JPH03154856A - Thermal expansion measuring instrument - Google Patents

Thermal expansion measuring instrument

Info

Publication number
JPH03154856A
JPH03154856A JP29363989A JP29363989A JPH03154856A JP H03154856 A JPH03154856 A JP H03154856A JP 29363989 A JP29363989 A JP 29363989A JP 29363989 A JP29363989 A JP 29363989A JP H03154856 A JPH03154856 A JP H03154856A
Authority
JP
Japan
Prior art keywords
thermal expansion
rod
sample
push rod
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29363989A
Other languages
Japanese (ja)
Inventor
Masato Sato
佐藤 眞人
Masahiko Ichihashi
正彦 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU RIKO KK
Original Assignee
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU RIKO KK filed Critical SHINKU RIKO KK
Priority to JP29363989A priority Critical patent/JPH03154856A/en
Publication of JPH03154856A publication Critical patent/JPH03154856A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy and reproducibility by providing a detection rod with a cooler and holding the detection rod thermally equivalent to a detection tube. CONSTITUTION:A sample 1 which is heated by a heater 2 is fixed with a cooling tube 4 and an extrusion rod 5 which is nearly as long as the cooling tube 4 and also has a nearly equal coefficient of heat expansion, the displacement of a core 8 pertaining to the thermal expansion of the sample 7 is measured by a differential transformer 7, and the temperature of the sample 1 by the heater 2 is measured by a thermostat 3 to calculate the coefficient of thermal expansion. This rod 5 is provided with the cooling plate 12 of the cooler across a pedestal 13 which has excellent heat conductivity and the cooling tube 4 which is cooled through a reference plate 6 and the rod 5 becomes thermally equivalent. Consequently, the displacement of the tube 4 and the displacement of the rod 5 which are both caused with temperature cancel each other to exert no influence upon measurement, thereby improving the accuracy and reproducibility when the coefficient of thermal expansion is measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は精度の高い熱膨張測定装置に関する。 〔従来の技術及びその問題点1 近年1種々の材料の開発が進んでいるが、品質管理上、
特に最近の電子材料などの新材料では熱膨張率を高精度
に調整する必要があり、そのために精密な測定が要求さ
れている。 熱膨張測定装置には各種の測定方法によるものがあるが
、第3図に一例を示すような検出棒としての押し棒を用
いる装置が最もポピユラーで広く利用されている。 第3図において、試料(1)は検出管(4)の上部と、
検出管(4) とはf同じ長さの押し棒(5)との間に
挟持され、熱電対(3)で温度を測定しながら加熱路(
2)中で加熱される。試料mが加熱されると、その昇温
した温度差に相当する試料(1)の長さ変化(線膨張量
)が押し棒(5)を介して下部の検出器(lO)のコア
(8)に伝えられ、コア(8)の移動に応じて差動トラ
ンス(7)によって検出される。 検出fi(4)と押し棒(5)とは加熱の影響を極力少
なくするために熱膨張率の低い、しかも同一の材質で形
成される。一般には透明石英(熱膨張係数5.7 x 
lt+−’)で製作される。 検出管(4)は熱伝導性の良い留め具(11)を介して
基準プレート(6)に固定されている。一方、押し棒(
5)は、それに接続しているコア(8)がスプリング(
9)で支持されているので、空中に浮いている状態で試
料(1)に当接して検出管(4)の上部との間に試、料
(1)を挟んで保持するようになっている。しかし、ス
プリング(9)は、試料(1)が加熱、膨張して押し棒
(5)を下方に押すという作用に影響を与えない程度の
強さである。 以上のようにこの熱膨張測定装置においては検出器(1
0)で試料(1)の線膨張量を検出するのに機械的抵−
抗がないため、検出管(4) と押し捧(5) とに対
する熱の影響が同量であればそれらが相殺されて、試料
(1)の線膨張量のみが測定されるという理想的なもの
である。 このように再現性良く、高精度で線膨張量を測定するた
めには、検出管(4)と押し棒(5) とに対する熱の
影響を極力小さく、かつ同量にすることが必要である。 しかし、検出管(4)については、それが固定されてい
る基準プレート(6)を冷却しく図示せず)、それに熱
的に接触させることによって検出管(4)をも冷却して
熱的に安定させることが可能であるが、他方の押し棒(
5)を冷却することは容易ではない、この場合は両者は
熱的には同等でなくなる。 押し捧(5)が冷却されないと、加熱炉内の熱が押し棒
(5)を伝わることによって検出器(lO)のコア(8
)をも加熱し、押し捧(5)の膨張だけでなく、コア(
8)自体の熱膨張も測定値に加算されることになる。試
料(1)が1200℃に加熱される時にはコア(8)の
温度が100℃も上昇する場合がある。一方、コア(8
)を支持しているスプリング(9)は金属であるが細長
くて伝熱量が少なく、熱的にはほとんど接触していない
と言える。従ってコア(8)からの放熱は空気を伝わっ
ていく分だけである、力S、これは時定数が大きく時間
がかかるため、短時間の間にはコア(8)からの放熱は
少ない。このようにコア(8)に熱が伝わるとそこから
逃げる所がないため温度は上昇するのである。 このための解決策として、次のような手段がとられてい
る。 1、検出管(4)及び押し棒(5)を長(することによ
って、試料加熱部からの熱の影響を少なくし、かつ、温
度勾配を同一にする。 しかし、この場合は装置全体が大型になり、又、熱によ
る変化が長時間に亘るので、安定性に欠けるという問題
がある。 2、押し棒を標準試料用のと2対並べ、示差法で測定す
ることによって熱的影響を相殺する。 しかし、この場合は装置が複雑化するという問題がある
。 以上のいづれの方法においても押し棒(5)は冷却され
ないので、これらの系の熱放散は測定条件(測定雰囲気
による伝熱放散、加熱速度による時間の影響)により異
なり、再現性が悪く、従って微小測定については精度が
低いという開運があった。 〔発明が解決しようとする問題点〕 本発明は以上のような問題に鑑みてなされ、精度が高く
、再現性の良い熱膨張測定装置を提供することを目的と
している。
[Industrial Field of Application] The present invention relates to a highly accurate thermal expansion measuring device. [Conventional technology and its problems 1 In recent years, the development of various materials has progressed, but in terms of quality control,
Particularly in the case of new materials such as recent electronic materials, it is necessary to adjust the coefficient of thermal expansion with high precision, which requires precise measurement. There are thermal expansion measuring devices that use various measuring methods, but the most popular and widely used device is one that uses a push rod as a detection rod, as shown in FIG. In Figure 3, the sample (1) is located at the top of the detection tube (4),
The detection tube (4) is held between a push rod (5) of the same length, and the heating path (
2) Heated inside. When the sample m is heated, the change in length (linear expansion) of the sample (1) corresponding to the increased temperature difference is transferred to the core (8) of the lower detector (lO) via the push rod (5). ) and detected by the differential transformer (7) according to the movement of the core (8). The detection fi (4) and the push rod (5) are made of the same material with a low coefficient of thermal expansion in order to minimize the influence of heating. Generally transparent quartz (thermal expansion coefficient 5.7 x
lt+-'). The detection tube (4) is fixed to the reference plate (6) via a fastener (11) with good thermal conductivity. On the other hand, push rod (
5), the core (8) connected to it has a spring (
9), so that it comes into contact with the sample (1) while floating in the air, and holds the sample (1) between it and the upper part of the detection tube (4). There is. However, the strength of the spring (9) is such that it does not affect the action of heating and expanding the sample (1) and pushing the push rod (5) downward. As described above, in this thermal expansion measuring device, the detector (1
0), mechanical resistance is required to detect the amount of linear expansion of sample (1).
Since there is no resistance, if the effects of heat on the detection tube (4) and the pushpiece (5) are the same, they will be canceled out and only the amount of linear expansion of the sample (1) can be measured. It is something. In order to measure the amount of linear expansion with good reproducibility and high precision, it is necessary to minimize the influence of heat on the detection tube (4) and the push rod (5) and make it the same amount. . However, regarding the detection tube (4), by cooling the reference plate (6) to which it is fixed (not shown), and by bringing it into thermal contact with the reference plate (6), the detection tube (4) is also cooled and thermally reduced. It is possible to stabilize it, but the other push rod (
5) is not easy to cool; in this case, the two are no longer thermally equivalent. If the push rod (5) is not cooled, the heat in the heating furnace will be transmitted through the push rod (5), causing the core (8) of the detector (lO) to cool down.
) is also heated, causing not only the expansion of the pushpiece (5) but also the core (
8) Its own thermal expansion will also be added to the measured value. When the sample (1) is heated to 1200°C, the temperature of the core (8) may rise by as much as 100°C. On the other hand, core (8
) is metal, but it is elongated and has a small amount of heat transfer, so it can be said that there is almost no thermal contact between the springs (9). Therefore, the heat radiated from the core (8) is only the amount transmitted through the air, the force S, which has a large time constant and takes time, so the heat radiated from the core (8) is small in a short period of time. When heat is transferred to the core (8) in this way, the temperature rises because there is no place for it to escape. As a solution to this problem, the following measures have been taken. 1. By making the detection tube (4) and push rod (5) long, the influence of heat from the sample heating section can be reduced and the temperature gradient can be made the same. However, in this case, the entire device is large. In addition, there is a problem of lack of stability as changes due to heat last for a long time. 2. Thermal effects can be canceled out by arranging two pairs of push rods, one for the standard sample, and measuring using the differential method. However, in this case, there is a problem that the equipment becomes complicated. Since the push rod (5) is not cooled in any of the above methods, the heat dissipation of these systems depends on the measurement conditions (heat transfer and dissipation due to the measurement atmosphere). The reproducibility is poor, and the accuracy of minute measurements is therefore low. [Problems to be Solved by the Invention] The present invention has been developed in view of the above-mentioned problems. The purpose is to provide a thermal expansion measurement device that is highly accurate, has good reproducibility, and is designed to provide accurate and accurate results.

【問題点を解決するための手段】[Means to solve the problem]

上記目的は、加熱される試料の線膨張量を、前記試料に
当接する検出棒を介して検出器に伝えることによって前
記線膨張量を測定する熱膨張測定装置において、前記検
出棒に冷却手段を設けたことを特徴とする熱膨張測定装
置、によって達成される。 E作   用J 以上のように構成される熱膨張測定装置においては検出
棒としての押し棒をも冷却するので、冷却される検出管
と熱的に等価になり、又、検出器に対する熱の影響も少
な(なるので、精度や再現性が良(なる。 〔実、施 例1 次に実施例について第1図及び第2図の図面を参照して
説明する。第1図及び第2図ともに、第3図の従来例と
共通の部分には同一の符号を付した。第1図は第1実施
例を示す。検出棒としての押し棒(5)の下端に熱伝導
性の良い金属から成る冷却板(12)を接触させ、冷却
板(12)は同様に熱伝導性の良い台座(13)を介し
て基準プレート(6)に接続される。基準プレート【6
)は水冷されているので、押し棒(5)の熱は冷却板(
12)、台座(13)を伝わって基準プレート〔6)か
ら放出される。その他は第3図と同じである。 この場合、コア(8)と差動トランス(7)の組合せか
ら成る検出器(lO)の特徴である機械的抵抗がないと
いう点を阻害しないようにしなければならない。 この実施例においては、上記の点を阻害しないように冷
却板(12)のバネ効果を上げようとしてこの冷却板(
12)を薄く、かつ長くすると、冷却効果が悪くなるの
で、その兼合いが難しい。又、上方の加熱炉(2)から
くる矢印aで示すような副射熱や対流による熱もあるの
で、冷却効果はあまり高くはない。 次に第2実施例を第2図に示す。これは第1実施例の難
点を解決するものである。熱伝導性の良い材料から成る
オイルポット(15)を押し棒(5)下端の周囲に設け
、留め具(11)を介して基準プレート(6)に固定し
て熱的に接触させる。オイルポット(15)の内部には
伝熱油としてのシリコーングリース(14)が収納され
ている。 押し棒(5)の熱はシリコーングリース(14)、オイ
ルポット(15)、留め具(11)を伝わって、水冷さ
れている基準プレート(6)から放出される。加熱炉(
2)からの副射熱等も同じルートで基準プレート(6)
から放出されるが、第1実施例に比べて熱容量が大きい
ので、あまり問題にならない。 シリコーングリース(14)は押し棒(5)とオイルポ
ット(15)との接触面をなめらかにし、押し棒(5)
の上下動の機械的抵抗をはf零とする。 本実施例ではシリコーングリース(14)と押し棒(5
)と、の接触面を多くしても抵抗は増えないし、又、冷
却能力は押し棒(5)の単位体積に対する伝熱油の容積
によるので、オイルポット(15)の高さを太き(した
り、直径を太き(したりして伝熱油の量を増やすことに
よってその冷却能力を上げることができる。 又、冷却能力は伝熱油の熱伝導率にも依るので、熱伝導
率の大きい伝熱油を選ぶと良い。 本実施例ではシリコーングリース(14)を使用して、
コア(8)の熱膨張量を従来装置の約轟に抑えることが
できた。又、再現性も極めて高く、試料(1)を120
0℃に加熱した時に、1ミクロンの誤差範囲内で再現で
きた。 以上、本発明の各実施例について説明したが、勿論、本
発明はこれらに限定されることなく、本発明の技術的思
想に基いて種々の変形が可能である。 例えば、各実施例の熱膨張測定装置は真空系で用いるこ
ともできる。この場合は加熱炉(2)からの熱が対流に
よって冷却板(12)、あるいはオイルポット(15)
やシリコーングリース(14)に伝えられることがない
のでより効果的である。 〔発明の効果] 本発明は以上のような構成であるので以下のような効果
を有する。 すなわち、検出管と押し棒とを冷却して両者に対する熱
の影響を同量にすることによって相殺し、又、検出器に
対する熱の影響も少なくするので、高い精度で、再現性
良く微小の熱膨張を測定することができる。
The above object is to provide a thermal expansion measurement device that measures the amount of linear expansion of a sample to be heated by transmitting the amount of linear expansion to a detector via a detection rod that contacts the sample, in which the detection rod is provided with a cooling means. This is achieved by a thermal expansion measuring device characterized in that it is provided. E-effect J In the thermal expansion measuring device configured as above, the push rod as the detection rod is also cooled, so it becomes thermally equivalent to the cooled detection tube, and the influence of heat on the detector is reduced. [Example 1] Next, an example will be explained with reference to the drawings in Figs. 1 and 2. Both Figs. , parts common to the conventional example in Fig. 3 are given the same reference numerals. Fig. 1 shows the first embodiment. The lower end of the push rod (5) as a detection rod is made of a metal with good thermal conductivity. The cooling plate (12) is connected to the reference plate (6) via the pedestal (13) which also has good thermal conductivity.The reference plate [6]
) is water-cooled, so the heat of the push rod (5) is transferred to the cooling plate (
12), is transmitted through the pedestal (13) and released from the reference plate [6]. Other details are the same as in Figure 3. In this case, it is necessary not to interfere with the lack of mechanical resistance, which is a feature of the detector (1O) consisting of a combination of a core (8) and a differential transformer (7). In this embodiment, in an attempt to increase the spring effect of the cooling plate (12) so as not to impede the above points, this cooling plate (12) is
If 12) is made thinner and longer, the cooling effect will deteriorate, so it is difficult to achieve both. Also, since there is heat due to side radiation and convection as shown by arrow a coming from the heating furnace (2) above, the cooling effect is not very high. Next, a second embodiment is shown in FIG. This solves the drawbacks of the first embodiment. An oil pot (15) made of a material with good thermal conductivity is provided around the lower end of the push rod (5) and is fixed to the reference plate (6) via a fastener (11) for thermal contact. Silicone grease (14) as heat transfer oil is stored inside the oil pot (15). The heat of the push rod (5) is transmitted through the silicone grease (14), the oil pot (15), the fastener (11), and is released from the water-cooled reference plate (6). heating furnace(
The secondary radiation heat etc. from 2) also goes through the same route to the reference plate (6).
However, since the heat capacity is larger than that in the first embodiment, this does not pose much of a problem. The silicone grease (14) smoothes the contact surface between the push rod (5) and the oil pot (15), and
Let the mechanical resistance of the vertical movement of be f zero. In this example, silicone grease (14) and push rod (5) are used.
) The resistance does not increase even if the contact surface is increased, and the cooling capacity depends on the volume of heat transfer oil per unit volume of the push rod (5). The cooling capacity can be increased by increasing the amount of heat transfer oil. It is best to choose a heat transfer oil with a large
The amount of thermal expansion of the core (8) could be suppressed to about the same level as that of the conventional device. In addition, the reproducibility is extremely high, and sample (1) was
When heated to 0°C, it was reproducible within an error range of 1 micron. Although each embodiment of the present invention has been described above, the present invention is of course not limited to these, and various modifications can be made based on the technical idea of the present invention. For example, the thermal expansion measuring device of each embodiment can also be used in a vacuum system. In this case, heat from the heating furnace (2) is transferred to the cooling plate (12) or oil pot (15) by convection.
It is more effective because it is not transmitted to the oil or silicone grease (14). [Effects of the Invention] Since the present invention has the above configuration, it has the following effects. In other words, the detection tube and the push rod are cooled to equalize the effects of heat on both, thereby canceling each other out, and also reducing the effect of heat on the detector, so that minute heat can be generated with high precision and good reproducibility. Expansion can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる第1実施例の概略断面図1.第
2図は第2実施例の概略断面図及び第3図は従来例の概
略断面図である。 なお図において。 5)・・・・・・・・・・・・・押 し 棒7)・・・
・・・・・・・・・・差動トランス8)  ・ ・・ 
・・・・・・・・ ・・  コ           
ア12)・・・・・・・・・・・・冷 却 板14) 
 ・・・・・・・・・・・・シリコーングリース代  
 理   人 飯  阪   泰  雄 第1Wi 7・・・・・・・・差動トランス 8・・・・・・・・・コ ア 12°°°°°°°゛冷却板 第2図
FIG. 1 is a schematic cross-sectional view of a first embodiment of the present invention. FIG. 2 is a schematic sectional view of the second embodiment, and FIG. 3 is a schematic sectional view of the conventional example. In addition, in the figure. 5)・・・・・・・・・・・・Push rod 7)・・・
・・・・・・・・・Differential transformer 8) ・ ・・
········ ·· Ko
A12)......Cooling plate14)
・・・・・・・・・・・・Silicone grease fee
1st Wi 7・・・・・・・・・Differential transformer 8・・・・・・・・・Core 12°°°°°°°゛Cooling plate 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 加熱される試料の線膨張量を、前記試料に当接する検出
棒を介して検出器に伝えることによって前記線膨張量を
測定する熱膨張測定装置において、前記検出棒に冷却手
段を設けたことを特徴とする熱膨張測定装置。
In a thermal expansion measurement device that measures the amount of linear expansion of a sample to be heated by transmitting the amount of linear expansion to a detector via a detection rod that contacts the sample, the detection rod may be provided with a cooling means. Characteristic thermal expansion measurement device.
JP29363989A 1989-11-10 1989-11-10 Thermal expansion measuring instrument Pending JPH03154856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29363989A JPH03154856A (en) 1989-11-10 1989-11-10 Thermal expansion measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29363989A JPH03154856A (en) 1989-11-10 1989-11-10 Thermal expansion measuring instrument

Publications (1)

Publication Number Publication Date
JPH03154856A true JPH03154856A (en) 1991-07-02

Family

ID=17797318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29363989A Pending JPH03154856A (en) 1989-11-10 1989-11-10 Thermal expansion measuring instrument

Country Status (1)

Country Link
JP (1) JPH03154856A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527609U (en) * 1991-09-24 1993-04-09 株式会社神戸製鋼所 Deiratometer
JP2001141679A (en) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2002107318A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Measuring device for linear expansion coefficient
CN102854056A (en) * 2012-09-18 2013-01-02 中国科学院理化技术研究所 Material low-temperature mechanics performance testing device using refrigerator as cold source
CN103063699A (en) * 2012-12-13 2013-04-24 中国科学院理化技术研究所 Material low-temperature thermal expansion coefficient testing device using refrigerator as cold source
US10942138B2 (en) 2015-07-24 2021-03-09 Schott Ag High-precision method for determining thermal expansion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527609U (en) * 1991-09-24 1993-04-09 株式会社神戸製鋼所 Deiratometer
JP2001141679A (en) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2002107318A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Measuring device for linear expansion coefficient
CN102854056A (en) * 2012-09-18 2013-01-02 中国科学院理化技术研究所 Material low-temperature mechanics performance testing device using refrigerator as cold source
CN103063699A (en) * 2012-12-13 2013-04-24 中国科学院理化技术研究所 Material low-temperature thermal expansion coefficient testing device using refrigerator as cold source
US10942138B2 (en) 2015-07-24 2021-03-09 Schott Ag High-precision method for determining thermal expansion

Similar Documents

Publication Publication Date Title
US4185982A (en) Method of measuring temperature of a sheet with a noncontacting-type pyrometer
US4840495A (en) Method and apparatus for measuring the thermal resistance of an element such as large scale integrated circuit assemblies
EP0159438A2 (en) Multi-layered thin film heat transfer gauge
US11193901B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method and vacuum evaluation device
JPH03154856A (en) Thermal expansion measuring instrument
US4155244A (en) Apparatus for determining thermal conductivity of materials
US1977340A (en) Heat convection meter
Murthy et al. Radiative Calibration of Heat Flux Sensors at NIST: An Overview
JP3953170B2 (en) Specific heat measurement method and differential scanning calorimeter
JP2909922B2 (en) Temperature compensation method for thermomechanical analysis
Wood et al. Pyrometry
Sasaki A New Method for Surface‐Temperature Measurement
US6390674B1 (en) Thermal analysis apparatus and method capable of accurately measuring a temperature of a large diameter sample
JPS60209158A (en) Sample cell for heat flux differential scanning calorimeter
SU1165958A1 (en) Method of measuring thermal conductivity
JPS61270840A (en) Temperature measurement of semiconductor wafer
JPS5923369B2 (en) Zero-level heat flow meter
JPH07198500A (en) Surface temperature measuring method
SU911179A1 (en) Thermoelectric pyroheliometer
JPH0446173Y2 (en)
JPH0241568Y2 (en)
Dey et al. A guarded cold plate apparatus for absolute measurement of heat flow
Edsinger et al. A high-accuracy dilatometer for the range− 20 to 700° C
Kiss et al. Error sources during the measurement of surface temperatures and heat flux on the aluminium electrolysis cells
SU819594A1 (en) Thermoradiometer for measuring degree of material blackness