JP2909922B2 - Temperature compensation method for thermomechanical analysis - Google Patents

Temperature compensation method for thermomechanical analysis

Info

Publication number
JP2909922B2
JP2909922B2 JP19334790A JP19334790A JP2909922B2 JP 2909922 B2 JP2909922 B2 JP 2909922B2 JP 19334790 A JP19334790 A JP 19334790A JP 19334790 A JP19334790 A JP 19334790A JP 2909922 B2 JP2909922 B2 JP 2909922B2
Authority
JP
Japan
Prior art keywords
temperature
sample
correction
measurement
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19334790A
Other languages
Japanese (ja)
Other versions
JPH0477654A (en
Inventor
芳春 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP19334790A priority Critical patent/JP2909922B2/en
Publication of JPH0477654A publication Critical patent/JPH0477654A/en
Application granted granted Critical
Publication of JP2909922B2 publication Critical patent/JP2909922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱機械的分析の温度補正方法に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a temperature correction method for thermomechanical analysis.

〔発明の概要〕[Summary of the Invention]

本発明は、熱機械的分析装置を用いて測定を行う場
合、正確に試料温度を測定することを目的とし、試料保
持部材の底部に測定試料の約半分から同一の長さで測定
試料と同一材質の材料を配置し、これを温度補正用台座
とし、この温度補正用台座の上部に試料容器を載置し、
この試料容器の中に温度補正用試料を入れ、この温度補
正用試料の融点を測定し、一種または複数種の前記温度
補正用試料の融点測定値より温度補正値を算出し、この
温度補正値を温度補正器に入力し、測定試料の熱電対に
よる検出温度を前記温度補正器によって補正し出力する
ことにより、測定試料の材質や大きさによる温度計測誤
差を防ぐことができ、熱膨張率測定や転移温度測定など
において測定精度を向上させることができる方法であ
る。
An object of the present invention is to accurately measure a sample temperature when performing measurement using a thermomechanical analyzer. The material of the material is arranged, and this is used as a pedestal for temperature compensation, and a sample container is placed on the upper part of the pedestal for temperature compensation,
A temperature correction sample is placed in the sample container, the melting point of the temperature correction sample is measured, and a temperature correction value is calculated from one or more kinds of the melting point measurement values of the temperature correction sample. Is input to the temperature compensator, and the temperature detected by the thermocouple of the measurement sample is corrected and output by the temperature compensator, whereby a temperature measurement error due to the material and size of the measurement sample can be prevented. It is a method that can improve the measurement accuracy in measurement of the transition temperature and the like.

〔従来の技術〕[Conventional technology]

従来の熱機械的分析装置の温度補正方法は、第4図に
示される構成によって行われていた。
A conventional temperature correction method for a thermomechanical analyzer has been performed by the configuration shown in FIG.

底を有する筒状の試料保持部材1の底部に試料台8が
載置され、その上部に温度補正用試料11の入った試料容
器10が載置され、更にその上部に試料容器蓋12が載せて
ある。前記試料保持部材1の試料載置部と前記試料容器
10及び前記温度補正用試料11は、加熱炉7内に配置され
る。
A sample stage 8 is mounted on the bottom of a cylindrical sample holding member 1 having a bottom, a sample container 10 containing a temperature correction sample 11 is mounted thereon, and a sample container lid 12 is further mounted thereon. It is. The sample mounting part of the sample holding member 1 and the sample container
The temperature correction sample 10 and the temperature correction sample 11 are disposed in the heating furnace 7.

また、前記試料容器10の近傍には、熱電対6が配置さ
れ、熱電対6によって前記温度補正用試料11の温度を検
出する。前記熱電対6は、温度計測器13に接続され、温
度検出信号をこの温度計測器13に送る。
In addition, a thermocouple 6 is arranged near the sample container 10, and the temperature of the temperature correction sample 11 is detected by the thermocouple 6. The thermocouple 6 is connected to a temperature measuring device 13 and sends a temperature detection signal to the temperature measuring device 13.

一方、前記試料容器蓋12の上端には、プローブ2が案
内され、このプローブ2の中央部には、差動トランスコ
ア3が固定され、その上部には力発生器5が設置されて
いる。
On the other hand, a probe 2 is guided at the upper end of the sample container lid 12, a differential transformer core 3 is fixed at the center of the probe 2, and a force generator 5 is installed above the core.

前記温度補正用試料11の温度を前記加熱炉7によって
上昇させると、前記温度補正用試料11が純金属等である
場合、その融点の温度に到達すると直ちに融解し始める
ため、前記プローブ2と前記差動トランスコア3は前記
力発生器5により下方に押され、同時に下降し始める。
このときの変位の信号は、差動トランス本体4からこれ
に接続されている変位計測器16に送られる。また、この
ときの温度は、前記熱電対6から温度計測器13に送られ
る。この測定温度と前記温度補正用試料11の融点の文献
値とを比較して、その差分を補正値とする方法がある。
When the temperature of the temperature correction sample 11 is raised by the heating furnace 7, when the temperature correction sample 11 is made of a pure metal or the like, melting starts immediately when the temperature of the temperature correction sample 11 reaches its melting point. The differential transformer core 3 is pushed downward by the force generator 5 and simultaneously starts to descend.
The displacement signal at this time is sent from the differential transformer main body 4 to a displacement measuring device 16 connected thereto. The temperature at this time is sent from the thermocouple 6 to the temperature measuring device 13. There is a method in which the measured temperature is compared with a literature value of the melting point of the temperature correction sample 11, and the difference is used as a correction value.

一般に連続的に温度を変化させながら、物質の温度を
計測する場合、対象の物質と温度計との間に温度勾配が
生じる。そこで、温度測定の精度を上げるため温度勾配
による誤差を補正する必要がある。この補正方法として
は、前述のように転移温度(融点)の良く知られた物質
の転移する温度を温度計で計測し、この測定値と転移温
度の良く知られている物質の転移温度値との差分を補正
値とする。実際にある試料を測定した場合には、その測
定温度値に補正値を加える方法が良く用いられる。
Generally, when measuring the temperature of a substance while continuously changing the temperature, a temperature gradient occurs between the target substance and the thermometer. Therefore, it is necessary to correct an error due to a temperature gradient in order to increase the accuracy of temperature measurement. As a correction method, as described above, the transition temperature of a substance having a well-known transition temperature (melting point) is measured with a thermometer, and this measured value is compared with the transition temperature value of a substance having a well-known transition temperature. Is the correction value. When a certain sample is actually measured, a method of adding a correction value to the measured temperature value is often used.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前述補正方法は、温度計と測定試料との位置関係が一
定でかつ試料の測定が温度補正のための温度補正用試料
を測定したときとほぼ同一状態である場合のみ有効であ
る。
The above-described correction method is effective only when the positional relationship between the thermometer and the measurement sample is constant and the measurement of the sample is almost the same as when the temperature correction sample for temperature correction is measured.

通常、熱機械的分析装置においては、測定に用いられ
る試料の形状が多様なため温度計と測定試料との位置関
係は一定とはならない。また、この試料体積は、温度補
正用試料に比べ、著しく大きいため測定試料と温度補正
試料とが同一状態で測定されることはほとんどない。従
って、従来の補正方法により補正された温度は、測定試
料の真の温度に対し、大きな誤差をもち正しい温度測定
がなされなかった。
Usually, in a thermomechanical analyzer, the positional relationship between a thermometer and a measurement sample is not constant because the shape of the sample used for measurement is various. Further, since the sample volume is significantly larger than the temperature correction sample, the measurement sample and the temperature correction sample are hardly measured in the same state. Therefore, the temperature corrected by the conventional correction method has a large error with respect to the true temperature of the measurement sample, and correct temperature measurement cannot be performed.

更に、測定試料の体積が同一の場合でもその材質の相
違により熱伝導度や熱容量が異なるため試料内の温度分
布も異なってくる。そのため、試料の温度をその近傍に
配置されている熱電対によって正しく計測することはほ
とんど不可能である。
Furthermore, even when the volume of the measurement sample is the same, the thermal conductivity and the heat capacity are different due to the difference in the material, so that the temperature distribution in the sample is different. Therefore, it is almost impossible to correctly measure the temperature of the sample using a thermocouple disposed in the vicinity thereof.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記の欠点をなくすため開発されたもので、
試料を底部に配置する試料保持部材と、試料の上部に案
内されたプローブと、試料の長さの変化を検出する変位
検出器と、これに接続された変位計測器と試料の近傍に
配置された温度検出器と、これに接続された温度計測器
とこれに接続された温度補正器と、試料の温度を変化さ
せる加熱炉とを備えた熱機械的分析装置において、試料
の約半分の長さの材料の上部に温度補正用試料の入った
試料容器を載置し、この試料容器に試料容器蓋を置き、
前記プローブを前記試料容器蓋に押し当て、前記加熱炉
により前記温度補正用試料を加熱し、前記温度補正用試
料の転移温度の計測値より前記温度検出器での検出温度
を補正する方法である。
The present invention has been developed to eliminate the above disadvantages,
A sample holding member for placing the sample at the bottom, a probe guided at the top of the sample, a displacement detector for detecting a change in the length of the sample, a displacement measuring instrument connected to the sample, and a probe arranged near the sample A thermomechanical analyzer including a temperature detector, a temperature measuring device connected thereto, a temperature compensator connected thereto, and a heating furnace for changing the temperature of the sample, the length of which is about half the length of the sample. Place the sample container containing the temperature compensation sample on the top of the material, and place the sample container lid on this sample container,
A method in which the probe is pressed against the sample container lid, the temperature correction sample is heated by the heating furnace, and the temperature detected by the temperature detector is corrected from a measured value of the transition temperature of the temperature correction sample. .

〔作 用〕(Operation)

上記方法による作用は、分析する試料の測定と温度補
正のための測定を同時に行うためほぼ同一条件でそれら
を測定することになり、試料温度を代表する試料の中心
位置に温度補正用試料を置き測定し、その検出値より温
度補正値を求めるため、温度補正精度が向上し正確に温
度計測することができる。それによって、熱膨張率や転
移温度などを精度良く測定することができる。
The effect of the above method is that the measurement of the sample to be analyzed and the measurement for temperature correction are performed simultaneously, so that they are measured under almost the same conditions, and the temperature correction sample is placed at the center position of the sample representing the sample temperature. Since the temperature is measured and the temperature correction value is obtained from the detected value, the temperature correction accuracy is improved and the temperature can be measured accurately. Thereby, the coefficient of thermal expansion, the transition temperature, and the like can be accurately measured.

〔実施例〕〔Example〕

第1図は本発明に関わる実施例の構成図である。9は
温度補正用台座であり、試料と同材質で、試料の約半分
の長さのものである。この温度補正用台座9は試料台8
の上に置かれ、更に試料台8は試料保持部材1の底に設
置される。温度補正用台座9の上には試料容器8が載置
され、この試料容器8の中に転移温度の良く知られた温
度補正用試料(高純度物質)11を入れ、その上に試料容
器蓋12を載せる。温度補正用試料11、試料容器蓋12は力
発生器5から適切な力を伝達されたプローブ2によって
押され固定される。6は温度検出器としての熱電対で、
試料保持部材1内の定まった位置に固定され、温度信号
を出力し温度計測器13に送る。差動トランスコア3と差
動トランス本体4は変位検出器で差動トランスコア3は
プローブ2と差動トランス本体4は試料保持部材1とそ
れぞれ接続されている。差動トランスコア3及び差動ト
ランス本体4は、プローブ2と試料保持部材1との相対
位置の変位量を検出し、変位量信号を出力し、変位計測
器16に送る。試料保持部材1の周辺には加熱炉7が固定
されている。この加熱炉7は冷却装置17と温度制御器18
に接続され、この温度制御器18により温度プログラムに
従って試料保持部材1内の温度が制御され、温度補正用
台座9、試料容器10、温度補正用試料11の温度を連続的
に変化させる。
FIG. 1 is a configuration diagram of an embodiment according to the present invention. Reference numeral 9 denotes a pedestal for temperature correction, which is made of the same material as the sample, and is about half as long as the sample. The temperature compensation pedestal 9 is a sample stage 8
, And the sample stage 8 is set on the bottom of the sample holding member 1. A sample container 8 is placed on the temperature correction pedestal 9, and a temperature correction sample (high-purity substance) 11 having a well-known transition temperature is put in the sample container 8, and a sample container lid is placed thereon. Put 12 on it. The temperature correction sample 11 and the sample container lid 12 are pressed and fixed by the probe 2 to which an appropriate force has been transmitted from the force generator 5. 6 is a thermocouple as a temperature detector,
It is fixed at a fixed position in the sample holding member 1, outputs a temperature signal, and sends it to the temperature measuring device 13. The differential transformer core 3 and the differential transformer main body 4 are connected to a displacement detector, and the differential transformer core 3 is connected to the probe 2 and the differential transformer main body 4 is connected to the sample holding member 1, respectively. The differential transformer core 3 and the differential transformer main body 4 detect a displacement amount of the relative position between the probe 2 and the sample holding member 1, output a displacement amount signal, and send the signal to the displacement measuring device 16. A heating furnace 7 is fixed around the sample holding member 1. The heating furnace 7 includes a cooling device 17 and a temperature controller 18.
The temperature in the sample holding member 1 is controlled by the temperature controller 18 according to a temperature program, and the temperatures of the temperature compensation pedestal 9, the sample container 10, and the temperature compensation sample 11 are continuously changed.

このように構成された装置において、例えば測定試料
と同じプログラムで温度が変化するように指定しておく
と、温度制御器18によって試料保持部材1内の温度が上
がっていく。温度が上昇し、温度補正用試料11がその転
移温度(融点)付近に到達すると融解し始める。温度補
正用試料11はプローブ2により押されているため融解と
同時に圧縮される。このときの変位量は、プローブ2、
差動トランスコア3、差動トランス本体4を通して変位
計測器16に送られる。
In the apparatus configured as described above, for example, if it is specified that the temperature changes by the same program as the measurement sample, the temperature in the sample holding member 1 is increased by the temperature controller 18. When the temperature rises and the temperature correction sample 11 reaches near its transition temperature (melting point), it begins to melt. Since the temperature correction sample 11 is pushed by the probe 2, it is compressed simultaneously with melting. The displacement amount at this time is probe 2,
It is sent to the displacement measuring device 16 through the differential transformer core 3 and the differential transformer main body 4.

一方、試料保持部材1内の温度は熱電対6により連続
的に計測されているため、第2図に示したように変位信
号の急激に減少する温度を読みとることにより、温度補
正試料の融点(正確な温度を示す)を測定することがで
きる。第3図に示したように温度補正用試料の文献値と
の差に基づいて温度補正値を求める。つまり、温度補正
試料11の融点をT24とし、そのとき熱電対による検出温
度をT23とすると、熱電対での検出温度がT23のときの補
正値はT23−T24となる。温度補正の精度は補正点から遠
ざかるに従い低下するが補正点を複数とすることによ
り、補正点間の補正精度は著しく向上する。複数の転移
温度の良く知られた温度補正用試料を上記と同様の方法
で測定することにより、複数の温度での温度補正値を求
めることができる。これらの温度補正値を温度補正器14
に入力しておく。その後で試料台8の上に測定試料を載
置し、その上に力発生器5から適当な力を伝達されたプ
ローブを押し当てる。更に、温度プログラムに従って温
度制御器18により試料保持部材1内の温度が制御され、
測定試料の温度を連続的に変化させる。このときの温度
は熱電対6により検知され、温度信号として出力され、
温度計測器に送られ温度計測値として計測される。更
に、この計測値が温度補正器14に送られ、その計測値に
先に入力されていた温度補正値が加えられ試料の温度値
として温度出力器15に送られ温度測定値として出力され
る。出力された計測値は、温度補正のための測定と実試
料の測定とがほぼ同一条件で行われているため温度補正
点の範囲内では十分に精度が高い値となる。
On the other hand, since the temperature in the sample holding member 1 is continuously measured by the thermocouple 6, by reading the temperature at which the displacement signal rapidly decreases as shown in FIG. Indicating the exact temperature) can be measured. As shown in FIG. 3, the temperature correction value is obtained based on the difference between the temperature correction sample and the literature value. That is, the melting point of the temperature correction samples 11 and T 24, when that time the temperature detected by the thermocouple and T 23, the temperature detected by the thermocouple a correction value when the T 23 is the T 23 -T 24. The accuracy of the temperature correction decreases as the distance from the correction point increases, but by using a plurality of correction points, the correction accuracy between the correction points is significantly improved. By measuring a plurality of well-known temperature correction samples having transition temperatures in the same manner as described above, temperature correction values at a plurality of temperatures can be obtained. These temperature correction values are stored in the temperature corrector 14
Enter in. Thereafter, the measurement sample is placed on the sample table 8, and a probe to which an appropriate force has been transmitted from the force generator 5 is pressed thereon. Further, the temperature in the sample holding member 1 is controlled by the temperature controller 18 according to the temperature program,
The temperature of the measurement sample is continuously changed. The temperature at this time is detected by the thermocouple 6 and output as a temperature signal.
It is sent to a temperature measuring device and measured as a temperature measurement value. Further, the measured value is sent to the temperature corrector 14, and the previously input temperature correction value is added to the measured value, sent to the temperature output device 15 as the temperature value of the sample, and output as the temperature measured value. The output measurement value has sufficiently high accuracy within the range of the temperature correction point because the measurement for temperature correction and the measurement of the actual sample are performed under substantially the same conditions.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば熱機械的分析装置にお
いて実試料の測定と同一条件、同一状態で温度補正の測
定を行うため、従来の技術に比べ数倍以上の精度で温度
の補正ができ、高精度の温度測定ができる。更に、熱膨
張率や転移温度などの測定精度を上げることができる。
As described above, according to the present invention, the temperature of the thermomechanical analyzer is measured under the same conditions and under the same condition as the measurement of the actual sample, so that the temperature can be corrected with a precision several times higher than that of the conventional technique. Temperature measurement with high accuracy. Further, the accuracy of measurement such as the coefficient of thermal expansion and the transition temperature can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を実施する装置の断面図、第2図は温度
とプローブ変位量の関係図、第3図は測定時間と温度の
関係図、第4図は従来例による装置の断面図である。 1……試料保持部材 2……プローブ 3……差動トランスコア 4……差動トランス本体 5……力発生器 6……熱電対 7……加熱炉 8……試料台 9……温度補正用台座 10……試料容器 11……温度補正用試料 12……試料容器用蓋 13……温度計測器 14……温度補正器 15……温度出力器 16……変位計測器 17……冷却装置 18……温度制御器 21……融点測定値 T23……熱電対による検出温度 T24……融点
FIG. 1 is a cross-sectional view of an apparatus embodying the present invention, FIG. 2 is a diagram showing a relationship between temperature and probe displacement, FIG. 3 is a diagram showing a relationship between measurement time and temperature, and FIG. It is. DESCRIPTION OF SYMBOLS 1 ... Sample holding member 2 ... Probe 3 ... Differential transformer core 4 ... Differential transformer main body 5 ... Force generator 6 ... Thermocouple 7 ... Heating furnace 8 ... Sample table 9 ... Temperature compensation Base 10 ... Sample container 11 ... Temperature compensation sample 12 ... Sample container lid 13 ... Temperature measuring device 14 ... Temperature compensator 15 ... Temperature output device 16 ... Displacement measuring device 17 ... Cooling device 18… Temperature controller 21… Measurement value of melting point T 23 …… Temperature detected by thermocouple T 24 …… Melting point

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】試料を底部に配置する試料保持部材と、前
記試料の上部に案内されたプローブと、前記試料の長さ
変化を検出する変位検出器と、前記試料の近傍に配置さ
れた熱電対と、前記熱電対に接続された温度計測器と、
前記試料の温度を変化させる加熱炉とを備えた熱機械的
分析装置における熱機械的分析の温度補正方法におい
て、前記分析する試料と実質的に同材質の温度補正用台
座を前記試料保持部材に載置し、前記温度補正用台座の
上部に温度補正用試料の入った試料容器を載置し、前記
加熱炉により前記温度補正用試料を加熱し、前記温度補
正用試料の転移温度の計測値より前記熱電対での検出温
度を補正することを特徴とする熱機械的分析の温度補正
方法。
1. A sample holding member for placing a sample at a bottom portion, a probe guided above the sample, a displacement detector for detecting a change in the length of the sample, and a thermoelectric device disposed near the sample. A pair, a temperature measuring instrument connected to the thermocouple,
In a temperature correction method for thermomechanical analysis in a thermomechanical analyzer having a heating furnace for changing the temperature of the sample, a temperature correction pedestal of substantially the same material as the sample to be analyzed is provided on the sample holding member. Place, place a sample container containing a sample for temperature compensation on the top of the pedestal for temperature compensation, heat the sample for temperature compensation by the heating furnace, and measure the transition temperature of the sample for temperature compensation. A temperature correction method for thermomechanical analysis, wherein the temperature detected by the thermocouple is further corrected.
JP19334790A 1990-07-20 1990-07-20 Temperature compensation method for thermomechanical analysis Expired - Fee Related JP2909922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19334790A JP2909922B2 (en) 1990-07-20 1990-07-20 Temperature compensation method for thermomechanical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19334790A JP2909922B2 (en) 1990-07-20 1990-07-20 Temperature compensation method for thermomechanical analysis

Publications (2)

Publication Number Publication Date
JPH0477654A JPH0477654A (en) 1992-03-11
JP2909922B2 true JP2909922B2 (en) 1999-06-23

Family

ID=16306390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19334790A Expired - Fee Related JP2909922B2 (en) 1990-07-20 1990-07-20 Temperature compensation method for thermomechanical analysis

Country Status (1)

Country Link
JP (1) JP2909922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868947A (en) * 2014-03-31 2014-06-18 孙东生 Measurement method and measurement device for 0-60 DEG C rock linear thermal expansion coefficient

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821810A (en) * 1994-07-08 1996-01-23 Noritake Co Ltd Melting point measuring method and measuring device for inorganic material
JP3799396B2 (en) * 2002-12-12 2006-07-19 株式会社リガク Thermal analyzer temperature calibration method, thermal analyzer temperature calibration apparatus, and thermal analyzer
JP2013170108A (en) * 2012-02-22 2013-09-02 Sharp Corp Method and apparatus for heat-treating solid-phase raw material, ingot and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868947A (en) * 2014-03-31 2014-06-18 孙东生 Measurement method and measurement device for 0-60 DEG C rock linear thermal expansion coefficient

Also Published As

Publication number Publication date
JPH0477654A (en) 1992-03-11

Similar Documents

Publication Publication Date Title
US5599104A (en) Thermal analysis instrument
US5826983A (en) Thermomechanical analyzer equipped with a thermogravimetry function
US20020136262A1 (en) Increased accuracy of coefficient of thermal expansion measurement
US5788373A (en) Method and apparatus for performing single differential thermal analysis
US6431747B1 (en) Heat flux differential scanning calorimeter sensor
US4643586A (en) Equipment and method for calibration of instruments having a temperature sensing unit
CN104792821B (en) Miniature calorimeter
JP4178729B2 (en) Thermal analyzer
JP2909922B2 (en) Temperature compensation method for thermomechanical analysis
US6390674B1 (en) Thermal analysis apparatus and method capable of accurately measuring a temperature of a large diameter sample
JP3178133B2 (en) Thermal analyzer
JPH03154856A (en) Thermal expansion measuring instrument
JPH0372944B2 (en)
JPH04299242A (en) Specific heat measuring apparatus
JPH02287247A (en) Temperature calibration method of thermal analyzer
US1274635A (en) Measuring device.
JPH0566160A (en) Calorimetric unit and method
JP2759770B2 (en) Sample length measuring method and thermal expansion measuring method in thermomechanical analyzer
JP2836177B2 (en) Differential heat / thermogravimeter
JPS6381253A (en) Heat flux type differential scanning calorimeter of sample individual system
JPH0454434A (en) Thermal weight measuring instrument
JPH11160259A (en) Apparatus for differential thermal analysis
JPH07198500A (en) Surface temperature measuring method
JP2004279074A (en) Apparatus for thermomechanical analysis
KR840001991B1 (en) The heat special quality testing method and apparatus of the fluxes for smelting heat insulation

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100409

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees