JPS6226692B2 - - Google Patents

Info

Publication number
JPS6226692B2
JPS6226692B2 JP56013312A JP1331281A JPS6226692B2 JP S6226692 B2 JPS6226692 B2 JP S6226692B2 JP 56013312 A JP56013312 A JP 56013312A JP 1331281 A JP1331281 A JP 1331281A JP S6226692 B2 JPS6226692 B2 JP S6226692B2
Authority
JP
Japan
Prior art keywords
furnace
temperature
radiant energy
radiation thermometer
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56013312A
Other languages
Japanese (ja)
Other versions
JPS57127822A (en
Inventor
Hiromitsu Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP56013312A priority Critical patent/JPS57127822A/en
Publication of JPS57127822A publication Critical patent/JPS57127822A/en
Publication of JPS6226692B2 publication Critical patent/JPS6226692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0275Control or determination of height or distance or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/047Mobile mounting; Scanning arrangements

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炉内材料温度を放射温度計によつて高
精度に測定する方法に関する。 従来、放射温度計を用いて炉内材料温度を測定
する場合、炉壁からの放射エネルギが炉内材料に
反射して放射温度計に入射されると、放射温度計
には実際の炉内材料温度より高い温度が指示され
るため、一般的には、水冷断熱遮蔽筒を炉壁から
炉内材料近くまで挿入して炉壁からの放射エネル
ギが放射温度計に入射されないようにするラジエ
ーシヨン・シールド法を用いて炉内材料温度が測
定されている。 しかるに、この場合、炉壁からの放射エネルギ
が炉内材料に反射して放射温度計に入射されるの
を防止するためには、遮蔽筒先端と炉内材料との
間隔dをより小さくするか、遮蔽筒先端の外周半
径Rをより大きくする必要があるが、その場合、
炉内材料の温度が遮蔽筒と対向する部分において
遮蔽筒の水冷による吸熱効果によつて低下し、炉
内材料に加熱むらができる他、遮蔽筒が長くなる
とその分だけ水冷による炉内熱量損失が増大して
省エネルギ促進を妨げることになる。 一方、加熱むらが生じない程度に遮蔽筒先端と
炉内材料との間隔d及び遮蔽筒先端の外周半径R
を設定すると、炉壁からの放射エネルギが炉内材
料に反射して放射温度計に入射されることになる
が、この炉内材料以外からの放射エネルギによる
測定誤差をより小さくするための方法として、前
記dとRの値によつて変化する測定誤差放射エネ
ルギを実験的に求め、この実験的に求めた測定誤
差放射エネルギを実際の計測値から差し引くこと
によつて、炉内材料の温度をより正確に求めるよ
うにしている。 しかし、現実問題として、測定誤差温度は前記
dとRの他、炉及び加熱材料の炉内位置、温度等
の各種条件によつても変化することから、実験的
に求めた誤差放射エネルギを実際の計測値から差
し引いても正確な炉内材料を測定することは難し
い。 又、他の方法としては、誤差温度を含むみかけ
の炉内材料温度Taの放射エネルギE(Ta)とは
別に炉壁の放射エネルギE(Tb)が炉内材料に
反射して炉内材料温度測定用放射温度計に入射さ
れる放射エネルギ△E(Tb′)を実測しこの△E
(Tb′)を前記E(Ta)から差し引くことによつ
て炉内材料のみの放射エネルギを求める方法もあ
るが、この場合、炉壁からの放射エネルギE
(Tb)を正確に求めることが難しく、これが測定
誤差の原因になる。 その結果、炉内材料の温度を高精度に管理する
必要がある例えば精密な圧延制御に支障を来たす
ばかりか、製品に品質むらができる等の欠点があ
つた。 本発明の目的は遮蔽筒を用いての放射温度計に
よる炉内材料温度の測定時において、遮蔽筒先端
と炉内材料との間隔d及び遮蔽筒先端の外周半径
Rとの少なくとも一方が異なるときの計測放射エ
ネルギ差から、放射温度計に入射される炉内材料
以外の放射エネルギによる誤差放射エネルギを求
めるとともに、放射温度計の検出放射エネルギか
ら前記誤差放射エネルギを差し引いて炉内材料温
度を得る放射温度計による炉内材料の温度測定方
法を提供することによつて、前記従来の欠点を除
去することにある。 次に、本発明の一実施例の構成を第1図によつ
て説明する。 要熱処理材1を加熱する炉2の炉壁3には、冷
却水入口4と冷却水出口5を形成した3重水冷鋼
管6の外周にキヤスタブル7を打つた水冷断熱遮
蔽筒のプローブ8がブラケツト9を介して炉内材
料1の直上位置まで突出した状態で鉛直に取付け
られ、プローブ8の上端部にはプローブ8内のエ
アパージ用エア入口10が形成されている他、放
射温度計11が取付けられ、同放射温度計11に
は炉内材料1からの放射エネルギがプローブ8を
介して入射される。 このように構成された炉内材料温度測定装置1
2において、プローブ8先端と炉内材料1との間
隔をd1、プローブ8先端の外周半径をR1とする
と、放射温度計11には、温度Twの炉壁3から
の放射エネルギE(Tw)が温度Tの炉内材料1
に反射して入射される分も含めた測定誤差温度を
含むみかけ温度T1′の放射エネルギE(T1′)、即
ち、 E(T1′)=ε・E(T)+(1−ε) ・β1・E(Tw) ……(1) が入射される(第2図参照)。 ここで ε;材料表面の放射率 E(T);温度Tの黒体からの放射エネルギー β;反射混入率
The present invention relates to a method of measuring the temperature of materials in a furnace with high precision using a radiation thermometer. Conventionally, when measuring the temperature of the materials inside the furnace using a radiation thermometer, when the radiant energy from the furnace wall is reflected by the materials inside the furnace and enters the radiation thermometer, the radiation thermometer shows the actual material inside the furnace. Since a temperature higher than the above temperature is indicated, a radiation shield is generally used to prevent radiant energy from the furnace wall from entering the radiation thermometer by inserting a water-cooled insulating shield tube from the furnace wall close to the materials inside the furnace. The temperature of the material inside the furnace is measured using the method. However, in this case, in order to prevent the radiant energy from the furnace wall from being reflected by the materials inside the furnace and entering the radiation thermometer, it is necessary to make the distance d between the tip of the shield cylinder and the materials inside the furnace smaller. , it is necessary to make the outer radius R of the tip of the shielding cylinder larger, but in that case,
The temperature of the materials in the furnace decreases in the part facing the shield tube due to the heat absorption effect due to water cooling of the shield tube, causing uneven heating of the materials in the furnace, and the longer the shield tube becomes, the more heat is lost in the furnace due to water cooling. increases, which hinders the promotion of energy conservation. On the other hand, the distance d between the tip of the shielding tube and the material in the furnace and the outer circumferential radius R of the tip of the shielding tube are set to such an extent that uneven heating does not occur.
If you set , the radiant energy from the furnace wall will be reflected by the materials inside the furnace and will be incident on the radiation thermometer, but as a method to further reduce the measurement error caused by radiant energy from materials other than the materials inside the furnace. , by experimentally determining the measurement error radiant energy that changes depending on the values of d and R, and subtracting this experimentally determined measurement error radiant energy from the actual measurement value, the temperature of the material in the furnace can be determined. I'm trying to find it more accurately. However, as a practical matter, the measurement error temperature varies depending on various conditions such as the position and temperature of the furnace and heating materials in addition to d and R, so the experimentally determined error radiant energy is actually It is difficult to accurately measure the material inside the furnace by subtracting it from the measured value. In addition, as another method, in addition to the radiant energy E (Ta) of the apparent furnace material temperature Ta including the error temperature, the radiant energy E (Tb) of the furnace wall is reflected by the furnace material and the furnace material temperature increases. The radiant energy △E (Tb′) incident on the measurement radiation thermometer is actually measured and this △E
There is also a method of calculating the radiant energy of only the materials inside the furnace by subtracting (Tb') from the above E(Ta), but in this case, the radiant energy from the furnace wall E
It is difficult to accurately determine (Tb), which causes measurement errors. As a result, it not only interferes with precise rolling control, which requires highly accurate control of the temperature of the material in the furnace, but also has drawbacks such as uneven product quality. The object of the present invention is to measure the temperature of the material in the furnace using a radiation thermometer using a shielding tube, when at least one of the distance d between the tip of the shielding tube and the material in the furnace and the outer radius R of the tip of the shielding tube differs. From the measured radiant energy difference, find the error radiant energy due to radiant energy other than the materials in the furnace that enters the radiation thermometer, and obtain the temperature of the materials in the furnace by subtracting the error radiant energy from the radiant energy detected by the radiation thermometer. The object of the present invention is to eliminate the above-mentioned drawbacks of the conventional methods by providing a method for measuring the temperature of materials in a furnace using a radiation thermometer. Next, the configuration of an embodiment of the present invention will be explained with reference to FIG. On the furnace wall 3 of the furnace 2 that heats the material 1 to be heat treated, a probe 8, which is a water-cooled, heat-insulating shield tube, is mounted on a bracket, with a caster 7 placed around the outer periphery of a triple water-cooled steel pipe 6 that forms a cooling water inlet 4 and a cooling water outlet 5. The probe 8 is installed vertically so as to protrude directly above the furnace material 1 through the probe 9, and an air inlet 10 for air purging inside the probe 8 is formed at the upper end of the probe 8, and a radiation thermometer 11 is also installed. Radiant energy from the in-furnace material 1 is incident on the radiation thermometer 11 via the probe 8. Furnace material temperature measuring device 1 configured as described above
2, if the distance between the probe 8 tip and the furnace material 1 is d1, and the outer radius of the probe 8 tip is R1, then the radiation thermometer 11 receives the radiant energy E (Tw) from the furnace wall 3 at the temperature Tw. Furnace material 1 at temperature T
The radiant energy E(T1') of the apparent temperature T1' including the measurement error temperature including the amount reflected and incident on the surface, that is, E(T1') = ε・E(T) + (1-ε) ・β1・E(Tw)...(1) is incident (see Figure 2). Here, ε: Emissivity of the material surface E(T): Radiation energy from a black body at temperature T β: Reflection mixing rate

【式】 従つてd=d1、R=R1とすると、 次に、この炉内材料温度測定装置12における
dとRの値を第1図に2点鎖線で示すd=d2、
R=R2のように変化させた場合、反射混入率β
2は になるとともに、この状態で放射温度計11に入
射される測定誤差温度を含むみかけ温度T2′の放
射エネルギE(T2′)は、 E(T2′)=ε・E(T)+(1−ε) ・β2・E(Tw) ……(2) になる。但しE(T1′)≠E(T2′)とする。 そこで、炉内材料1に反射して放射温度計11
に入射される炉壁3からの測定誤差放射エネルギ
は以下の式の展開により求める。 △E(T′)=E(T1′)−E(T2′)……(3) は、放射温度計11によつて計測された放射エネ
ルギ差から求めることができるとともに、この(3)
式に(1)及び(2)式を代入すると、 △E(T′)=E(T1′)−E(T2′) =(1−ε)・E(Tw)・(β1−β2) =(1−ε)・E(Tw)・β1(1−β2/β1)…
… (4) 上記(4)式を展開して(1)式における測定誤差温度
の放射エネルギを次式によつて求めることができ
る。 その結果、(1)式に上記(5)式を代入した次式によ
つて、炉内材料1の放射エネルギを求めることが
できる。 なお、プローブ8と炉内材料1との間で前記d
とRの少なくとも一方を変化させて炉内材料1の
みかけ温度(T1′)(T2′)を測定するには次の方
法が用いられる。 (1) 第1図においてプローブ8と炉内材料1の少
なくとも一方を両者の対向方向に変位させる。 (2) 第3図のように、d及びRの少なくとも一方
が異なる2本のプローブ8A,8Bを設けると
ともに各プローブ8A,8B毎に放射温度計
(放射検出素子)11A,11Bを備えて演算
回路13等で計測する。 (3) 第4図のように、前記2本のプローブ8A,
8Bに1箇の放射温度計11Cとして、各プロ
ーブ8A,8B別に放射温度計11Cを切替機
構14で切換えるとともに各出力を演算回路1
3に入力させて計測する。 次に、本発明の効果について説明する。 本発明は炉内に挿入された遮蔽筒の先方位置に
ある炉内材料からの放射エネルギを遮蔽筒内をと
おつて遮蔽筒の炉外端部に取付けられた放射温度
計の放射検出素子に入射させて炉内材料の温度を
計測するに際して、遮蔽筒先端と炉内材料との間
隔dと、遮蔽筒先端の外周半径Rとの少なくとも
一方を変化させて誤差温度の対象となる実際の放
射エネルギ差の誤差放射エネルギを求めるととも
に、前記放射温度計で検出される検出放射エネル
ギから前記誤差放射エネルギを差し引いて炉内材
料の温度を測定することにる。 これによつて本発明は炉内材料の真温度を容易
かつ高精度に求めることができる効果がある。特
に、炉及び被測温炉内材料の条件、例えば炉及び
被測温炉内材料の温度や被測温炉内材料の材質や
形状が変化しても常にこの変化に即応した状態で
被測温炉内材料の真温度を高精度かつ容易に測定
することができる効果がある。
[Formula] Therefore, if d=d1 and R=R1, Next, the values of d and R in this in-furnace material temperature measuring device 12 are shown by the two-dot chain line in FIG. 1, d=d2,
When changing R=R2, the reflection mixing rate β
2 is At the same time, the radiant energy E(T2') of the apparent temperature T2' including the measurement error temperature incident on the radiation thermometer 11 in this state is E(T2') = ε・E(T) + (1- ε) ・β2・E(Tw) ...(2) becomes. However, E(T1')≠E(T2'). Therefore, the radiation thermometer 11
The measurement error radiant energy incident on the furnace wall 3 is obtained by expanding the following equation. △E(T') = E(T1') - E(T2')...(3) can be obtained from the radiation energy difference measured by the radiation thermometer 11, and this (3)
Substituting equations (1) and (2) into the equation, △E(T')=E(T1')-E(T2') =(1-ε)・E(Tw)・(β1-β2)= (1-ε)・E(Tw)・β1(1-β2/β1)...
... (4) By expanding the above equation (4), the radiant energy of the measurement error temperature in equation (1) can be determined by the following equation. As a result, the radiant energy of the furnace material 1 can be determined by the following equation by substituting the above equation (5) into equation (1). Note that the above d between the probe 8 and the furnace material 1
The following method is used to measure the apparent temperature (T1') (T2') of the furnace material 1 by changing at least one of R and R. (1) In FIG. 1, at least one of the probe 8 and the furnace material 1 is displaced in the direction in which they face each other. (2) As shown in Fig. 3, two probes 8A, 8B with different at least one of d and R are provided, and each probe 8A, 8B is provided with a radiation thermometer (radiation detection element) 11A, 11B for calculation. Measure using circuit 13 or the like. (3) As shown in Figure 4, the two probes 8A,
One radiation thermometer 11C is provided for each probe 8B, and the radiation thermometer 11C is switched by a switching mechanism 14 for each probe 8A, 8B, and each output is connected to an arithmetic circuit 1.
3 and measure. Next, the effects of the present invention will be explained. The present invention allows the radiation energy from the in-furnace material located at the front end of the shielding tube inserted into the furnace to pass through the shielding tube and enter the radiation detection element of the radiation thermometer attached to the outer end of the shielding tube. When measuring the temperature of the material in the furnace by changing at least one of the distance d between the tip of the shielding tube and the material in the furnace and the outer radius R of the tip of the shielding tube, the actual radiant energy that is subject to the error temperature can be measured. The difference in error radiant energy is determined, and the temperature of the material in the furnace is measured by subtracting the error radiant energy from the detected radiant energy detected by the radiation thermometer. As a result, the present invention has the advantage that the true temperature of the material in the furnace can be determined easily and with high accuracy. In particular, even if the conditions of the furnace and the materials inside the furnace whose temperature is being measured, such as the temperature of the furnace and the materials inside the furnace whose temperature is being measured, or the material or shape of the materials inside the furnace whose temperature is being measured, the temperature of the furnace that is being measured is always maintained in a state that is responsive to these changes. This has the effect that the true temperature of the material inside the hot furnace can be easily measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構造を示す説明
図、第2図はその放射エネルギの状況を示す説明
図、第3図と第4図はそのdとRを変化させての
測定方法を示す説明図である。 1……炉内材料、2……炉、3……炉壁、8,
8A,8B……プローブ、11,11A,11
B,11C……放射温度計、12……炉内材料温
度測定装置、13……演算回路。
Fig. 1 is an explanatory diagram showing the structure of an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the situation of the radiant energy, and Figs. 3 and 4 are measurement methods by changing d and R. FIG. 1...Furnace interior material, 2...Furnace, 3...Furnace wall, 8,
8A, 8B...Probe, 11, 11A, 11
B, 11C... Radiation thermometer, 12... Furnace material temperature measuring device, 13... Arithmetic circuit.

Claims (1)

【特許請求の範囲】 1 炉内に挿入された遮蔽筒の先方位置にある炉
内材料からの放射エネルギを遮蔽筒内をとおつて
遮蔽筒の炉外端部に取付けられた放射温度計の放
射検出素子に入射させて炉内材料の温度を計測す
るに際して、遮蔽筒先端と炉内材料との間隔d
と、遮蔽筒先端の外周半径Rとの少なくとも一方
を変化させたときに計測される放射エネルギ差か
ら、炉内材料に反射して入射される前記dとRの
値に対応した炉内材料以外からの誤差温度となる
誤差放射エネルギを求めるとともに、前記放射温
度計の検出放射エネルギから前記誤差放射エネル
ギを差し引くことによつて炉内材料の温度を求め
ることを特徴とする放射温度計による炉内材料の
温度測定方法。 2 遮蔽筒と炉内材料との少なくとも一方を両者
の対向方向に変位させることによつて、遮蔽筒先
端と炉内材料との間隔dを変化させることを特徴
とする前記特許請求の範囲第1項に記載の放射温
度計による炉内材料の温度測定方法。 3 遮蔽筒先端と炉内材料との間隔d及び遮蔽筒
先端の外周半径Rとの少なくとも一方が異なる複
数本の遮蔽筒のそれぞれに設けた炉内材料温度検
出用放射検出素子を介して計測される放射エネル
ギから誤差放射エネルギを求めることを特徴とす
る前記特許請求の範囲第1項に記載の放射温度計
による炉内材料の温度測定方法。
[Scope of Claims] 1. Radiation energy from the materials in the furnace at the forward position of the shielding cylinder inserted into the furnace is transmitted through the shielding cylinder to the radiation of the radiation thermometer attached to the outer end of the furnace of the shielding cylinder. When measuring the temperature of the material in the furnace by making it enter the detection element, the distance d between the tip of the shielding cylinder and the material in the furnace
From the difference in radiant energy measured when at least one of the outer radius R and the outer radius R of the tip of the shielding tube is changed, it is determined that the radiant energy that is reflected and incident on the in-furnace material other than the in-furnace material corresponding to the values of d and R is In the furnace using a radiation thermometer, the temperature of the materials in the furnace is determined by determining the error radiant energy that is the error temperature from the radiation thermometer, and subtracting the error radiant energy from the detected radiant energy of the radiation thermometer. How to measure the temperature of materials. 2. Claim 1 characterized in that the distance d between the tip of the shielding cylinder and the furnace material is changed by displacing at least one of the shielding cylinder and the furnace material in a direction in which they face each other. A method for measuring the temperature of materials in a furnace using a radiation thermometer as described in . 3. At least one of the distance d between the tip of the shielding tube and the reactor material and the outer radius R of the tip of the shielding tube is measured via a radiation detection element for detecting the temperature of the material in the reactor provided in each of the plurality of different shielding tubes. A method for measuring the temperature of a material in a furnace using a radiation thermometer according to claim 1, characterized in that an error radiant energy is determined from the radiant energy generated by the radiation thermometer.
JP56013312A 1981-01-31 1981-01-31 Method of measuring temperature of furnace material with radiation thermometer Granted JPS57127822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56013312A JPS57127822A (en) 1981-01-31 1981-01-31 Method of measuring temperature of furnace material with radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56013312A JPS57127822A (en) 1981-01-31 1981-01-31 Method of measuring temperature of furnace material with radiation thermometer

Publications (2)

Publication Number Publication Date
JPS57127822A JPS57127822A (en) 1982-08-09
JPS6226692B2 true JPS6226692B2 (en) 1987-06-10

Family

ID=11829647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56013312A Granted JPS57127822A (en) 1981-01-31 1981-01-31 Method of measuring temperature of furnace material with radiation thermometer

Country Status (1)

Country Link
JP (1) JPS57127822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445372U (en) * 1987-09-11 1989-03-20

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523473A (en) * 1978-08-08 1980-02-19 Sumitomo Metal Ind Ltd Measuring method for temperature of material in heating furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523473A (en) * 1978-08-08 1980-02-19 Sumitomo Metal Ind Ltd Measuring method for temperature of material in heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445372U (en) * 1987-09-11 1989-03-20

Also Published As

Publication number Publication date
JPS57127822A (en) 1982-08-09

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
KR101205594B1 (en) Refractory thickness measuring method, and apparatus therefor
CN101343676A (en) On-line detecting device and method for temperature of blast furnace chamber
JPS6226692B2 (en)
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JPH0696726B2 (en) Blast furnace wall thickness measuring method and equipment
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JPS634651B2 (en)
JPH0521412B2 (en)
JP3975584B2 (en) Surface temperature measurement method
JPS6059511B2 (en) Surface temperature measuring device for objects inside the furnace
JPS6124901Y2 (en)
JPS61292528A (en) Correction in temperature measurement for steel material in furnace
JPS60146118A (en) Method and apparatus for measuring level of interface
JPS6160364B2 (en)
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
JPS62180232A (en) Temperature measuring method for tubular body
JPS6225973B2 (en)
JPH0625382B2 (en) Calibration method of radiation thermometer in continuous annealing furnace.
JPS6222089B2 (en)
JPS6019444B2 (en) Method for measuring temperature of materials in heating furnace
JPS6225972B2 (en)
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object
JPH10185695A (en) Method and device for measuring surface temperature of object inside heating furnace
JP2001304968A (en) Method and device for measuring temperature of heated object