示差走査熱流量計であって、昇降温可能な均熱容器内に、第1のセルと、第2のセルと、第1のセル及び第2のセルのそれぞれを温度測定可能に取り付けられた温度センサとを有する第1の熱流計板と、基準試料となる第3のセルと、基準試料となる第4のセルと、第3のセル及び第4のセルのそれぞれを温度測定可能に取り付けられた温度センサとを有する第2の熱流計板とを備え、第1の熱流計板の両端部と、第2の熱流計板の両端部とを、それぞれ均熱容器内に同一位置にて熱的に接触させて装架している示差走査熱流計にあって、第1のセル、第2のセル、第3のセル及び第4のセルと均熱容器との間の熱抵抗が全て等しいとき、試料を入れた第1のセルの温度と、標準試料を入れた第2のセルの温度と、空の第3のセル及び第4のセルの各温度とを同時に一回測定することにより、試料の比熱を決定する構成を有している。
請求項5記載の発明は、上記構成に加え、示差走査熱流計にあって、熱抵抗が等しくないとき、第1のセル、第2のセル、第3のセル及び第4のセルの全てが空のときの各セルの温度を同時に測定する第1過程と、試料を入れた第1のセルの温度と、標準試料を入れた第2のセルの温度と、空の第3のセル及び第4のセルの各温度とを同時に測定する第2過程と、標準試料を入れた第1のセル及び第2のセルの各温度と、空の第3のセル及び第4のセルの各温度とを同時に測定する第3過程とを備え、各過程における、第1のセルと第3のセルとの温度差と、第2のセルと第4のセルとの温度差に基づいて、試料の比熱を決定する構成を有している。
請求項6記載の発明は、第1過程と第3過程とにより、第1のセルと第3のセルとの温度差及び第3のセルと第4のセルとの温度差が既に求められているとき、第2過程の一回の測定のみで試料の比熱を決定する構成を有している。
【0034】
前記熱流束型示差走査熱量計を用いた比熱測定方法を、図1を参照して説明すると、先ず、試料を入れたNo.1のセルについて、上述の(2)式と同様の式が得られる。
【0035】
(Th1ーTm1)/R1 =φ1 (Cm1+C1 +Cs ) …(20)
符号は、従来の技術の項で説明したのに対応する意味を有する。
【0036】
No.3のセルについても同様に、
(Th3ーTm3)/R3 =φ3 (Cm3+C3 ) …(21)
今、熱量計の面内に温度の不均一があったとしても、Th1とTh3とは同一位置にあり、熱的に接触しているから、Th1=Th3と考えてよい。
【0037】
上記の(4)式と同様に次の理想的条件を仮定する。
【0038】
1 =R3 =R13 φ1 =φ3 =φ13m1=Cm3=Cm13
1 =C3 =C13 …(22)
(20)、(21)、(22)式より
(Tm3ーTm1)/R13=φ13・Cs …(23)
No.2とNo.4のセルについても、同様に
2 =R4 =R24 φ2 =φ4 =φ24m2=Cm4=Cm24
2 =C4 =C24
と仮定して
(Tm4ーTm2)/R24=φ24・Cr …(24)
理想的条件として、
13=R24 φ13=φ24 …(25)
とすると、
(23)(24)(25)式より
(Tm3ーTm1)/(Tm4ーTm2)=Cs /Cr …(26)
または、
Cs=Cr・(Tm3ーTm1)/(Tm4ーTm2) …(27)
測定により、(Tm3ーTm1)/(Tm4ーTm2)が求められるから、ただ1回の測定だけで、試料の熱容量を決定することができる。
【0039】
また、この方法では、熱量計の面内に温度の不均一があっても、Th1とTh3は等しいから、結果には影響を与えず、高精度の比熱を測定することができる。
【0040】
以上の測定方法では、R1 、R2 、R3 、R4 が等しいと仮定したが、等しくない場合でも比熱を測定することができる。
【0041】
この場合には、3回の測定が必要である。
【0042】
第1回目の測定では、すべてのセルを空セルで測定する。(21)式と同様な式の4式を得る。
【0043】
(Th1ーTm1)/R1 =φ1 (Cm +C) …(28)
(Th3ーTm3)/R3 =φ3 (Cm +C) …(29)
(Th2ーTm2)/R2 =φ2 (Cm +C) …(30)
(Th4ーTm4)/R4 =φ4 (Cm +C) …(31)
ここで、Th1=Th3h2=Th4であるから、(28)(29)式より
(28)式−(29)式
m3−Tm1=R1 φ1 (Cm +C)−R3 φ3 (Cm +C)
φ1 =φ3 =φと仮定する。
【0044】
m3−Tm1=(R1 −R3 )φ(Cm +C)=
(R1 −R3 )/R1 ・R1 ・φ(Cm +C)
(28)式より
m3−Tm1=(R1 −R3 )/R1 ・(Th1ーTm1
m3ーTm1=(1ーR3 /R1 )(Th1ーTm1)=ΔT31(1) …(32)
ここで、ΔT31(1) は、(Tm3−Tm1)の第1回目の温度差測定値を示す。
【0045】
(30)(31)式より
m4ーTm2=(1ーR4 /R2 )(Th2ーTm2)=ΔT42(1) …(33)
第2回目の測定では、No.1のセルに試料を、No.2のセルに比熱が既知の標準試料を、No.3のセルとNo.4のセルは空セルとして測定すると、 (28)〜(31)式と同様に、(34)〜(37)式が得られる。
【0046】
(Th1ーTm1)/R1 =φ1 (Cm +C+Cs ) …(34)
(Th3ーTm3)/R3 =φ3 (Cm +C) …(35)
(Th2ーTm2)/R2 =φ2 (Cm +C+Cr ) …(36)
(Th4ーTm4)/R4 =φ4 (Cm +C) …(37)
ここで、Th1=Th3h2=Tm4 であるから、(34)(35)式より
m3ーTm1=(1ーR3 /R1 )(Th1ーTm1)+R3 φ1 s …(38)
同様に、(36)(37)式より
m4ーTm2=ΔT42(2) =(1ーR4 /R2 )(Th2ーTm2)+R4 φ2 r …(39)
(32)(38)式より
m3ーTm1=ΔT31(2) =ΔT31(1) +R3 φ1 s …(40)
(33)(39)式より
m4ーTm2=ΔT42(2) =ΔT42(1) +R4 φ2 r …(41)
(40)(41)式より
s =Cr ・( ΔT31(2) ーΔT31(1) )/(ΔT42(2) ーΔT42(1) )・
4 /R3 …(42)
4 /R3 は、No.1のセルとNo.2のセルの両方に標準試料を入れた測定より求めることができる。ΔT31とΔT42の第3回目の測定値をΔT31(3) 、ΔT42(3) とすると、
4 /R3 =(ΔT42(3) −ΔT42(1) )/(ΔT31(3) −ΔT31(1) )…(42´)
したがって、
s =Cr ・(ΔT31(2) ーΔT31(1) )/(ΔT42(2) ーΔT42(1)
・(ΔT42(3) −ΔT42(1) )/(ΔT31(3) −ΔT31(1) ) …(42”)
になる。
【0047】
この場合にも、熱量計の面内に温度の不均一があってもTh1とTh3は等しいから、結果には影響を与えず、高精度の比熱を測定することができる。
【0048】
【発明の実施の形態】
本発明の実施の形態を図面を参照して説明する。
【0049】
図1は本発明実施の双子型の熱流束型示差走査熱量計1例の概略線図を示す。
【0050】
同図において、1及び2は、いずれも熱流計板(実際は感温板と呼ばれる)である第1及び第2の金属薄板、3は、第1の金属薄板1上のNo.1の位置に置かれた試料(比熱が未知)を入れるセル、4は、第1の金属薄板1上のNo.2の位置に置かれた標準試料(比熱が既知)を入れるセルであり、5及び6は、いずれも第2の金属薄板2上のNo.3及びNo.4に置かれた空セルである。
【0051】
第1の金属薄板1上のセル3(No.1の位置)とセル4(No.2の位置)の下方の対称位置に、空セル5(No.3の位置)と空セル6(No.4の位置)を第2の金属薄板2上に配置し、第1及び第2の金属薄板1及び2の両端を均熱容器7に熱的及び電気的に良好に接触させた構造になっている。第1及び第2の金属薄板1及び2上のNo.1、No.2、No.3、及びNo.4の位置は、いずれも均熱容器7との間の熱抵抗が同じになる位置にある。8は試料温度用熱電対、9は標準試料温度用熱電対、10及び11は、いずれも空セル温度用熱電対で、それぞれ第1及び第2の金属薄板1及び2に取り付けられている。
【0052】
図面では、均熱容器7の外周に設ける電気炉や、試料温度用熱電対8、標準試料温度用熱電対9及び空セル温度用熱電対10、11にそれぞれ接続される直流増幅器等や、前記試料の比熱を算出するマイクロコンピュータ、表示器等は、いずれも周知のものであるので省略した。
【0053】
図2は、前記熱流束計の金属薄板の他例を図2に示す。
【0054】
同図において、金属薄板1(2)は、セル3、4(5,6)を載置する部分がその周囲に明けられた孔12により形成されたブリッジ13を介して金属薄板端部に接続されており、この構成によると、熱抵抗Rが大となり、同じ熱流束に対して温度差を大きくすることができ、換言すると、熱流計板としての感度が向上する。
【0055】
前記の双子型の熱流束型示差走査熱量計を用いて試料の比熱は次の方法により測定する。
【0056】
空セル温度用熱電対10の出力と試料温度用熱電対8の出力との差値及び空セル温度用熱電対11の出力と標準試料温度用熱電対9の出力との差値を、マイクロコンピュータに入力し、コンピュータによりこれらの差値及び標準試料の比熱値を前記(27)式に代入して試料の比熱を算出する。
【0057】
前記の比熱測定方法では、No.1、No.2、No.3、及びNo.4の位置は、いずれも均熱容器7との間の熱抵抗が同じになる位置に設定されたが、熱抵抗が相違する位置に設定してもよく、その場合には、No.1のセルに試料を、No.2のセルに比熱が既知の標準試料を、No.3のセル及びNo.4のセルを空セルとした場合と、No.1、No.2、No.3、及びNo.4のセルのすべてを空セルにした場合の、それぞれの空セル温度用熱電対10の出力と試料温度用熱電対8の出力との差値と、空セル温度用熱電対11の出力と標準試料温度用熱電対9の出力との差値を求めると共に、No.1とNo.2の両方のセルに標準試料を入れ、前記(36)式よりNo.3及びNo.4の位置と均熱容器7間の熱抵抗R3 、R4 を求め、以上の差値、R4 /R3 及び標準試料の比熱値を前記(42)式より代入することにより試料の比熱を算出する。
【0058】
以上の3回の測定は、毎回行う必要はない。同一の試料セルを用いて同一測定条件(例えば、加熱速度、雰囲気、測定温度範囲など)の下で測定すれば、すでにΔT31(1) 、ΔT42(1) 、ΔT31(3) 、ΔT42(3) は求められているので、ただ1回の測定のみで、ΔT31(2) 、ΔT42(2) を求めれば、試料の比熱を求めることができる。
【0059】
尚、本発明の双子型示差走査熱量計は、単なる熱分析として用いる場合には、2つの試料を同時に同一条件で測定できるから、試料の熱的同定、比較などに有効に利用できる。
【0060】
【発明の効果】
本発明は、試料周辺の温度が不均一である場合でも、高温度域における比熱を高精度に測定することができる。また、従来の測定方法と比較して測定回数を少なく且つ高温度域における比熱を高精度に測定することもできる。
【図面の簡単な説明】
【図1】(A)及び(B)は、本発明実施の示差走査熱量計の概略構成を示す切断正面図及び切断平面図。
【図2】(A)及び(B)は、本発明実施の示差走査熱量計に用いる熱流計板の他例の平面図及び断面図。
【図3】(A)及び(B)は、従来の示差走査熱量計の概略構成を示す切断正面図及び切断平面図。
【図4】 従来の示差走査熱量計の他例の原理説明図。
【符号の説明】
1…第1の熱流計板 2…第2の熱流計板
3〜6…セル 7…均熱容器
8…試料温度用熱電対 9…標準試料温度用熱電対
10、11…空セル用熱電対
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a specific heat measurement method and a differential scanning calorimeter that can measure the specific heat of a sample with high accuracy.
[0002]
[Prior art]
It is required from both the engineering application of materials and the theory of physical properties to accurately determine the specific heat value of the material as a function of temperature. Conventionally, a twin-type differential scanning calorimeter (heat flux type) shown in FIG. 3 has been proposed as a means for obtaining the specific heat of this substance.
[0003]
As shown in FIG. 3, this differential scanning calorimeter has a heat flow in a soaking vessel a that is heated by an electric furnace (not shown) arranged on the outer periphery so that both ends are in thermal contact with the soaking vessel a. A metal thin plate b which is a measuring plate is provided, and a sample cell c 1 and an empty cell c 2 are respectively disposed at thermally symmetric positions (No. 1 and No. 2) of the metal thin plate b. The sample temperature thermocouple d 1 and the empty cell thermocouple d 2 are attached to the positions corresponding to the sample cell c 1 and the empty cell c 2 , respectively. It is obtained by the following method.
[0004]
This measurement is performed twice. In the first measurement, the calorimeter No. No. 1 sample, no. An empty cell c 2 is arranged at position 2 . Next, in the second measurement, the calorimeter No. No. 1 standard sample with known heat capacity, No. 1 An empty cell c 2 is arranged at position 2 .
[0005]
(1) First measurement.
[0006]
The heat flux (Φ) from the soaking vessel a (heat source) of the thin metal plate b is expressed as follows: heat source temperature [T h (T h1 , T h2 )] and sample temperature measurement point temperature [T m (T m1 , T m2 ) ] Is equal to the difference in temperature divided by the thermal resistance (R).
[0007]
Φ = (T h −T m ) / R (1)
Due to this heat flux, the sample temperature measurement point portion (around the position where the sample cell is placed) with a heat capacity of C m (C m1 , C m2 ), an empty cell with a heat capacity of C (C 1 , C 2 ), and a heat capacity of C The sample of s rises in temperature, and the rate of temperature rise is dT / dt = φ. No. For one cell c 1 ,
(T h1 −T m1 ) / R 1 = φ 1 (C m1 + C 1 + C s ) (2)
No. Similarly, for cell 2 of cell 2
(T h2 −T m2 ) / R 2 = φ 2 (C m2 + C 2 ) (3)
Under ideal conditions,
T h1 = T h2 R 1 = R 2 = R (1) φ 1 = φ 2 = φ (1)
C m1 = C m2 = C m C 1 = C 2 (4)
Under these conditions, from equations (2) and (3):
(T m2 -T m1 ) / R (1) = φ (1) · C s (5)
ΔT (1) = T m2 -T m1 = R (1) · φ (1) · C s (5 ')
Here, the subscript (1) indicates the first measurement.
[0008]
(2) Second measurement.
[0009]
No. No. 1 cell c 1 is charged with a standard sample with a known heat capacity. The second cell is empty. Similar to the above, under ideal conditions, the equations (6), (7), and (8) hold as in the equations (2), (3), and (5). Let C r be the heat capacity of the standard sample.
[0010]
(T h1 −T m1 ) / R 1 = φ 1 (C m1 + C 1 + C r ) (6)
(T h2 −T m2 ) / R 2 = φ 2 (C m2 + C 2 ) (7)
(T m2 −T m1 ) / R (2) = φ (2) · C r (8)
ΔT (2) = T m2 -T m1 = R (2) · φ (2) · C r (8 ')
Here, the subscript (2) indicates the second measurement.
[0011]
(3) The heat capacity of the sample is obtained from the above two measurement results.
[0012]
From (5 ') and (8'),
ΔT (1) / ΔT (2) · R (2) / R (1) = φ (1) / φ (2) · C s / C r (9)
The following ideal conditions are assumed in two measurements.
[0013]
R (2) = R (1) φ (1) = φ (2) (10)
Therefore, equation (9) is
ΔT (1) / ΔT (2) = C s / C r (11)
C s = C r · ΔT (1) / ΔT (2) (12)
Since ΔT (1) and ΔT (2) are both numerical values that can be measured, the heat capacity C s of the sample can be obtained from equation (12).
[0014]
The ideal condition of R 1 = R 2 in the equation (4) may not be satisfied. In this case, the third measurement is performed. The third measurement was No. 1, no. Both two cells are performed as empty cells. In this measurement, No. 1 and No. Assuming that the temperature difference of 2 is ΔT (3) , C s can be obtained by the following equation even when R 1 = R 2 is not satisfied.
[0015]
C s = C r · (ΔT (1) −ΔT (3) ) / (ΔT (2) −ΔT (3) ) (12 ′)
The third measurement can be omitted when the measurement conditions are the same. However, in order to determine the specific heat of the sample, at least two measurements must be made.
[0016]
[Problems to be solved by the invention]
In the specific heat measurement by the above-described conventional twin type differential scanning calorimeter, T h1 = T h2 in the equation (4) shown as an ideal condition. 1 and No. This means that the temperature distribution at position 2 is uniform. However, in practice, a slight temperature difference occurs between the two, and it must be considered that the equations (5) and (8) are accompanied by an error.
[0017]
In particular, when the sample temperature becomes high, this tendency increases with fluctuations in temperature control.
[0018]
Furthermore, equation (10) also actually involves an error. Equation (10), which takes two measurements of the sample and the standard sample as exactly the same conditions, is an ideal assumption, and is actually not equal and causes an error.
[0019]
When the specific heat is actually measured using the calorimeter, a variation of ± 5% occurs near room temperature, and a variation of ± 8% occurs at 500 ° C. or higher. In particular, a variation of ± 10% or more occurs at 1000 ° C. or higher.
[0020]
Therefore, in order to measure precise specific heat using a differential scanning calorimeter in a wide range from room temperature to high temperature,
a. Countermeasure for existence of temperature distribution in the surface of calorimeter.
[0021]
b. A method that enables measurement of a sample and a standard sample by one measurement instead of two measurements.
[0022]
These two problems must be solved.
[0023]
Conventionally, a method for solving the problem b has been proposed.
[0024]
It is Wanderlich's triple-cell differential scanning calorimeter [B. Wunderlich, J.M. Thermal Anal. 32, P.1949-1955 (1987)].
[0025]
FIG. 4 shows the principle of the differential scanning calorimeter.
[0026]
Place the reference sample, the standard sample, and the sample at three equal positions on the heat flux meter on the same plane, and the temperature difference between the reference sample and the sample and the temperature difference between the reference sample and the standard sample, respectively. If measured at the same time, only one measurement is required.
[0027]
A measurement method using this calorimeter will be described.
[0028]
No. 1 cell c 1 is an empty cell (reference sample). In cell c 2 of No. 2 , the sample is No. A standard sample is placed in cell 3 of 3 and heated at a constant rate. For each cell, a formula similar to the formula (2) is established.
[0029]
(T h1 −T m1 ) / R 1 = φ 1 (C m1 + C) (13)
(T h2 −T m2 ) / R 2 = φ 2 (C m2 + C + C s ) (14)
(T h3 −T m3 ) / R 3 = φ 3 (C m3 + C + C r ) (15)
Here, T h1 = T h2 = T h3 = T h R 1 = R 2 = R 3 = R
φ 1 = φ 2 = φ 3 = φ
C m1 = C m2 = C m3 = C m
Assuming the ideal condition, T m2 −T m1 = R · φ · C s = ΔT 21 (16) according to the equations (14)-(13) and (15)-(13)
T m3 −T m1 = R · φ · C r = ΔT 31 (17)
(16) ΔT 21 / ΔT 31 = C s / C r (18)
Therefore,
C s = C r · ΔT 21 / ΔT 31 (19)
No. 2 and No. No. 1 temperature difference and No. 1 3 and no. If the temperature difference of 1 is measured, the heat capacity of the sample can be obtained.
[0030]
With this triple cell method, the heat capacity of the sample could be obtained by only one measurement. This problem is still unresolved. The assumption of T h1 = T h2 = T h3 does not hold when there is a non-uniform temperature around the sample. This phenomenon becomes remarkable especially in a high temperature range of 500 ° C. or more, and the variation in measurement becomes large, and precise specific heat measurement within an error range of ± 3% is impossible.
[0031]
Thus, the conventional technique cannot measure the specific heat of the sample with high accuracy at temperatures higher than 500 ° C. to 600 ° C.
[0032]
The present invention provides a specific heat measurement method and a differential scanning calorimeter that can measure the specific heat in a high temperature range with high accuracy even when the temperature around the sample is non-uniform in view of the above-described conventional problems. This is the issue.
[0033]
[Means for Solving the Problems]
In order to solve the above problems, a differential scanning heat flow meter of the present invention is a heat flux type differential scanning heat flow meter, in which a first cell and a second cell are placed in a soaking vessel capable of raising and lowering temperature. A first heat flow meter board having a temperature sensor attached to each of the first cell and the second cell so as to allow temperature measurement, a third cell serving as a reference sample, and a fourth cell serving as a reference sample. And a second heat flow meter plate having a temperature sensor attached to each of the third cell and the fourth cell so that the temperature can be measured, and both ends of the first heat flow meter plate, The two end portions of the heat flow meter plate are mounted in thermal contact with each other at the same position in the soaking vessel. The first cell is a cell containing a sample, an empty cell, and a standard. One of the cells containing the sample, and the second cell is either the empty cell or the cell containing the standard sample. , The third cell and the fourth cell is an empty cell, the sample, based on the temperature difference between the standard sample and the reference sample has a configuration for obtaining the specific heat of the sample.
In addition to the above configuration, the invention according to claim 2 has a configuration in which the first heat flow meter plate and the second heat flow meter plate are provided in the soaking vessel at a symmetrical structure and position. .
According to a third aspect of the present invention, in the first heat flow meter plate and the second heat flow meter plate, a hole is provided around the first cell, the second cell, the third cell, and the fourth cell. It has the structure which is made.
The specific heat measurement method according to the invention of claim 4 is a heat flux type differential scanning heat flow meter, wherein a first cell, a second cell, and a first cell are placed in a soaking vessel capable of raising and lowering temperature. And a first heat flow meter board having a temperature sensor attached to each of the second cells so that the temperature can be measured, a third cell serving as a reference sample, a fourth cell serving as a reference sample, and a third cell A second heat flow meter plate having a temperature sensor attached to each of the first cell and the fourth cell so that the temperature can be measured, and both ends of the first heat flow meter plate, and a second heat flow meter plate The differential scanning heat flow meter is mounted in such a manner that both ends thereof are in thermal contact with each other at the same position in the soaking vessel, and the first cell, the second cell, the third cell, and the second cell When the thermal resistances between the four cells and the soaking vessel were all equal, the temperature of the first cell containing the sample and the standard sample were added. And the temperature of the second cell, by simultaneously measuring once the temperature and the third cell and a fourth cell of the sky, and has a configuration that determines the specific heat of the sample.
The invention according to claim 5 is the differential scanning heat flow meter in addition to the above configuration, and when the thermal resistance is not equal, all of the first cell, the second cell, the third cell, and the fourth cell are A first step of simultaneously measuring the temperature of each cell when empty, the temperature of the first cell containing the sample, the temperature of the second cell containing the standard sample, the third cell and the empty A second step of simultaneously measuring each temperature of the four cells, each temperature of the first cell and the second cell containing the standard sample, each temperature of the empty third cell and the fourth cell, And a specific heat of the sample based on the temperature difference between the first cell and the third cell and the temperature difference between the second cell and the fourth cell in each step. Is determined.
According to the sixth aspect of the present invention, the temperature difference between the first cell and the third cell and the temperature difference between the third cell and the fourth cell are already obtained by the first process and the third process. The specific heat of the sample is determined by only one measurement in the second process.
[0034]
The specific heat measurement method using the heat flux type differential scanning calorimeter will be described with reference to FIG. For one cell, a formula similar to the above formula (2) is obtained.
[0035]
(T h1 −T m1 ) / R 1 = φ 1 (C m1 + C 1 + C s ) (20)
Reference numerals have the meanings corresponding to those described in the section of the prior art.
[0036]
No. Similarly for cell 3
(T h3 −T m3 ) / R 3 = φ 3 (C m3 + C 3 ) (21)
Now, even if there is a non-uniform temperature in the surface of the calorimeter, T h1 and T h3 are in the same position and are in thermal contact, so it can be considered that T h1 = T h3 .
[0037]
Similar to the above equation (4), the following ideal condition is assumed.
[0038]
R 1 = R 3 = R 13 φ 1 = φ 3 = φ 13 C m1 = C m3 = C m13
C 1 = C 3 = C 13 (22)
From (20), (21), and (22), (T m3 −T m1 ) / R 13 = φ 13 · C s (23)
No. 2 and No. Similarly for the four cells, R 2 = R 4 = R 24 φ 2 = φ 4 = φ 24 C m2 = C m4 = C m24
C 2 = C 4 = C 24
Assuming that (T m4 −T m2 ) / R 24 = φ 24 · C r (24)
As an ideal condition,
R 13 = R 24 φ 13 = φ 24 (25)
Then,
(23) (24) From the equation (25), (T m3 -T m1 ) / (T m4 -T m2 ) = C s / C r (26)
Or
Cs = Cr · (T m3 −T m1 ) / (T m4 −T m2 ) (27)
Since (T m3 -T m1 ) / (T m4 -T m2 ) is obtained by measurement, the heat capacity of the sample can be determined by only one measurement.
[0039]
Also, with this method, even if there is a non-uniform temperature in the surface of the calorimeter, T h1 and T h3 are equal, so that the result can be measured with high accuracy without affecting the result.
[0040]
In the above measurement method, it is assumed that R 1 , R 2 , R 3 , and R 4 are equal, but the specific heat can be measured even when they are not equal.
[0041]
In this case, three measurements are required.
[0042]
In the first measurement, all cells are measured with empty cells. Four formulas similar to the formula (21) are obtained.
[0043]
(T h1 −T m1 ) / R 1 = φ 1 (C m + C) (28)
(T h3 −T m3 ) / R 3 = φ 3 (C m + C) (29)
(T h2 −T m2 ) / R 2 = φ 2 (C m + C) (30)
(T h4 −T m4 ) / R 4 = φ 4 (C m + C) (31)
Here, since T h1 = T h3 Th h2 = T h4 , from the equations (28) and (29), the equation (28) − (29) equation T m3 −T m1 = R 1 φ 1 (C m + C) − R 3 φ 3 (C m + C)
Assume that φ 1 = φ 3 = φ.
[0044]
T m3 −T m1 = (R 1 −R 3 ) φ (C m + C) =
(R 1 −R 3 ) / R 1 · R 1 · φ (C m + C)
From Equation (28), T m3 −T m1 = (R 1 −R 3 ) / R 1 · (T h1 −T m1 )
T m3 −T m1 = (1−R 3 / R 1 ) (T h1 −T m1 ) = ΔT 31 (1) (32)
Here, ΔT 31 (1) represents the first temperature difference measurement value of (T m3 −T m1 ).
[0045]
(30) From the equation (31), T m4 −T m2 = (1−R 4 / R 2 ) (T h2 −T m2 ) = ΔT 42 (1) (33)
In the second measurement, no. No. 1 in the cell, No. A standard sample with a known specific heat in cell No. 2 3 cells and No. 3 cell. When the cell 4 is measured as an empty cell, the equations (34) to (37) are obtained in the same manner as the equations (28) to (31).
[0046]
(T h1 −T m1 ) / R 1 = φ 1 (C m + C + C s ) (34)
(T h3 −T m3 ) / R 3 = φ 3 (C m + C) (35)
(T h2 −T m2 ) / R 2 = φ 2 (C m + C + C r ) (36)
(T h4 −T m4 ) / R 4 = φ 4 (C m + C) (37)
Here, since T h1 = T h3 Th h2 = T m4 , T m3 −T m1 = (1−R 3 / R 1 ) (T h1 −T m1 ) + R 3 φ from the equations (34) and (35). 1 C s (38)
Similarly, (36) (37) T m4 over T m @ 2 = [Delta] T 42 from the equation (2) = (1 over R 4 / R 2) (T h2 over T m2) + R 4 φ 2 C r ... (39)
(32) From equation (38), T m3 −T m1 = ΔT 31 (2) = ΔT 31 (1) + R 3 φ 1 C s (40)
(33) (39) T m4 over from the equation T m2 = ΔT 42 (2) = ΔT 42 (1) + R 4 φ 2 C r ... (41)
(40) From equation (41), C s = C r · (ΔT 31 (2) -ΔT 31 (1) ) / (ΔT 42 (2) -ΔT 42 (1) )
R 4 / R 3 (42)
R 4 / R 3 is No. 1 cell and No. 1 cell. It can be obtained from measurement in which a standard sample is placed in both of the two cells. If the third measured values of ΔT 31 and ΔT 42 are ΔT 31 (3) and ΔT 42 (3) ,
R 4 / R 3 = (ΔT 42 (3) -ΔT 42 (1) ) / (ΔT 31 (3) -ΔT 31 (1) ) (42 ')
Therefore,
C s = C r · (ΔT 31 (2) −ΔT 31 (1) ) / (ΔT 42 (2) −ΔT 42 (1) )
・ (ΔT42 (3) −ΔT42 (1) ) / (ΔT31 (3) −ΔT31 (1) ) (42 ″)
become.
[0047]
Also in this case, even if there is a non-uniform temperature in the surface of the calorimeter, T h1 and T h3 are equal, so that the result is not affected and the specific heat can be measured with high accuracy.
[0048]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0049]
FIG. 1 shows a schematic diagram of one example of a twin type heat flux type differential scanning calorimeter of the present invention.
[0050]
In the figure, reference numerals 1 and 2 denote first and second thin metal plates, both of which are heat flow meter plates (actually referred to as temperature sensitive plates), and reference numeral 3 denotes No. 1 on the first thin metal plate 1. 1 is a cell in which a sample (specific heat is unknown) placed in position 1, and No. 4 on No. 1 on the first metal thin plate 1 is placed. No. 2 on the second thin metal plate 2 is a cell for storing a standard sample (having a known specific heat) placed at the position No. 2. 3 and no. 4 is an empty cell.
[0051]
An empty cell 5 (No. 3 position) and an empty cell 6 (No. 3) are positioned symmetrically below the cell 3 (No. 1 position) and the cell 4 (No. 2 position) on the first thin metal plate 1. .4) is arranged on the second thin metal plate 2, and both ends of the first and second thin metal plates 1 and 2 are in good thermal and electrical contact with the soaking vessel 7. ing. No. 1 on the first and second thin metal plates 1 and 2. 1, no. 2, no. 3 and no. The positions of 4 are positions where the thermal resistance with the soaking vessel 7 is the same. Reference numeral 8 is a thermocouple for sample temperature, 9 is a thermocouple for standard sample temperature, and 10 and 11 are thermocouples for empty cell temperature, which are attached to the first and second thin metal plates 1 and 2, respectively.
[0052]
In the drawing, an electric furnace provided on the outer periphery of the soaking vessel 7, a sample temperature thermocouple 8, a standard sample temperature thermocouple 9, and a DC amplifier connected to the empty cell temperature thermocouples 10 and 11, etc. Since a microcomputer, a display, and the like for calculating the specific heat of the sample are well known, they are omitted.
[0053]
FIG. 2 shows another example of the metal thin plate of the heat flux meter.
[0054]
In the figure, the thin metal plate 1 (2) is connected to the end of the thin metal plate via a bridge 13 formed by a hole 12 in which a portion on which the cells 3, 4 (5, 6) are placed is opened. Thus, according to this configuration, the thermal resistance R is increased, and the temperature difference can be increased with respect to the same heat flux. In other words, the sensitivity as a heat flow meter board is improved.
[0055]
Using the twin heat flux type differential scanning calorimeter, the specific heat of the sample is measured by the following method.
[0056]
The difference value between the output of the empty cell temperature thermocouple 10 and the output of the sample temperature thermocouple 8 and the difference value between the output of the empty cell temperature thermocouple 11 and the output of the standard sample temperature thermocouple 9 are calculated using a microcomputer. Then, the difference value and the specific heat value of the standard sample are substituted into the equation (27) by a computer to calculate the specific heat of the sample.
[0057]
In the above specific heat measurement method, no. 1, no. 2, no. 3 and no. 4 is set to a position where the thermal resistance with the soaking vessel 7 is the same, but may be set to a position where the thermal resistance is different. No. 1 in the cell, No. A standard sample with a known specific heat in cell No. 2 3 and No. 3 No. 4 cell is an empty cell, and 1, no. 2, no. 3 and no. When all four cells are empty cells, the difference between the output of the thermocouple 10 for empty cell temperature and the output of the thermocouple 8 for sample temperature, the output of the thermocouple 11 for empty cell temperature, and the standard While obtaining the difference value from the output of the thermocouple 9 for the sample temperature, No. 1 and No. No. 2 was put into both cells, and No. 2 was obtained from the above equation (36). 3 and no. Heat resistance R 3 , R 4 between the position 4 and the soaking vessel 7 is obtained, and the specific heat of the sample is substituted by substituting the above difference value, R 4 / R 3 and the specific heat value of the standard sample from the equation (42). Is calculated.
[0058]
The above three measurements need not be performed every time. If measurement is performed under the same measurement conditions (for example, heating rate, atmosphere, measurement temperature range, etc.) using the same sample cell, ΔT 31 (1) , ΔT 42 (1) , ΔT 31 (3) , ΔT Since 42 (3) is obtained, the specific heat of the sample can be obtained by obtaining ΔT 31 (2) and ΔT 42 (2) by only one measurement.
[0059]
Note that the twin-type differential scanning calorimeter of the present invention can be effectively used for thermal identification and comparison of samples because two samples can be measured simultaneously under the same conditions when used as a simple thermal analysis.
[0060]
【The invention's effect】
The present invention can measure the specific heat in a high temperature range with high accuracy even when the temperature around the sample is not uniform. In addition, the specific heat in the high temperature range can be measured with high accuracy by reducing the number of measurements compared to the conventional measurement method.
[Brief description of the drawings]
FIGS. 1A and 1B are a cut front view and a cut plan view showing a schematic configuration of a differential scanning calorimeter according to the present invention.
FIGS. 2A and 2B are a plan view and a cross-sectional view of another example of the heat flow meter plate used in the differential scanning calorimeter according to the present invention.
FIGS. 3A and 3B are a cut front view and a cut plan view showing a schematic configuration of a conventional differential scanning calorimeter. FIGS.
FIG. 4 is a diagram illustrating the principle of another example of a conventional differential scanning calorimeter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st heat flow meter board 2 ... 2nd heat flow meter boards 3-6 ... Cell 7 ... Soaking vessel 8 ... Thermocouple for sample temperature 9 ... Thermocouple for standard sample temperature 10, 11 ... Thermocouple for empty cell

Claims (6)

熱流束型示差走査熱流量計であって、昇降温可能な均熱容器内に、第1のセルと、第2のセルと、第1のセル及び第2のセルのそれぞれを温度測定可能に取り付けられた温度センサとを有する第1の熱流計板と、A heat flux type differential scanning heat flow meter capable of measuring the temperature of each of the first cell, the second cell, the first cell and the second cell in a soaking vessel capable of raising and lowering the temperature. A first heat flow meter board having an attached temperature sensor;
基準試料となる第3のセルと、基準試料となる第4のセルと、第3のセル及び第4のセルのそれぞれを温度測定可能に取り付けられた温度センサとを有する第2の熱流計板とを備え、A second heat flow meter plate having a third cell serving as a reference sample, a fourth cell serving as a reference sample, and a temperature sensor attached to each of the third cell and the fourth cell so as to allow temperature measurement. And
前記第1の熱流計板の両端部と、前記第2の熱流計板の両端部とを、それぞれ前記均熱容器内に同一位置にて熱的に接触させて装架しており、The both ends of the first heat flow meter plate and the both ends of the second heat flow meter plate are mounted in thermal contact with each other at the same position in the soaking vessel, respectively.
前記第1のセルが、試料を入れたセル、空のセル及び標準試料を入れたセルのいずれかであり、The first cell is one of a cell containing a sample, an empty cell, and a cell containing a standard sample;
前記第2のセルが、空のセル及び標準試料を入れたセルのいずれかであり、The second cell is either an empty cell or a cell containing a standard sample;
前記第3のセル及び前記第4のセルが空のセルであり、The third cell and the fourth cell are empty cells;
前記試料、前記標準試料及び前記基準試料の温度差に基づいて、前記試料の比熱を求める示差走査熱流計。A differential scanning heat flow meter that obtains specific heat of the sample based on a temperature difference between the sample, the standard sample, and the reference sample.
前記第1の熱流計板と前記第2の熱流計板とが対称な構造かつ位置にて前記均熱容器内に設けられていることを特徴とする請求項1記載の示差走査熱流計。2. The differential scanning heat flow meter according to claim 1, wherein the first heat flow meter plate and the second heat flow meter plate are provided in the soaking vessel in a symmetrical structure and position. 前記第1の熱流計板及び前記第2の熱流計板において、前記第1のセル、第2のセル、第3のセル及び第4のセルを配置する周囲に孔が設けられていることを特徴とする請求項1又は2に記載の示差走査熱流計。In the first heat flow meter plate and the second heat flow meter plate, a hole is provided around the first cell, the second cell, the third cell, and the fourth cell. The differential scanning heat flow meter according to claim 1 or 2, characterized in that 熱流束型示差走査熱流量計であって、昇降温可能な均熱容器内に、第1のセルと、第2のセルと、第1のセル及び第2のセルのそれぞれを温度測定可能に取り付けられた温度センサとを有する第1の熱流計板と、基準試料となる第3のセルと、基準試料となる第4のセルと、第3のセル及び第4のセルのそれぞれを温度測定可能に取り付けられた温度センサとを有する第2の熱流計板とを備え、前記第1の熱流計板の両端部と、前記第2の熱流計板の両端部とを、それぞれ前記均熱容器内に同一位置にて熱的に接触させて装架している示差走査熱流計にあって、A heat flux type differential scanning heat flow meter capable of measuring the temperature of each of the first cell, the second cell, the first cell and the second cell in a soaking vessel capable of raising and lowering the temperature. A first heat flow meter board having a temperature sensor attached thereto, a third cell serving as a reference sample, a fourth cell serving as a reference sample, and measuring each of the third cell and the fourth cell. A second heat flow meter plate having a temperature sensor attached thereto, wherein both ends of the first heat flow meter plate and both ends of the second heat flow meter plate are respectively connected to the soaking vessel. A differential scanning heat flow meter mounted in thermal contact at the same position inside,
第1のセル、第2のセル、第3のセル及び第4のセルと前記均熱容器との間の熱抵抗が全て等しいとき、When the thermal resistance between the first cell, the second cell, the third cell, and the fourth cell and the soaking vessel are all equal,
試料を入れた第1のセルの温度と、標準試料を入れた第2のセルの温度と、空の第3のセル及び第4のセルの各温度とを同時に一回測定することにより、前記試料の比熱を決定する比熱測定方法。By measuring the temperature of the first cell containing the sample, the temperature of the second cell containing the standard sample, and the temperatures of the empty third cell and the fourth cell at the same time, A specific heat measurement method for determining the specific heat of a sample.
前記示差走査熱流計にあって、前記熱抵抗が等しくないとき、In the differential scanning heat flow meter, when the thermal resistance is not equal,
第1のセル、第2のセル、第3のセル及び第4のセルの全てが空のときの各セルの温度を同時に測定する第1過程と、A first step of simultaneously measuring the temperature of each cell when all of the first cell, the second cell, the third cell, and the fourth cell are empty;
試料を入れた第1のセルの温度と、標準試料を入れた第2のセルの温度と、空の第3のセル及び第4のセルの各温度と、を同時に測定する第2過程と、A second step of simultaneously measuring the temperature of the first cell containing the sample, the temperature of the second cell containing the standard sample, and the temperatures of the empty third and fourth cells;
標準試料を入れた第1のセル及び第2のセルの各温度と、空の第3のセル及び第4のセルの各温度と、を同時に測定する第3過程と、A third step of simultaneously measuring each temperature of the first cell and the second cell containing the standard sample and each temperature of the empty third cell and the fourth cell;
を備え、With
前記各過程における、第1のセルと第3のセルとの温度差と、第2のセルと第4のセルとの温度差に基づいて、前記試料の比熱を決定することを特徴とする請求項4記載の比熱測定方法。The specific heat of the sample is determined based on a temperature difference between the first cell and the third cell and a temperature difference between the second cell and the fourth cell in each step. Item 5. The specific heat measurement method according to Item 4.
前記第1過程と前記第3過程とにより、前記第1のセルと第3のセルとの温度差及び前記第3のセルと第4のセルとの温度差が既に求められているとき、When the temperature difference between the first cell and the third cell and the temperature difference between the third cell and the fourth cell are already obtained by the first process and the third process,
前記第2過程の一回の測定のみで前記試料の比熱を決定することを特徴とする請求項5記載の比熱測定方法。6. The specific heat measurement method according to claim 5, wherein the specific heat of the sample is determined by only one measurement of the second process.
JP00419298A 1998-01-12 1998-01-12 Specific heat measurement method and differential scanning calorimeter Expired - Fee Related JP3953170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00419298A JP3953170B2 (en) 1998-01-12 1998-01-12 Specific heat measurement method and differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00419298A JP3953170B2 (en) 1998-01-12 1998-01-12 Specific heat measurement method and differential scanning calorimeter

Publications (2)

Publication Number Publication Date
JPH11201923A JPH11201923A (en) 1999-07-30
JP3953170B2 true JP3953170B2 (en) 2007-08-08

Family

ID=11577844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00419298A Expired - Fee Related JP3953170B2 (en) 1998-01-12 1998-01-12 Specific heat measurement method and differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JP3953170B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831487B2 (en) * 2006-12-21 2011-12-07 エスアイアイ・ナノテクノロジー株式会社 Differential scanning calorimeter
KR101070998B1 (en) 2008-12-12 2011-10-07 서울대학교산학협력단 Heat capacity measurement device at high temperature
CN103323487B (en) * 2013-06-07 2015-11-04 山东省计算中心 Wall body local region volumetric specific heat capacity determination system and method
CN103940847B (en) * 2014-04-15 2016-04-06 江苏大学 A kind of based on heat flux sensor anisotropic films thermal conductivity method of testing and device
RU2716472C1 (en) * 2019-07-29 2020-03-11 Российская Федерация, от имени которой выступает Федеральное агентство по техническому регулированию и метрологии (Росстандарт) Method of measuring specific heat capacity of materials
CN110736764B (en) * 2019-10-16 2022-05-17 杭州仰仪科技有限公司 Lithium battery specific heat capacity measuring method and device based on differential adiabatic tracing
CN117451217B (en) * 2023-12-25 2024-03-12 中国空气动力研究与发展中心计算空气动力研究所 Aerospace heat flow sensor and heat flow correction method based on double temperature difference compensation

Also Published As

Publication number Publication date
JPH11201923A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
Danley New heat flux DSC measurement technique
Parkinson et al. The molar heats of lead sulphide, selenide and telluride in the temperature range 20 K to 260 K
EP0159438A2 (en) Multi-layered thin film heat transfer gauge
US5258929A (en) Method for measuring thermal conductivity
JP3953170B2 (en) Specific heat measurement method and differential scanning calorimeter
Scoarnec et al. A new guarded hot plate designed for thermal-conductivity measurements at high temperature
JPH11160261A (en) Differential scanning calorimeter
US2759354A (en) Isothermal systems for gas analysis
Flynn et al. Design of a subminiature guarded hot plate apparatus
US4155244A (en) Apparatus for determining thermal conductivity of materials
Wunderlich Development towards a single-run DSC for heat capacity measurements
JP3300110B2 (en) Gas detector
US6390674B1 (en) Thermal analysis apparatus and method capable of accurately measuring a temperature of a large diameter sample
EP0325441B1 (en) A method for measuring thermal conductivity
SU1165957A1 (en) Method of determining thermal and physical characteristics of material flat specimens and device for effecting same
Laubitz The unmatched guard method of measuring thermal conductivity at high temperatures
JP2909922B2 (en) Temperature compensation method for thermomechanical analysis
JPS5923369B2 (en) Zero-level heat flow meter
US2882719A (en) Apparatus for fluid analysis
JPH04299242A (en) Specific heat measuring apparatus
JP3163558B2 (en) Flow velocity detector
US3746980A (en) Method and apparatus for measuring characteristics of electric circuits
JPH03225236A (en) Method for measuring radiant heat value and heat transfer rate
SU1545103A1 (en) Heat flow meter
Mzali et al. Measurement of temperature-dependent thermal conductivity of moist bricks using the transient hot-bridge sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees