JPH0446173Y2 - - Google Patents

Info

Publication number
JPH0446173Y2
JPH0446173Y2 JP13394786U JP13394786U JPH0446173Y2 JP H0446173 Y2 JPH0446173 Y2 JP H0446173Y2 JP 13394786 U JP13394786 U JP 13394786U JP 13394786 U JP13394786 U JP 13394786U JP H0446173 Y2 JPH0446173 Y2 JP H0446173Y2
Authority
JP
Japan
Prior art keywords
container
fluid
temperature
inclination
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13394786U
Other languages
Japanese (ja)
Other versions
JPS6339617U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13394786U priority Critical patent/JPH0446173Y2/ja
Publication of JPS6339617U publication Critical patent/JPS6339617U/ja
Application granted granted Critical
Publication of JPH0446173Y2 publication Critical patent/JPH0446173Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 [考案の目的] (産業上の利用分野) この考案は、一般測定機その他産業機械器具や
建築構造物等の鉛直方向の傾斜、即ち水平度また
は水平面からの微少な傾きを測定するために用い
られる傾斜センサの改良に関する。
[Detailed explanation of the invention] [Purpose of the invention] (Field of industrial application) This invention is intended for measuring the vertical inclination of general measuring instruments, industrial machinery, building structures, etc. This invention relates to improvements in tilt sensors used to measure tilt.

(従来の技術) 建築、建設機械装置ならびに一般産業機械に用
いられる傾斜センサとしては気泡管式水準器が広
く実用されており、またその原理を応用した種々
の検出方法たとへば電磁検出や光電検出を用いた
方式が採用されている。この気泡管式水準器の一
般的構成は容器内に2種類の流体即ち第1の流体
である流体と第2の流体である気体を封入したも
のであつて、第2図aに示したように内壁面の上
部が半径Rの円弧状を成すガラス容器11に、第
2の流体である気体即ち気泡12が残るように第
1の流体としてアルコールとエーテルの混合液1
3を封入して構成したものである。
(Prior art) Bubble level is widely used as an inclination sensor used in architecture, construction equipment, and general industrial machinery, and various detection methods that apply its principle include electromagnetic detection and photoelectric detection. The method used has been adopted. The general structure of this bubble tube type level is that two types of fluids, namely a first fluid and a second fluid, are sealed in a container, as shown in Figure 2a. A mixed liquid 1 of alcohol and ether as a first fluid is placed in a glass container 11 whose upper inner wall surface forms an arc shape with a radius R.
It is constructed by enclosing 3.

このガラス容器11が第2図bに示したように
θだけ傾くと容器内の気泡12はδだけ移動す
る。このとき、δ=R×θの関係があるのでδを
肉眼で読取つて測定すべき傾斜角θを検出するこ
とができるものである。
When the glass container 11 is tilted by .theta. as shown in FIG. 2b, the bubbles 12 inside the container move by .delta.. At this time, since there is a relationship of δ=R×θ, the inclination angle θ to be measured can be detected by reading δ with the naked eye.

(考案が解決しようとする問題点) 上記の気泡管式水準器は容器内外の温度が安定
しているときは、上記の論理通り正しく動作する
が容器の周囲温度が変化すると現実には容器およ
び容器内部に不均一な温度分布が生じるため、力
学的なアンバランスが発生し気泡が動揺して読取
りが困難になるという現象が生ずる。これは前述
したように容器の周囲温度が変化した場合に容器
とその内部の温度が不均一になり易く、温度勾配
が生ずるため気泡の移動の円滑性が失われいつま
でも揺動状態にあり気泡が安定しないためと推定
される。そのため検出値がかなりの時間不安定に
なり、検出誤差を生じ迅速な測定が困難であつ
た。一方、検出感度を高めるため容器内面の曲率
半径を大にして、封入液体の流動性を高め容器の
傾斜変化に対する応答性を良くすると上記の現象
が更に著しく成り、温度変化の大きい野外で使用
される機械装置に装着して使用する場合には傾斜
度合いを検出する作業に時間を要するなどの支障
があつた。電気的に読取りをする方式を採用した
傾斜センサにおいては、電気回路に温度補償回路
を組込んで測定値の誤差を少なくしているが、前
記した熱による力学的な擾乱に関してはなんらの
効果がなかつた。
(Problem to be solved by the invention) The bubble level described above works correctly according to the above logic when the temperature inside and outside the container is stable, but when the ambient temperature of the container changes, it actually Due to the non-uniform temperature distribution inside the container, a mechanical imbalance occurs and the bubbles become agitated, making reading difficult. This is because, as mentioned above, when the ambient temperature of the container changes, the temperature inside the container tends to become uneven, and a temperature gradient occurs, which causes the bubbles to lose their smooth movement and stay in an oscillating state forever. It is presumed that this is due to instability. As a result, the detected value was unstable for a considerable period of time, causing detection errors and making rapid measurement difficult. On the other hand, in order to increase the detection sensitivity, the radius of curvature of the inner surface of the container is increased, increasing the fluidity of the sealed liquid and improving the response to changes in the container's inclination. When used attached to a mechanical device, there were problems such as the time required to detect the degree of inclination. Inclination sensors that use electrical reading methods incorporate a temperature compensation circuit into the electrical circuit to reduce errors in measured values, but this has no effect on the mechanical disturbances caused by heat. Nakatsuta.

[考案の構成] (問題を解決するための手段、作用) この考案は、上記の欠点を解決するために傾斜
センサの周囲温度が変化してもその温度に影響さ
れずに測定作業が高い精度で、しかも迅速に行え
る傾斜センサを提供するものであり、センサを構
成する容器の表面を熱良導体の薄板で覆うか熱良
導体の鍍金属を施すか容器そのものを熱良導体で
形成することによつて、容器およびその内部にお
ける温度分布を一様にして温度勾配が生じない構
成としている。
[Configuration of the invention] (Means for solving the problem, action) In order to solve the above-mentioned drawbacks, this invention provides an inclinometer that can perform measurement operations quickly and with high accuracy without being affected by changes in the ambient temperature of the inclinometer.The surface of the container that constitutes the sensor is covered with a thin plate of good thermal conductivity, or is plated with good thermal conductivity metal, or the container itself is made of good thermal conductivity, thereby making the temperature distribution in the container and its interior uniform and preventing temperature gradients.

(実施例) 以下図面を参照してこの考案の実施例について
説明する。
(Example) An example of this invention will be described below with reference to the drawings.

第1図における傾斜センサは電磁検出方式を採
用したものであつて図に示されたようにガラス製
の管状容器1の内壁面の上部に曲率半径Rを有す
る曲面を形成し、このガラス製の管状容器1内に
は第2の流体である気泡2が封入され、前記気泡
2以外には第1流体である磁性流体3を満たして
ある。ガラス製の管状容器1の外周壁面には熱良
導体である銅薄板4を設けてある。この銅薄板4
は厚さ0.2mmのものをガラス製の管状容器1に2
枚巻付けて熱伝導をよくする層を構成する、この
層は図面に示す如く2枚の銅薄板4を用いて分割
構造としている、これは磁性流体3の電磁作用に
よる渦電流発生を抑制するためのものである。ガ
ラス製の管状容器1とその外周壁面に設けられた
銅薄板4に差動トランスコイル5を捲回して検出
用とし傾斜センサを構成している。
The tilt sensor in FIG. 1 adopts an electromagnetic detection method, and as shown in the figure, a curved surface having a radius of curvature R is formed on the upper part of the inner wall surface of a tubular container 1 made of glass. Air bubbles 2, which are a second fluid, are sealed inside the tubular container 1, and the space other than the air bubbles 2 is filled with a magnetic fluid 3, which is a first fluid. A thin copper plate 4, which is a good thermal conductor, is provided on the outer peripheral wall surface of the tubular container 1 made of glass. This thin copper plate 4
is a glass tubular container 1 with a thickness of 0.2 mm.
This layer forms a layer that improves heat conduction by being wrapped in a single layer.As shown in the drawing, this layer has a divided structure using two thin copper plates 4. This suppresses the generation of eddy currents due to the electromagnetic action of the magnetic fluid 3. It is for. A differential transformer coil 5 is wound around a glass tubular container 1 and a copper thin plate 4 provided on its outer peripheral wall surface to constitute a tilt sensor for detection.

このように構成された傾斜センサを野外で使用
した場合において太陽の直射光線や風などの環境
の影響を受けて傾斜センサの周囲温度が変化した
とき、ガラス製の管状容器1の外周壁面に設けた
熱良導体である銅薄板4が逸早くこの周囲温度に
順応し、その熱をガラス製の管状容器1に伝導
し、該容器を周囲温度と等しくするとともに容器
内部の温度も均一にする。これによつて容器内部
に温度勾配が生ずることがなくなるので気泡の移
動は円滑になされ、その揺動状態は短時間で終息
され気泡が安定した状態となる。
When the tilt sensor configured as described above is used outdoors and the ambient temperature of the tilt sensor changes due to the influence of the environment such as direct rays of the sun or wind, the sensor is installed on the outer peripheral wall of the glass tubular container 1. The thin copper plate 4, which is a good thermal conductor, quickly adapts to the ambient temperature and conducts the heat to the glass tubular container 1, making the container equal to the ambient temperature and also making the temperature inside the container uniform. As a result, no temperature gradient occurs inside the container, so the bubbles move smoothly, and the oscillating state ends in a short period of time, so that the bubbles become stable.

また、本考案において第3図に示したようにガ
ラス製の管状容器1の外周壁面に設けた熱良導で
ある銅薄板4にモールド型の半導体の放熱器に見
られるような銅薄板4と同じ材質のフイン4′を
設けることにより、ガラス製の管状容器1の周囲
温度に対する順応を迅速にすることが可能であ
る。これによつて容器内部に温度勾配が生じても
気泡の揺動状態は短い時間で安定状態となる。
In addition, in the present invention, as shown in FIG. 3, a copper thin plate 4, which is a good heat conductor, is provided on the outer peripheral wall of the glass tubular container 1, and a copper thin plate 4, such as that seen in a molded semiconductor heat sink, is used. By providing the fins 4' made of the same material, it is possible to quickly adapt the glass tubular container 1 to the ambient temperature. As a result, even if a temperature gradient occurs inside the container, the oscillating state of the bubbles becomes stable in a short time.

[考案の効果] 以上説明したように、この考案の傾斜センサは
容器の周囲温度が変化した場合でも容器を覆設し
た熱良導体または熱良導体で構成した容器自体に
よつて熱の伝導を良好にして、熱的応答速度を改
善しているので容器内部の流体の温度分布を迅速
に均一化することが可能であるから、容器内部の
温度の不均一によつて生ずる力学的アンバランス
による気泡の動揺によつて、検出値がかなりの時
間不安定になることがない。
[Effects of the invention] As explained above, the inclination sensor of this invention allows for good heat conduction even when the ambient temperature of the container changes due to the thermal conductor covered with the container or the container itself made of a thermally good conductor. Since the thermal response speed is improved, it is possible to quickly equalize the temperature distribution of the fluid inside the container, so it is possible to quickly equalize the temperature distribution of the fluid inside the container. The detected value does not become unstable for a considerable period of time due to oscillation.

したがつて、従来の電気回路に温度補償回路を
設ける手段でも解決することのできなかつた熱力
学的な擾乱に対してもセンサの安定性を確保でき
る実用的な効果を有するものである。
Therefore, it has a practical effect of ensuring the stability of the sensor even against thermodynamic disturbances that could not be resolved by conventional means of providing a temperature compensation circuit in an electric circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案による傾斜センサの実施例を
示す概略断面、第2図は気泡管水準器の構成なら
びに動作原理の説明概略断面図である。第3図は
本考案の他の実施例を示す概略断面図である。 1……ガラス製の管状容器、2……気泡、3…
…磁性流体、4……銅薄板、4′……フイン、5
……差動トランスコイル。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the inclination sensor according to this invention, and FIG. 2 is a schematic cross-sectional view illustrating the structure and operating principle of a bubble level. FIG. 3 is a schematic sectional view showing another embodiment of the present invention. 1... Glass tubular container, 2... Air bubbles, 3...
...Magnetic fluid, 4... Copper thin plate, 4'... Fin, 5
...Differential transformer coil.

Claims (1)

【実用新案登録請求の範囲】 1 上部内面を断面円弧状に形成した容器内に一
部に第2の流体を封入できるように第1の流体
を満たし、前記一部に第2の流体を封入してな
る傾斜センサにおいて、前記上部内面を断面円
弧状に形成した容器の表面を熱良導体で覆設
し、又は該容器自体を熱良導体で構成したこと
を特徴とする傾斜センサ。 2 容器を覆設する熱良導体又は容器を構成する
熱良導体に放熱用フインを周設した実用新案登
録請求の範囲第1項記載の傾斜センサ。
[Claims for Utility Model Registration] 1. A container whose upper inner surface has an arcuate cross-section is partially filled with a first fluid so that a second fluid can be enclosed therein, and a second fluid is enclosed in the part. A tilt sensor comprising: a container whose upper inner surface has an arcuate cross section; the surface of the container is covered with a thermally conductive material; or the container itself is made of a thermally conductive material. 2. The inclination sensor according to claim 1 of the registered utility model, wherein a heat dissipation fin is provided around a heat conductor covering the container or a heat conductor constituting the container.
JP13394786U 1986-09-01 1986-09-01 Expired JPH0446173Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13394786U JPH0446173Y2 (en) 1986-09-01 1986-09-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13394786U JPH0446173Y2 (en) 1986-09-01 1986-09-01

Publications (2)

Publication Number Publication Date
JPS6339617U JPS6339617U (en) 1988-03-15
JPH0446173Y2 true JPH0446173Y2 (en) 1992-10-29

Family

ID=31034728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13394786U Expired JPH0446173Y2 (en) 1986-09-01 1986-09-01

Country Status (1)

Country Link
JP (1) JPH0446173Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749251B2 (en) * 1989-12-27 1995-05-31 株式会社小糸製作所 Car headlamp
JPH0411440U (en) * 1990-05-22 1992-01-30

Also Published As

Publication number Publication date
JPS6339617U (en) 1988-03-15

Similar Documents

Publication Publication Date Title
US3677085A (en) Tandem-type hot-wire velocity meter probe
KR960013449B1 (en) Electronic inclinometer
US4536967A (en) Tilt sensor and method of assembly
US5390548A (en) Electrode array electromagnetic velocimeter
JPH0446173Y2 (en)
US3631708A (en) Liquid bath reference cavity
US4312224A (en) Absorbed dose water calorimeter
US3787764A (en) Solid dielectric capacitance gauge for measuring fluid pressure having temperature compensation and guard electrode
JPH03154856A (en) Thermal expansion measuring instrument
JP3420847B2 (en) Thermal dependency detection device and method of manufacturing the same
CN108663397B (en) Thermal conductivity measuring device for vacuum glass
JPS6050289B2 (en) thermal flow meter
Van Dorth et al. Thick film heat flux sensor
JPS60146118A (en) Method and apparatus for measuring level of interface
JPS5833532Y2 (en) Inertial sensor temperature control device
CN210603569U (en) Device for reducing temperature drift of electromagnetic force balance
JPS55101026A (en) Zero-method heat flow meter
RU2281466C1 (en) Temperature detector
JP3163558B2 (en) Flow velocity detector
JPH0522800Y2 (en)
JPS5828196Y2 (en) Temperature sensing part of remote thermometer
JPS63308521A (en) Level sensor and compensating method of measured value thereof
SU1721490A1 (en) Device for determining thermal and physical characteristics of materials
SU1627958A1 (en) Immersed probe of flow conductivity meter
Zinov'eva HEAT EXCHANGE BETWEEN A SOLID BODY AND LIQUID HELIUM BELOW lK