JPH07198500A - Surface temperature measuring method - Google Patents

Surface temperature measuring method

Info

Publication number
JPH07198500A
JPH07198500A JP35374593A JP35374593A JPH07198500A JP H07198500 A JPH07198500 A JP H07198500A JP 35374593 A JP35374593 A JP 35374593A JP 35374593 A JP35374593 A JP 35374593A JP H07198500 A JPH07198500 A JP H07198500A
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
block body
surface temperature
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35374593A
Other languages
Japanese (ja)
Other versions
JP3328408B2 (en
Inventor
Kenichi Misawa
健一 三澤
Akiyoshi Nabei
昭良 名部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Meter Co Ltd
Original Assignee
Anritsu Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Meter Co Ltd filed Critical Anritsu Meter Co Ltd
Priority to JP35374593A priority Critical patent/JP3328408B2/en
Publication of JPH07198500A publication Critical patent/JPH07198500A/en
Application granted granted Critical
Publication of JP3328408B2 publication Critical patent/JP3328408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a surface temperature measuring method which removes the cause of an error in a surface temperature and in which the accuracy to be pursued of a surface-temperature calibration system as a standard instrument can be displayed to the full. CONSTITUTION:A surface temperature calibration instrument which is composed of a block body 1 for calibration, of a heating source 3 and of a heat-insulating member 4 which houses them is prepared. An inside temperature is measured by a first temperature sensor 6 which measures the inside temperature of the block body 1 and which has been calibrated on the basis of a criterion temperature sensor 5. In addition, a temperature near the surface is measured from the outside lay a second temperature sensor 2 whose thermoelectric characteristic is equal to that of the first temperature sensor 6. On the basis of measured values by the first temperature sensor 6 and the second temperature sensor 2, the surface temperature of the block body 1 is decided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面温度校正器(表面温
度基準器)による表面温度測定方法に関し、校正用ブロ
ック体の雰囲気温度や、温度センサーの接触状態などに
よる外乱の影響を殆ど受けることなく、極めて正確な表
面温度を確定するための表面温度測定方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface temperature measuring method using a surface temperature calibrator (surface temperature standard), which is almost affected by disturbances such as the ambient temperature of a calibration block and the contact state of a temperature sensor. However, the present invention relates to a surface temperature measuring method for determining an extremely accurate surface temperature.

【0002】[0002]

【従来の技術】従来の表面温度校正器による表面温度測
定方法では、校正用ブロック体の表面温度を測定する際
に、接触式表面温度センサーを円柱状の校正用ブロック
の円形の表面に、この円の中心線上にある一定の間隔を
あけて数個接触させ、表面の温度分布を測定する方法で
あった。しかし、この測定方法によると、表面温度セン
サーを数個必要とし、しかも、各々のセンサーの熱電対
特性を均一にする必要があった。また、センサーの感温
部に接合する接触片と校正用ブロック体との間に生じる
表面粗さ、接触誤差、熱伝導率、熱容量等の問題によ
り、表面温度誤差を生じてしまう。
2. Description of the Related Art In a conventional surface temperature measuring method using a surface temperature calibrator, when measuring the surface temperature of a calibration block body, a contact surface temperature sensor is mounted on a circular surface of a cylindrical calibration block. It was a method of measuring the temperature distribution on the surface by contacting several pieces at regular intervals on the center line of the circle. However, according to this measuring method, several surface temperature sensors are required and the thermocouple characteristics of each sensor must be uniform. Further, a surface temperature error occurs due to problems such as surface roughness, contact error, thermal conductivity, and heat capacity that occur between the contact piece joined to the temperature-sensitive part of the sensor and the calibration block body.

【0003】例えば、熱電式接触型温度センサーを用い
た表面温度校正システムの銅ブロック表面の温度測定を
行う場合、前記温度センサ自体が銅ブロックに対し熱的
影響をもたらし、その結果前記ブロック体の真の表面温
度を変化させる原因になり、正確な表面温度測定が困難
となる。図面を参照して説明すると、図2に示すように
室温(周囲の温度)がそれぞれ異なる場合、真の表面温
度と前記温度センサー11による測定値を比較した場合、
その誤差は、周囲の温度と前記ブロック体12の温度との
差に依存性があることが判明している。図中に示すよう
に、それぞれ異なった周囲の温度に対し、同温度(例え
ば 100℃)に設定したブロック体12の表面温度を測定し
た場合、周囲の温度が25℃である(a)の場合には、前
記ブロック体12との温度差が大きく、熱流即ち熱の移動
が前記ブロック体12と温度センサー11との間で盛んに行
われるため、放熱現象を招き、理論的な表面温度より測
定値が低下し、大きな温度誤差を生じてしまう。
For example, when the temperature of a copper block surface of a surface temperature calibration system using a thermoelectric contact type temperature sensor is measured, the temperature sensor itself exerts a thermal influence on the copper block, and as a result, the temperature of the block body is increased. This causes a change in the true surface temperature, making accurate surface temperature measurement difficult. Referring to the drawings, when the room temperature (ambient temperature) is different as shown in FIG. 2, the true surface temperature is compared with the measured value by the temperature sensor 11,
It has been found that the error depends on the difference between the ambient temperature and the temperature of the block body 12. As shown in the figure, when the surface temperature of the block body 12 set to the same temperature (for example, 100 ° C) is measured for different ambient temperatures, when the ambient temperature is 25 ° C (a) In addition, since the temperature difference between the block body 12 is large and the heat flow, that is, the movement of heat is actively performed between the block body 12 and the temperature sensor 11, it causes a heat dissipation phenomenon and is measured from a theoretical surface temperature. The value decreases and a large temperature error occurs.

【0004】一方、周囲の温度が50℃である(b)の場
合には、(a)よりは熱流の影響は少ないが、同様の原
因により温度誤差を生じてしまうことには変わりはな
い。これに対し、周囲の温度が95℃である(c)の場合
には、周囲の温度と前記ブロック体12の温度が殆ど等し
く熱流はほとんど生じないため、温度誤差は比較的に少
ない。つまり、両温度が熱平衡状態に近いほど表面温度
の測定誤差は減少する訳である。
On the other hand, in the case of (b) in which the ambient temperature is 50 ° C., the influence of the heat flow is less than that in (a), but there is no change in that a temperature error occurs due to the same cause. On the other hand, when the ambient temperature is 95 ° C. (c), the ambient temperature and the temperature of the block body 12 are almost equal to each other, and a heat flow hardly occurs, so that the temperature error is relatively small. That is, the closer the two temperatures are to the thermal equilibrium state, the smaller the measurement error of the surface temperature.

【0005】また、温度センサー11の形状や接触状態な
ども表面温度誤差の原因となり得る。例えば、図3に示
すように熱電式接触型温度センサー11の接触面積が異な
る場合、(a)に示すように接触面積が大きい場合の方
が、(b)に示すように接触面積が中位の場合よりも、
銅製のブロック体12(以下、被測温体と称する)から温
度センサー11に対して放熱される熱量が大きく、(c)
に示すように接触面積が小さい程、この放熱される熱量
が小さい。従って、温度センサー11の接触面積が大きい
程、被測温体12の熱を多く奪う結果となり、真の表面温
度との誤差が大きくなってしまう。
Further, the shape and contact state of the temperature sensor 11 may cause a surface temperature error. For example, when the contact area of the thermoelectric contact type temperature sensor 11 is different as shown in FIG. 3, when the contact area is large as shown in (a), the contact area is medium as shown in (b). Than
A large amount of heat is radiated from the copper block body 12 (hereinafter referred to as the temperature-measured body) to the temperature sensor 11, (c)
As shown in, the smaller the contact area, the smaller the amount of heat radiated. Therefore, the larger the contact area of the temperature sensor 11 is, the more heat of the temperature-measurable body 12 is taken away, and the error from the true surface temperature becomes larger.

【0006】更に、図4(a)〜(c)に示すように温
度センサーの感温部と被測温体12との間に介装する接触
片13の厚さを変化させた場合、厚さが厚くなるほど表面
温度測定点から感温部(例えば熱電対)までの距離が長
くなり、接触片13に熱が分散してしまい感温部に伝わる
熱量は実際には低下してしまう。また、厚さが厚いとい
うことは、換言すると接触片13の体積が大きくなるとい
うことであり、接触片13の熱容量を大きくしてしまうこ
とになる。従って、前記温度センサーに対し放熱し易い
条件を作り出す結果となり、被測温体12に対し熱的影響
を与え易くなるため、真の表面温度測定が困難になる。
その他にも、被測温体12に対する接触誤差が、表面温度
の測定誤差原因となり得る。
Further, as shown in FIGS. 4A to 4C, when the thickness of the contact piece 13 interposed between the temperature sensing part of the temperature sensor and the temperature-measuring body 12 is changed, As the thickness becomes thicker, the distance from the surface temperature measuring point to the temperature sensing portion (for example, thermocouple) becomes longer, the heat is dispersed in the contact piece 13, and the amount of heat transferred to the temperature sensing portion actually decreases. In addition, the fact that the thickness is thick means that the volume of the contact piece 13 is increased, which means that the heat capacity of the contact piece 13 is increased. As a result, a condition for easily radiating heat to the temperature sensor is created, and the temperature of the temperature-measurable body 12 is liable to be thermally influenced, which makes it difficult to measure the true surface temperature.
In addition, a contact error with the temperature-measurable body 12 may cause a surface temperature measurement error.

【0007】また、別の誤差要因として、図5に示すよ
うに、理論上は(a)の如く被測温体12に密着した姿勢
で温度測定を行うのが最適であるが、実際には(b)に
示すように接触姿勢や表面粗さ等の問題により接触片13
を完全に被測温体12の表面に沿わせることは困難であ
り、表面温度測定点と接触片13との間に空気層14を生じ
てしまい、その結果、熱伝導率の低下を招き、被測温体
12からの熱が温度センサーの感温部に正確に伝わらず、
表面温度測定誤差を生じてしまうという問題がある。
Further, as another error factor, as shown in FIG. 5, theoretically, it is optimal that the temperature is measured in a posture in which it is in close contact with the temperature-measuring body 12 as shown in FIG. As shown in (b), due to problems such as contact attitude and surface roughness, the contact piece 13
It is difficult to completely align the surface of the temperature-measured body 12 with the surface 12, and an air layer 14 is formed between the surface temperature measurement point and the contact piece 13, resulting in a decrease in thermal conductivity. Temperature measurement object
The heat from 12 is not accurately transmitted to the temperature sensing part of the temperature sensor,
There is a problem that a surface temperature measurement error occurs.

【0008】[0008]

【発明が解決しようとする課題】上述したように、従来
の表面温度測定方法には様々な問題点があり、実際には
外乱の影響を排除しきれず、真の表面温度を確定するこ
とができなかったため、基準器としての表面温度校正器
の精度を最大限に引き出すことができないという問題が
あった。
As described above, the conventional surface temperature measuring method has various problems, and in reality, the influence of disturbance cannot be completely eliminated and the true surface temperature can be determined. Therefore, there is a problem in that the accuracy of the surface temperature calibrator as a reference device cannot be maximized.

【0009】本発明は以上の問題点に鑑みて、熱電式温
度センサーによる表面温度校正システムの表面温度測定
方法において、前記した表面温度誤差要因を取り除き、
基準器として追求すべき精度を最大限発揮することので
きる表面温度測定方法を提供することを目的とするもの
である。
In view of the above problems, the present invention eliminates the aforementioned surface temperature error factor in the surface temperature measuring method of the surface temperature calibration system using a thermoelectric temperature sensor,
It is an object of the present invention to provide a surface temperature measuring method capable of maximizing the accuracy to be pursued as a standard device.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
の本発明の表面温度測定方法は、校正用ブロック体と、
このブロック体に併設した加熱源と、これらを収容する
と共に前記ブロック体の一面を開口部とした断熱部材と
から成る表面温度校正器を準備し、このブロック体の内
部温度を測定する基準温度センサーに基づいて校正した
第1の温度センサーによって、前記ブロック体の内部温
度を測定すると共に、この第1の温度センサーと同等の
熱電特性を有する第2の温度センサーによって、前記ブ
ロック体の外部から表面付近の温度を測定し、前記第1
の温度センサーと第2の温度センサーの測定値に基づい
て、このブロック体の表面温度を確定する方法である。
The surface temperature measuring method of the present invention for achieving the above object comprises a calibration block body,
A reference temperature sensor for measuring the internal temperature of the block body by preparing a surface temperature calibrator composed of a heat source attached to the block body and a heat insulating member accommodating these and having one surface of the block body as an opening The internal temperature of the block body is measured by the first temperature sensor calibrated based on the above, and the second temperature sensor having thermoelectric characteristics equivalent to the first temperature sensor is used to measure the surface from the outside of the block body. Measure the temperature in the vicinity and
It is a method of determining the surface temperature of the block body based on the measured values of the temperature sensor of No. 2 and the second temperature sensor.

【0011】即ち、本発明の表面温度測定方法は、校正
用ブロック体の内部温度Taと校正用ブロック体の表面
(厳密には表面付近)温度Tbを、熱電式温度センサー
により測定し、校正用ブロック体の真の表面温度Tc
は、必ずTaとTbの間に位置するとの定義に基づいて
いる。つまり、 Ta≦Tc≦Tb ……… という理論式に基づいて、真の表面温度を確定する訳で
ある。
That is, according to the surface temperature measuring method of the present invention, the internal temperature Ta of the calibration block body and the surface (strictly, near the surface) temperature Tb of the calibration block body are measured by a thermoelectric temperature sensor and used for calibration. True surface temperature Tc of block
Is always located between Ta and Tb. That is, the true surface temperature is determined based on the theoretical formula Ta ≦ Tc ≦ Tb ....

【0012】本発明の表面温度測定方法と従来の方法と
の最大の相違点は、表面温度測定用の熱電式温度センサ
ーのみに依存するのではなく、ブロック体の内部温度測
定により、一段と正確な表面温度測定を可能にするとい
う点にある。本来、前記ブロック体の温度は、加熱開始
後ある一定時間経過すると、理論的には均熱状態になる
はずである。しかし、実際に測定してみると、前記ブロ
ックの表面温度は内部温度よりも低下していることが判
明している。
The greatest difference between the surface temperature measuring method of the present invention and the conventional method is not only dependent on the thermoelectric temperature sensor for measuring the surface temperature, but rather more accurate by measuring the internal temperature of the block body. It is possible to measure the surface temperature. Originally, the temperature of the block body should theoretically be in a uniform temperature state after a lapse of a certain time after the start of heating. However, actual measurement has revealed that the surface temperature of the block is lower than the internal temperature.

【0013】そこで、本発明ではブロック体の内部温度
をも加味することにより、前記ブロック体を総合的に捕
らえた本来の意味での表面温度測定、即ち、真の表面温
度測定を可能にした点が最大の特徴である。
Therefore, in the present invention, the surface temperature in the original sense of comprehensively capturing the block body, that is, the true surface temperature measurement is made possible by also considering the internal temperature of the block body. Is the biggest feature.

【0014】[0014]

【作 用】本発明の表面温度測定方法は、ブロック体の
表面温度を測定する温度センサーに加え、ブロック体の
内部温度を測定する温度センサーを併用しているので、
前者によって真の表面温度の存在する範囲の最小値を確
定し、後者によって真の表面温度の存在する範囲の最大
値を確定することができる。
[Operation] In the surface temperature measuring method of the present invention, in addition to the temperature sensor for measuring the surface temperature of the block body, the temperature sensor for measuring the internal temperature of the block body is also used.
The former can determine the minimum value of the range where the true surface temperature exists, and the latter can determine the maximum value of the range where the true surface temperature exists.

【0015】また、前記両温度センサーの熱電特性は同
等であり、しかも、その一方を基準温度センサーによっ
て校正しているため、測定値の精度は高く、前記温度セ
ンサーの接触面積や接触部の厚さの違い、及び接触誤差
等の誤差要因が生じたとしても、内部温度測定値から前
記ブロック体表面までの温度勾配と熱電式温度センサー
によるブロック体表面付近の温度測定により真の表面温
度測定を行うことができるため、常に確実で信頼性の高
い表面温度測定を可能にする。
Further, the thermoelectric characteristics of both the temperature sensors are equal, and since one of them is calibrated by the reference temperature sensor, the accuracy of the measured value is high, and the contact area of the temperature sensor and the thickness of the contact portion are high. Even if there are error factors such as difference in contact and contact error, the true surface temperature can be measured by the temperature gradient from the measured internal temperature to the surface of the block and the temperature near the surface of the block by the thermoelectric temperature sensor. Since it can be performed, it always enables reliable and reliable surface temperature measurement.

【0016】[0016]

【実施例】次に図面を参照して本発明の一実施例を説明
する。図1に示す実施例では、ある条件下における金属
の表面温度を測定するために用いる装置の主要部分を概
念的に示した図である。この装置は、表面温度測定の対
象物である校正用ブロック体1、このブロック体1の表
面付近(厳密な意味で表面ではなく表面付近)の温度測
定のための第2の温度センサー(熱電式温度センサー)
2、前記ブロック体1に対する加熱源3、前記ブロック
体1の均熱化の為に設けられた断熱部材4、前記ブロッ
ク体1の中心付近に位置し、表面からの位置が規定され
ている基準温度センサー(測温抵抗体)5、及び基準温
度センサー5と同じ高さに位置し、且つ第2の温度セン
サー2と同一ロット、即ち熱電対特性の等しい第1の温
度センサー(熱電式温度センサー)6により構成されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will now be described with reference to the drawings. In the embodiment shown in FIG. 1, it is a view conceptually showing a main part of an apparatus used for measuring a surface temperature of a metal under a certain condition. This apparatus includes a calibration block body 1 which is an object of surface temperature measurement, and a second temperature sensor (thermoelectric type) for measuring the temperature near the surface of the block body 1 (in the strict sense, not near the surface). Temperature sensor)
2, a heating source 3 for the block body 1, a heat insulating member 4 provided for equalizing the temperature of the block body 1, a reference located near the center of the block body 1 and defined from the surface The first temperature sensor (thermoelectric temperature sensor) located at the same height as the temperature sensor (resistance temperature detector) 5 and the reference temperature sensor 5 and in the same lot as the second temperature sensor 2, that is, having the same thermocouple characteristics. ) 6.

【0017】基準温度センサー5である測温抵抗体は、
トレーサビリティの付与された極めて高精度を保証され
た温度センサーであり、この基準温度センサー5を基に
同位置に設けられた第1の温度センサー6を校正し、基
準温度センサー5との温度差ΔTを確定することにより
第1の温度センサー6を信頼性の高い温度センサーとし
て保証する。即ち、基準温度センサー5のトレーサビリ
ティを第1の温度センサー6に付与したことになる。
The resistance temperature detector which is the reference temperature sensor 5 is
This is a temperature sensor with traceability and guaranteed extremely high accuracy. Based on this reference temperature sensor 5, the first temperature sensor 6 provided at the same position is calibrated to obtain a temperature difference ΔT from the reference temperature sensor 5. By confirming, the first temperature sensor 6 is guaranteed as a highly reliable temperature sensor. That is, the traceability of the reference temperature sensor 5 is given to the first temperature sensor 6.

【0018】更に、第1の温度センサー6と校正用ブロ
ック体1の表面付近に設けられた第2の温度センサー2
との温度差ΔT1 を確定する。また、表面付近に設けた
第2の温度センサー2による温度測定値をT2 、基準温
度センサー5による温度測定値をT3 、今まさに測定を
しようとしている真の表面温度をTsとすると、これら
の温度間には次の理論式が成り立つ。
Further, the first temperature sensor 6 and the second temperature sensor 2 provided near the surface of the calibration block body 1
And the temperature difference ΔT 1 with If the temperature measured value by the second temperature sensor 2 provided near the surface is T 2 , the temperature measured value by the reference temperature sensor 5 is T 3 , and the true surface temperature that is about to be measured is Ts, The following theoretical formula holds between the temperatures of.

【0019】T2 ≦Ts≦T3 ……… 次に基準温度センサー5に対しΔTの誤差を持つ第1の
温度センサー6の温度T4 が確定する。これに対し以下
の式が成立する。 T4 =T3 +ΔT ……… 更に、第1の温度センサー6と表面温度付近に位置する
第2の温度センサー2との温度差ΔT1 により、表面付
近の温度を確定する事ができる。その結果、それぞれの
温度センサーに対し、信頼性の高い高精度な温度測定が
可能となる。
T 2 ≤Ts ≤T 3 ... Then, the temperature T 4 of the first temperature sensor 6 having an error of ΔT with respect to the reference temperature sensor 5 is determined. On the other hand, the following formula is established. T 4 = T 3 + ΔT Further, the temperature near the surface can be determined by the temperature difference ΔT 1 between the first temperature sensor 6 and the second temperature sensor 2 located near the surface temperature. As a result, highly reliable and highly accurate temperature measurement can be performed for each temperature sensor.

【0020】また、表面からの位置が規定された基準温
度センサー5と同位置に設けられた第1の温度センサー
6を表面付近にできる限り近づける(距離dをできる限
り小さくする)ことにより、ΔT1 の誤差も極めて小さ
くなり、真の表面温度Tsの存在する範囲も限りなく小
さくなる。しかも、校正用ブロック体1の表面に対し熱
的影響を一切与えることなく本当の意味での表面温度測
定が可能となる。
Further, the first temperature sensor 6 provided at the same position as the reference temperature sensor 5 whose position from the surface is regulated is brought as close as possible to the vicinity of the surface (the distance d is made as small as possible) to obtain ΔT. The error of 1 is also extremely small, and the range in which the true surface temperature Ts exists is infinitely small. Moreover, it is possible to measure the surface temperature in the true sense without any thermal influence on the surface of the calibration block body 1.

【0021】本実施例による表面温度測定方法では、1
つの極めて高精度な保証できる基準温度センサー5を基
に、同一ロットである2つの熱電式温度センサーを、信
頼性の高い高精度なものに体系づけることができ、校正
用ブロック体1の表面付近に設けられた表面温度センサ
ーと内部に設けられた内部温度センサーとにより、真の
表面温度の存在する範囲を極めて小さくすることによ
り、高精度な表面温度測定を行うことができる。
In the surface temperature measuring method according to this embodiment, 1
Two thermoelectric temperature sensors of the same lot can be organized into highly reliable and highly accurate ones based on the reference temperature sensors 5 that can be guaranteed with extremely high accuracy, and near the surface of the calibration block body 1. With the surface temperature sensor provided in and the internal temperature sensor provided inside, the range in which the true surface temperature exists can be made extremely small, so that highly accurate surface temperature measurement can be performed.

【0022】[0022]

【発明の効果】本発明に係る表面温度測定方法は、校正
用ブロック体と、このブロック体に併設した加熱源と、
これらを収容すると共に前記ブロック体の一面を開口部
とした断熱部材とから成る表面温度校正器を準備し、こ
のブロック体の内部温度を測定する基準温度センサーに
基づいて校正した第1の温度センサーによって、前記ブ
ロック体の内部温度を測定すると共に、この第1の温度
センサーと同等の熱電特性を有する第2の温度センサー
によって、前記ブロック体の外部から表面付近の温度を
測定し、前記第1の温度センサーと第2の温度センサー
の測定値に基づいて、このブロック体の表面温度を確定
するので、以下の効果を奏することができる。
The surface temperature measuring method according to the present invention comprises a calibration block body, a heating source attached to the block body,
A first temperature sensor that accommodates these and prepares a surface temperature calibrator including a heat insulating member having an opening on one surface of the block body, and calibrates it based on a reference temperature sensor that measures the internal temperature of the block body. The internal temperature of the block body is measured by the second temperature sensor having the same thermoelectric characteristic as the first temperature sensor, and the temperature near the surface is measured from the outside of the block body by the first temperature sensor. Since the surface temperature of this block body is determined based on the measured values of the temperature sensor of 1 and the second temperature sensor, the following effects can be obtained.

【0023】ブロック体の表面温度を測定する温度セン
サーに加え、ブロック体の内部温度を測定する温度セン
サーを併用しているので、前者によって真の表面温度の
存在する範囲の最小値を確定し、後者によって真の表面
温度の存在する範囲の最大値を確定することができる。
また、前記両温度センサーの熱電特性は同等であり、し
かも、その一方を基準温度センサーによって校正してい
るため、測定値の精度は高く、前記温度センサーの接触
面積、接圧力、接触部の厚さ、接触誤差などの誤差要因
が生じたとしても、内部温度測定値から前記ブロック体
表面までの温度勾配と熱電式温度センサーによるブロッ
ク体表面付近の温度測定により真の表面温度測定を行う
ことができるため、常に確実で信頼性の高い表面温度測
定を可能にする。
In addition to the temperature sensor for measuring the surface temperature of the block body, the temperature sensor for measuring the internal temperature of the block body is also used. Therefore, the former determines the minimum value of the range where the true surface temperature exists, The latter makes it possible to determine the maximum value of the range in which the true surface temperature exists.
Further, the thermoelectric characteristics of both the temperature sensors are equal, and since one of them is calibrated by a reference temperature sensor, the accuracy of the measured value is high, and the contact area of the temperature sensor, the contact pressure, the thickness of the contact portion Even if an error factor such as a contact error occurs, the true surface temperature can be measured by the temperature gradient from the measured internal temperature to the surface of the block and the temperature near the surface of the block by the thermoelectric temperature sensor. This enables reliable and reliable surface temperature measurement at all times.

【0024】従って、表面温度誤差要因の影響を受ける
ことなく、基準器としての表面温度校正器の精度を最大
限発揮することができる。
Therefore, it is possible to maximize the accuracy of the surface temperature calibrator as a standard without being affected by the surface temperature error factor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における表面温度測定方法で
用いる表面温度校正器の概略断面図である。
FIG. 1 is a schematic sectional view of a surface temperature calibrator used in a surface temperature measuring method according to an embodiment of the present invention.

【図2】従来の表面温度測定方法による誤差要因(周囲
の温度)を図解するための断面図である。
FIG. 2 is a sectional view for illustrating an error factor (ambient temperature) by a conventional surface temperature measuring method.

【図3】従来の表面温度測定方法による誤差要因(接触
面積)を図解するための断面図である。
FIG. 3 is a cross-sectional view for illustrating an error factor (contact area) by a conventional surface temperature measuring method.

【図4】従来の表面温度測定方法による誤差要因(接触
部の厚さ)を図解するための断面図である。
FIG. 4 is a cross-sectional view for illustrating an error factor (contact portion thickness) in a conventional surface temperature measuring method.

【図5】従来の表面温度測定方法による誤差要因(接触
部と校正用ブロックとの接触誤差)を図解するための断
面図である。
FIG. 5 is a cross-sectional view for illustrating an error factor (contact error between a contact portion and a calibration block) due to a conventional surface temperature measuring method.

【符号の説明】[Explanation of symbols]

1 ブロック体 2 第2の温度
センサー 3 加熱源 4 断熱部材 5 基準温度センサー 6 第1の温度
センサー
1 block body 2 second temperature sensor 3 heating source 4 heat insulating member 5 reference temperature sensor 6 first temperature sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 校正用ブロック体と、このブロック体に
併設した加熱源と、これらを収容すると共に前記ブロッ
ク体の一面を開口部とした断熱部材とから成る表面温度
校正器を準備し、このブロック体の内部温度を測定する
基準温度センサーに基づいて校正した第1の温度センサ
ーによって、前記ブロック体の内部温度を測定すると共
に、この第1の温度センサーと同等の熱電特性を有する
第2の温度センサーによって、前記ブロック体の外部か
ら表面付近の温度を測定し、前記第1の温度センサーと
第2の温度センサーの測定値に基づいて、このブロック
体の表面温度を確定する表面温度測定方法。
1. A surface temperature calibrator comprising a calibration block body, a heating source provided in parallel with the block body, and a heat insulating member for accommodating the heat source and having one surface of the block body as an opening, A first temperature sensor calibrated on the basis of a reference temperature sensor that measures the internal temperature of the block body measures the internal temperature of the block body, and a second temperature sensor having thermoelectric characteristics equivalent to that of the first temperature sensor. A surface temperature measuring method of measuring the temperature of the vicinity of the surface from the outside of the block body by a temperature sensor and determining the surface temperature of the block body based on the measured values of the first temperature sensor and the second temperature sensor. .
JP35374593A 1993-12-30 1993-12-30 Surface temperature measurement method Expired - Fee Related JP3328408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35374593A JP3328408B2 (en) 1993-12-30 1993-12-30 Surface temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35374593A JP3328408B2 (en) 1993-12-30 1993-12-30 Surface temperature measurement method

Publications (2)

Publication Number Publication Date
JPH07198500A true JPH07198500A (en) 1995-08-01
JP3328408B2 JP3328408B2 (en) 2002-09-24

Family

ID=18432938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35374593A Expired - Fee Related JP3328408B2 (en) 1993-12-30 1993-12-30 Surface temperature measurement method

Country Status (1)

Country Link
JP (1) JP3328408B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175343A (en) * 2009-01-28 2010-08-12 Nippon Spindle Mfg Co Ltd Temperature calibration device
JP2011191251A (en) * 2010-03-16 2011-09-29 Anritsu Keiki Kk Instrument and method for calibrating contact type surface temperature sensor, and method for calibrating reference temperature sensor
JP2014202485A (en) * 2013-04-01 2014-10-27 株式会社ニッサブ Method for thermal analysis of metal and thermoanalyzer
JP2020051788A (en) * 2018-09-25 2020-04-02 安立計器株式会社 Temperature calibrator and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175343A (en) * 2009-01-28 2010-08-12 Nippon Spindle Mfg Co Ltd Temperature calibration device
JP2011191251A (en) * 2010-03-16 2011-09-29 Anritsu Keiki Kk Instrument and method for calibrating contact type surface temperature sensor, and method for calibrating reference temperature sensor
JP2014202485A (en) * 2013-04-01 2014-10-27 株式会社ニッサブ Method for thermal analysis of metal and thermoanalyzer
JP2020051788A (en) * 2018-09-25 2020-04-02 安立計器株式会社 Temperature calibrator and manufacturing method thereof

Also Published As

Publication number Publication date
JP3328408B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US7371006B2 (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
JP3114139B2 (en) Thermal conductivity meter
JP2839244B1 (en) Apparatus and method for measuring heat loss pressure
US10976204B2 (en) Heat flux sensor with improved heat transfer
WO2007036983A1 (en) Thermal conductivity measuring method and device, and gas component ratio measuring device
US20060048568A1 (en) Thermal mass flow sensor
US20230258506A1 (en) Thermometer having a diagnostic function
US6637931B2 (en) Probe for use in an infrared thermometer
US20100202488A1 (en) Apparatus And A Method For Measuring The Body Core Temperature For Elevated Ambient Temperatures
US3417617A (en) Fluid stream temperature sensor system
JP3310430B2 (en) Measuring device and measuring method
WO2010014354A1 (en) System and method for a temperature sensor using temperature balance
JPH07198500A (en) Surface temperature measuring method
KR102257190B1 (en) Thermal conductivity measurement system and thermal conductivity measurement method thereof
US5452601A (en) Method for simultaneous determination of thermal conductivity and kinematic viscosity
US20240053209A1 (en) Thermometer with a diagnostic function
CN117616257A (en) Thermometer with improved measurement accuracy
US20220397438A1 (en) Non-invasive thermometer
JPS5923369B2 (en) Zero-level heat flow meter
JP3502085B2 (en) Measuring device
WO2022064553A1 (en) Temperature estimation method, temperature estimation program, and temperature estimation device
US20220341794A1 (en) Thermometer
JPH0643906B2 (en) Flow sensor
CN115628822A (en) Method for detecting temperature of two-dimensional interface between heterogeneous structures and structure thereof
JPS61126440A (en) Temperature measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080712

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees