JPS60193535A - Film forming device - Google Patents

Film forming device

Info

Publication number
JPS60193535A
JPS60193535A JP4810684A JP4810684A JPS60193535A JP S60193535 A JPS60193535 A JP S60193535A JP 4810684 A JP4810684 A JP 4810684A JP 4810684 A JP4810684 A JP 4810684A JP S60193535 A JPS60193535 A JP S60193535A
Authority
JP
Japan
Prior art keywords
water
liquid
accumulation
tank
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4810684A
Other languages
Japanese (ja)
Inventor
Toshihiko Miyazaki
俊彦 宮崎
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4810684A priority Critical patent/JPS60193535A/en
Publication of JPS60193535A publication Critical patent/JPS60193535A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/206LB troughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To enable not only easy continuous accumulation of monomolecular films but also cleaning up of the liquid in a liquid tank by controlling the surface pressure of the monomolecular films so as to obtain desired surface density and interposing additionally a filter means in a liquid circulating system. CONSTITUTION:A circulating path 12 for a liquid and a filter means 16 are added to a liquid tank 3 contg. the liquid for spreading molecules for film forming. For example, a filter 16 which removes >=0.5mu dust is inserted into said tank. As a result, the visible dust is not admitted even after the device is used >=100 times, while in the prior art the visible dust is admitted in the tank 3 after just about 2-5 times (5-10hr in time) of use of said device. The easy continuous accumulation of the monomolecular films and the simultaneous cleaning up of the water in the water tank are made possible by the simple constitution of inserting the filter into the circulating system of the water flow path. The labor and time required for preparation for the accumulation are thus reduced.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、半導体あるいは光学デバイスの機能を荷う部
分である薄膜の作製装置に関し、特に。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an apparatus for producing a thin film, which is a functional part of a semiconductor or optical device, and particularly relates to an apparatus for producing a thin film, which is a functional part of a semiconductor or optical device.

中分子累積法、すなわちラングミュア・ブロジェット法
(LB法)を用いるLB膜作製装置に関するものである
The present invention relates to an LB film manufacturing apparatus using a medium molecule accumulation method, that is, the Langmuir-Blodgett method (LB method).

く背景技術〉 従来、半導体技術分野並びに光学技術分野に於ける素材
利用は、もっばら比較的取扱いが容易な無機物を対象に
して進められてきた。これは有機化学分野の技術進展が
無機材料分野のそれに比べしかしながら、最近の有機化
学分野の技術進歩には目をみはるものがあり、又、p#
、機物対象の素材開発もほぼ限界に近づいてきたといわ
れている。そこで無機物を凌ぐ新しい機能素材としての
機能性有機材料の開発が要望されている。有機材料の利
点は安価かつ製造容易であること、機能性に富むこと等
である。反面、これまで劣るとされてきた耐熱性、機械
的強度に対しても、最近これを克服した有機材料が次々
に生まれている。このような技術的背景のもとで、論理
素子、メモリー素子、光電変換素子等のICデバイスや
マイクロレンズ・アレイ、先導波路等の光学デバイスの
機能を荷う部分(主として薄膜部分)の一部又は全部を
従来の無機薄膜に代えて、有機薄膜で構成しようという
提案から、はては1個の有機分子に論理素子やメモリ素
子等の機能を持たせた分子電子デバイスや生体関連物質
からなる論理素子(例えばバイオ・チー2ブス)を作ろ
うという提案が最近、いくつかの研究機関により発表さ
れた。
BACKGROUND ART Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. This is because the technological progress in the field of organic chemistry is compared to that in the field of inorganic materials, but the recent technological progress in the field of organic chemistry is remarkable.
It is said that the development of materials for aircraft has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of organic materials are that they are inexpensive, easy to manufacture, and highly functional. On the other hand, organic materials that have overcome heat resistance and mechanical strength, which have been thought to be inferior, have recently been created one after another. Based on this technical background, some of the functional parts (mainly thin film parts) of IC devices such as logic elements, memory elements, and photoelectric conversion elements, and optical devices such as microlens arrays and guiding waveguides. Or, from the proposal to replace the conventional inorganic thin film with an organic thin film, we ended up with a molecular electronic device or bio-related material in which a single organic molecule has functions such as a logic element or a memory element. Proposals to create logic devices (eg, bio-cheaps) have recently been announced by several research institutions.

かかる有機材料を用いて上記の各種デバイス等を作成す
る際の薄膜は、公知の単分子累積法、すなわちラングミ
ュア・ブロジェット法(LB法)によって形成すること
ができる。
Thin films used to create the various devices described above using such organic materials can be formed by a known single molecule accumulation method, that is, the Langmuir-Blodgett method (LB method).

該LB法とは、第1図において、親木基1aと疎水基i
bで構成される中分子l、すなわち膜構成物質をベンゼ
ン、クロロホルム等の揮発性の溶媒に溶かし、水槽3内
に配設された框4で囲まれる水面しに滴下し、該溶媒の
揮発後に水面上に残された単分子膜(この時点では気体
膜)2を、框4が囲む面積を縮めて該単分子膜2の面密
度を増すことにより固体膜へと変態させ、これを垂直浸
漬法や水平付着法によって不図示の基板に移しとる方法
である。
The LB method refers to the parent tree group 1a and the hydrophobic group i in FIG.
The middle molecule l composed of b, that is, the membrane constituent material, is dissolved in a volatile solvent such as benzene or chloroform, and dropped onto the water surface surrounded by a frame 4 arranged in the water tank 3, and after the solvent evaporates. The monomolecular film 2 left on the water surface (at this point, it is a gas film) is transformed into a solid film by reducing the area surrounded by the frame 4 and increasing the areal density of the monomolecular film 2, which is then vertically immersed. In this method, the film is transferred to a substrate (not shown) using a method or a horizontal adhesion method.

しかしながら、この方法によると、基板上に移し取られ
た中分子Hgの分だけ、水面上の単分子の面積は減少す
る。すなわち、水面上の単分子膜(固体膜)は均一性が
要求されるため、その面密度を一定に保ったままで、し
かも連続して該単分子膜を基板Eに移し取っていく場合
には、框で囲まれた面積は徐々に減少し0に近づくので
、その移し取る回数にはおのずと制限がある。
However, according to this method, the area of a single molecule on the water surface decreases by the amount of middle molecule Hg transferred onto the substrate. In other words, since the monomolecular film (solid film) on the water surface is required to be uniform, when the monomolecular film is continuously transferred to the substrate E while keeping its areal density constant, Since the area surrounded by the frame gradually decreases and approaches 0, there is naturally a limit to the number of times it can be transferred.

〈発明の開示〉 本発明の目的は上述の問題点を解消することであり、そ
の為に所望の面密度が得られるよう単分子膜の表面圧を
制御し、更には液循環系に濾過手段を介在させることに
より、単分子膜の容易な連続累積に加えて、液槽内の液
の清浄化を図ることをも可能とするものである。
<Disclosure of the Invention> The purpose of the present invention is to solve the above-mentioned problems, and for this purpose, the surface pressure of the monomolecular membrane is controlled so as to obtain a desired areal density, and furthermore, a filtration means is provided in the liquid circulation system. By interposing the monomolecular film, it is possible not only to easily and continuously accumulate the monomolecular film, but also to purify the liquid in the liquid tank.

以下、本発明の原理を、第2図に従って説明する。The principle of the present invention will be explained below with reference to FIG.

ある一定の流速を持つ水面上に、単分子膜2を展開する
と、該単分子膜2を構成する分子と水との引力によって
、単分子H2は水の流れの方向(矢印の方向)に一定の
カで引っ張られる。このとき、木の流れに影響すること
なく単分子膜2の移動のみを阻止しイ11る障壁8が単
分子膜2の流れの行く手にあれば、該単分子膜2はある
一定のカでこの障壁8に押し当てられる。すなわち、中
分子膜2が障壁8に押し当たるカ、言い換えると単分子
1! 2の表面圧は、水の流速を変化させることで容易
に制御することができることを示している。本発明は、
この原理を応用することを特徴としている。
When a monomolecular film 2 is spread on a water surface with a certain flow velocity, the monomolecular H2 is kept constant in the direction of water flow (direction of the arrow) due to the attractive force between the molecules constituting the monomolecular film 2 and the water. being pulled by the force of At this time, if there is a barrier 8 in the path of the monomolecular film 2 that blocks only the movement of the monomolecular film 2 without affecting the flow of the wood, the monomolecular film 2 will have a certain force. It is pressed against this barrier 8. In other words, the force of the middle molecular film 2 pressing against the barrier 8, in other words, the single molecule 1! 2 shows that the surface pressure can be easily controlled by changing the water flow rate. The present invention
It is characterized by applying this principle.

〈発明を実施するための最良の形態) 以下、本発明の実施例について図面を参照しながら説明
する。なお、各図面において、同じ参照符号は同じ構成
部材であり、同一の機能を有するものとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that in each drawing, the same reference numerals represent the same structural members and have the same functions.

まず、第1の″j!施例を、第3図に従って説明する。First, the first "j!" embodiment will be described with reference to FIG.

ステアリン酸を溶媒クロロホルム中に1×10−]M/
lの割合で溶かした溶液0.1 m/!を、20cm/
sec速度で矢印の方向に流れる水面上の、障壁8から
見て1−流の領域9(以降、滴下領域9と称する。)に
おいて滴下し、展開を行ったところ、障壁8で囲まれた
水面りにおよそ120 cm’の単分子+1Q 2を形
成した。不図示の表面圧測定器で単分子 IIA 2の
表面圧を測定したところ、24dyne/cm (7)
値を示し、単分子膜2は所望の固体状態を形成している
ことが確認された。さらに、速度を15〜25cm/s
eeの範囲で変化させたところ、表面圧がほぼこれに比
例して変化することを確め、流速で表面圧を制御できる
ことが明らかになった。また、このとき、滴下量も0.
05〜0.3 ml、の範囲で変化させたところ、表面
圧もこれに比例して変化することが確認された。すなわ
ち、滴下量によっても表面圧を制御できることが明らか
になった。一方、障壁8の近傍の領域10(以降、累積
領域IOと称する。)に於て、基板への単分子膜の累積
を垂直浸漬法によって行ったところ、累積率80ないし
ほぼ100%の良好な膜を得ることができた。
Stearic acid in the solvent chloroform at 1×10−]M/
0.1 m/! , 20cm/
When a drop is dropped in a region 9 (hereinafter referred to as the dripping region 9) of 1-flow as seen from the barrier 8 on the water surface flowing in the direction of the arrow at a speed of sec, the water surface surrounded by the barrier 8 is A single molecule +1Q 2 of approximately 120 cm' was formed. When the surface pressure of single molecule IIA 2 was measured using a surface pressure measuring device (not shown), it was 24 dyne/cm (7)
It was confirmed that the monomolecular film 2 had formed the desired solid state. Furthermore, increase the speed to 15 to 25 cm/s.
When the surface pressure was changed within the range of ee, it was confirmed that the surface pressure changed almost in proportion to this, and it became clear that the surface pressure could be controlled by the flow rate. Moreover, at this time, the amount of dripping is also 0.
When the amount was varied within the range of 0.05 to 0.3 ml, it was confirmed that the surface pressure also varied in proportion to this. In other words, it has become clear that the surface pressure can also be controlled by the amount of dripping. On the other hand, in the area 10 near the barrier 8 (hereinafter referred to as the accumulation area IO), when the monomolecular film was accumulated on the substrate by the vertical dipping method, a good accumulation rate of 80 to almost 100% was obtained. I was able to obtain a membrane.

その後、表面圧が一定になる様に流速を制御しながら、
かつ単分子膜2が累積領域lOで基板に移し取られ減少
するのを、滴下領域9での膜構成物質の滴rによって補
いながら累積操作を繰り返し行なった結果、従来装置で
は難しかった連続累積を容易に達成することができた。
Then, while controlling the flow rate so that the surface pressure remains constant,
In addition, as a result of repeating the accumulation operation while compensating for the decrease in the monomolecular film 2 transferred to the substrate in the accumulation region 10 with the droplets r of the film constituent material in the dropping region 9, continuous accumulation, which was difficult with conventional equipment, was performed. This could be achieved easily.

次に、第2の実施例を、第4図に従って説明する。Next, a second embodiment will be explained according to FIG.

本実施例は、第1の実施例において、流出する水を循還
させて水槽中に再び戻すことにより、水の再利用を図っ
ていることを特徴としている。第7図において、循還路
12のほとんどにはパイレックスのガラス管を用い、ま
た貯水槽13に溜った水は、ポンプ14によって送り出
され、ゲートバルブ15によって流速が制御される様に
なっている。
This embodiment is characterized in that, in the first embodiment, the outflowing water is recycled and returned to the aquarium, thereby reusing the water. In FIG. 7, Pyrex glass tubes are used for most of the circulation path 12, and the water accumulated in the water tank 13 is pumped out by a pump 14, and the flow rate is controlled by a gate valve 15. .

この様に、流出する水を循還させることで、失われる水
を補給するシステムが不要となり、装置全体も筒便なも
のとなった。
In this way, by circulating the water that flows out, there is no need for a system to replenish lost water, and the entire device becomes more convenient.

次に、第3の実施例を、第5図に従って説明する。Next, a third embodiment will be described with reference to FIG.

本実施例は、図にも示されるようにその循還路12の途
中に除塵用のフィルタ1Bを挿入したことを特徴として
いる。具体的には、0.5μ以上のゴミを取り除くフィ
ルタ16を挿入したところ、従来は2〜5回(時間にし
て5〜10時間)程度装置を使用しただけで、水槽3中
に視認できるほどのゴミが確認されていたのが、100
回以上の装置使用後においても視認できる様なゴミが確
認されなかった。すなわち、流水路の循還系にフィルタ
を挿入するという簡単な構成で、 単分子膜の容易な連続累積に加えて、同時に水槽内の水
の詐化をも図ることがn(能となり、従って、累積のた
めの準備に要する11間及び時間を短1宿することがで
きた。
This embodiment is characterized in that a dust removal filter 1B is inserted in the middle of the circulation path 12, as shown in the figure. Specifically, when the filter 16 that removes dust of 0.5 microns or more was inserted, it was necessary to use the device only 2 to 5 times (5 to 10 hours), and the amount of dust that could be seen in the aquarium 3 was increased. 100 pieces of garbage were confirmed.
No visible dust was found even after using the device more than once. In other words, with a simple configuration of inserting a filter into the circulation system of the water channel, it is possible to not only easily and continuously accumulate a monomolecular film, but also to deceive the water in the aquarium at the same time. , I was able to save 11 days and time required for preparation for accumulation.

次に、第4の実施例を、第6図に従って説明する。Next, a fourth embodiment will be explained according to FIG.

本実施例は、図にも示されるように、その循ρ路12の
一部にP)l制御装置3oを設けたことを特徴としてい
る。具体的には、該装置に水酸化ナトリウム溶液と塩酸
とをそれぞれ、マイクロシリンダを用いて所定量沢入さ
せたところ、従来困難であった水酸化ナトリウムや塩酸
の拡散が、本実施例では水が流れている為に、非常に短
時間(5〜30分)内に所定のpHを得ることがり能と
なった。また、本装置によれば、単分子膜を水面トに形
成したままでpHを制御することも可能であることは明
らかであろう。
As shown in the figure, this embodiment is characterized in that a P)l control device 3o is provided in a part of the circulation path 12. Specifically, when predetermined amounts of sodium hydroxide solution and hydrochloric acid were respectively charged into the device using a micro cylinder, diffusion of sodium hydroxide and hydrochloric acid, which was difficult in the past, was achieved in this example. Because of the flowing flow, it became possible to obtain a predetermined pH within a very short time (5 to 30 minutes). Furthermore, it is clear that according to this device, it is also possible to control the pH while the monomolecular film is formed on the water surface.

次に、第5の実施例を、第7図に従って説明する。Next, a fifth embodiment will be explained according to FIG. 7.

本実施例は、図にも示されてるように、その循還路12
の一部に熱交換器31を設けたことを特徴としている。
In this embodiment, as shown in the figure, the circulation path 12
It is characterized in that a heat exchanger 31 is provided in a part of the unit.

具体的には、循還する水の通る378インチ径、肉厚0
.5■のパイレックスのガラス管を中空の銅パイプで巻
いた熱交換器31を設け、水槽3内に設けられた温度セ
ンサ33を介して、温度制御装置32で制御しながら銅
パイプ中に所望の温度の液体を流すことで、循還する水
の温度制御を行った。その結果、水槽中の水を、5〜8
0℃の範囲において±0.5°Cの精度で制御すること
ができた。したがって、単分子膜の累積の際の温度条件
を容易に制御することが67能となった。また、本装置
によれば、単分子膜を水面上に形成したままで温度制御
を行うことも口f能であることは明らかであろう。
Specifically, it has a diameter of 378 inches and a wall thickness of 0 through which the circulating water passes.
.. A heat exchanger 31 is provided in which a 5-inch Pyrex glass tube is wrapped around a hollow copper pipe. The temperature of the circulating water was controlled by flowing a liquid at that temperature. As a result, the water in the aquarium was reduced by 5 to 8
It was possible to control the temperature within a range of 0°C with an accuracy of ±0.5°C. Therefore, it became possible to easily control the temperature conditions during monolayer accumulation. Furthermore, it is clear that according to the present apparatus, it is also possible to control the temperature while the monomolecular film is formed on the water surface.

次に、第6の実施例を、第8図に従って説明する。Next, a sixth embodiment will be described with reference to FIG.

本実施例は、第1の実施例に若干の改良を加えたもので
ある。すなわち、第1の実施例では、累積領域lOにお
いて、水の流れは、垂直浸漬法で累積する場合の水中に
没する基板(不図示)、ならびに障壁8によって乱され
、単分子膜2が折り曲げられたり、一定であるべき表面
圧が一時的に変動したりするので、好ましくない。そこ
で本実施例では、水槽の深さに変化をつけて、累積領域
lOにおける水の流れ(流速)を遅くすることにより、
第1の実施例を改良した。具体的には、滴−ド領域9を
含む、単分子膜2の表面圧を形成する領域11(以降、
表面圧形成領域11と称する。)における水槽の深さを
lc■と浅くし、累積領域lOにおける水槽の深さを1
(1’c鵬と深くした。その結果、表面圧形成領域11
における流速を20CII/SeCとしても累積領域l
Oにおける流速は約1/10程度になり、基板への中分
子膜の累積を行ったところ、第1の実施例では歩留りが
20〜CO%であったのが、50〜100%と向ヒした
This embodiment is a slight improvement of the first embodiment. That is, in the first embodiment, in the accumulation region lO, the flow of water is disturbed by the substrate (not shown) that is submerged in water in the case of accumulation by the vertical immersion method, as well as the barrier 8, and the monomolecular film 2 is bent. This is undesirable because the surface pressure, which should be constant, may fluctuate temporarily. Therefore, in this embodiment, by varying the depth of the water tank and slowing down the flow (flow velocity) of water in the accumulation area IO,
The first embodiment has been improved. Specifically, a region 11 (hereinafter referred to as
This is called a surface pressure forming region 11. ) is made shallow to lc■, and the depth of the water tank in the cumulative area lO is set to 1.
(The depth was increased to 1'c. As a result, the surface pressure forming area 11
Even if the flow velocity at is 20CII/SeC, the cumulative area l
The flow rate in O was about 1/10, and when the middle molecular film was accumulated on the substrate, the yield was 20-100% in the first example, but it was 50-100%. did.

次に第7の実施例を、第9図に従って説明する。Next, a seventh embodiment will be described with reference to FIG.

本実施例は、第6の実施例の変形例で、水槽の幅に変化
をつけて、累積領域10における流速を遅くすることに
より、第1の実施例を改良したものである。具体的には
、滴下領域9を含む、表面圧形成領域11における水槽
の幅を2cmと狭くし、累積領域10における水槽の幅
を20cmと広くした。その結果、表面圧形成領域11
における流速を20cm/seCとしても累積領域IO
における流速は約1/10程度になり、基板への単分子
膜の累積を行ったところ、第1の実施例では歩留りが2
0〜60%であったのか、50〜100%と向トした。
This embodiment is a modification of the sixth embodiment, and is an improvement over the first embodiment by varying the width of the water tank and slowing down the flow velocity in the accumulation region 10. Specifically, the width of the water tank in the surface pressure forming region 11 including the dripping region 9 was narrowed to 2 cm, and the width of the water tank in the accumulation region 10 was widened to 20 cm. As a result, the surface pressure forming area 11
Even if the flow velocity at is 20 cm/secC, the cumulative area IO
The flow rate was reduced to about 1/10, and when the monomolecular film was accumulated on the substrate, the yield was 2 in the first example.
It may have been 0-60%, but it was 50-100%.

次に、第8の実施例を、第1θ図(a)、(b)に従っ
て説明する。
Next, the eighth embodiment will be described according to FIGS. 1θ (a) and (b).

本実施例は、1つの水槽内を、扇形状の複数(本実施例
では5個)の障壁8で水面付近だけを仕切ったもので(
以降仕切られた領域をブロックと称する。)、中心付近
から外周に向かって各ブロック内へ水が流入するよう構
成されている。本実施例による装置は、単分子膜2の基
板上への累積能力や、連続累積が容易な点については、
第1の実施例と同様である。
In this embodiment, a single aquarium is partitioned off only near the water surface by a plurality of (five in this embodiment) fan-shaped barriers 8.
Hereinafter, the partitioned areas will be referred to as blocks. ), water flows into each block from near the center toward the outer periphery. The apparatus according to this embodiment has the following features regarding the ability to accumulate the monomolecular film 2 on the substrate and the ease of continuous accumulation.
This is similar to the first embodiment.

さらに本実施例に固有の特徴としては、異種単分子の累
積(ヘテロ構造)を容易に行なえることである。すなわ
ち、あらかじめ各ブロック毎に、異なる材料の単分子膜
を水面りに展開しておき、あるブロックにおいて垂直浸
漬法を用いて基板Hに単分子膜を累積したのち、別のブ
ロックにおいて同様の操作を繰り返すことにより、ヘテ
ロな累積(累積方向に中分子膜の構成分子が異なる)膜
を容易に形成することができた。この時、気相中でブロ
ック間を移動することも、水相中で移動することも可能
であるので、例えばY型膜を形成する膜のへテロ接合は
、親木基同志間にも疎水基同志間にも自由に設定するこ
とができた。
Furthermore, a unique feature of this embodiment is that it is possible to easily accumulate different types of single molecules (heterostructure). That is, in each block, a monomolecular film of a different material is spread on the water surface in advance, and after the monomolecular film is accumulated on the substrate H using the vertical dipping method in one block, the same operation is performed in another block. By repeating this process, it was possible to easily form a hetero-accumulated film (the molecules constituting the middle molecular film differ in the direction of accumulation). At this time, it is possible to move between blocks in the gas phase or in the aqueous phase, so for example, a heterojunction in a film forming a Y-type film has hydrophobicity between the parent wood groups as well. They were also able to freely set their own standards among the base comrades.

最後に、第9の実施例を、第11図(a) 、 (b)
に従って説明する。
Finally, the ninth embodiment is shown in FIGS. 11(a) and (b).
Explain according to the following.

本実施例は、前述の実施例において、障壁8をトド方向
に可動自在に構成したことを特徴としている。具体的に
は、不図示のモータにより障壁8を操作する(ただし、
人為的操作でも可能である。)ことにより、不必要とな
った水面上の中分子膜2を流し去り、該水面トを清詐に
することが可能となり、単分子膜累積のための準備に要
する手間と時間を大きく短縮することができた。
This embodiment is characterized in that the barrier 8 in the previous embodiment is configured to be movable in the horizontal direction. Specifically, the barrier 8 is operated by a motor (not shown) (however,
It is also possible to do it manually. ), it becomes possible to wash away the unnecessary middle molecular film 2 on the water surface and clean the water surface, greatly reducing the effort and time required for preparation for monomolecular film accumulation. I was able to do that.

本発明は、以ト説明したよう番乙液循環系に濾過手段を
介イ(させることにより、単分子膜の容易な1IIU続
累積に加えて、液槽内の液の清浄化、すなわち、累積の
ための準備に要する手間および時間の短縮化を図ること
ができる効果がある。
As explained below, the present invention provides for easy accumulation of 1IIU of monolayer by intervening a filtration means in the liquid circulation system as explained below. This has the effect of reducing the effort and time required for preparation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のLB膜作製装置の模式図、第第4図は
第2の実施例の概略構成図、第5図は第3の実施例の概
略構成図、第6図は第4の実施例の概略構成図、第7図
は第5の実施例の概略構成図、第8図は第6の実施例の
概略断面図、第9図は第7の実施例の概略斜視図、第1
O図(a)、 (b)はそれぞれ、第8の実施例の概略
斜視図および断面図、第11図(a)、 (b)はそれ
ぞれ、第9の実施例において障壁8を取り去る前および
取り去った後の概略断面図である。 1−−一 単分子 1a−m−親木基 1b−m−触水幕 2−m−単分子膜 3−m−水槽 4− 框 7−m−水流発生装置 8−m−障壁 9−m−滴F領域 10−m−累積領域 11−m−表面圧形成領域 12−m−循還路 13−m−貯水槽 14−m−ポンプ 15−m−ゲートバルブ 16−−− フィルタ 21−−− pHセンサ 30−−− pH制御装置 31−−一 熱交換器 32−−一 温度制御装置 33−m−温度センサー 笛 6m 第■図
FIG. 1 is a schematic diagram of a conventional LB film manufacturing apparatus, FIG. 4 is a schematic diagram of the second embodiment, FIG. 5 is a schematic diagram of the third embodiment, and FIG. 6 is a schematic diagram of the fourth embodiment. 7 is a schematic configuration diagram of the fifth embodiment, FIG. 8 is a schematic sectional view of the sixth embodiment, FIG. 9 is a schematic perspective view of the seventh embodiment, 1st
Figures (a) and (b) are a schematic perspective view and a cross-sectional view of the eighth embodiment, respectively, and Figures 11 (a) and (b) are a diagram of the ninth embodiment before the barrier 8 is removed and It is a schematic sectional view after removing. 1--1 Monomolecule 1a-m- Parent tree group 1b-m- Water curtain 2-m- Monomolecular film 3-m- Water tank 4- Frame 7-m- Water flow generator 8-m- Barrier 9-m - Droplet F region 10-m-Accumulation region 11-m-Surface pressure formation region 12-m-Circulation path 13-m-Water tank 14-m-Pump 15-m-Gate valve 16--Filter 21-- - pH sensor 30--- pH control device 31--1 Heat exchanger 32--1 Temperature control device 33-m-Temperature sensor whistle 6m Figure ■

Claims (1)

【特許請求の範囲】[Claims] 成11II用分子を展開する液体を収容した液槽を有し
、前記液体e)濾過手段を付加した白とを特徴とする成
膜装置。
1. A film forming apparatus comprising: a liquid tank containing a liquid for developing molecules for formation 11II;
JP4810684A 1984-03-15 1984-03-15 Film forming device Pending JPS60193535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4810684A JPS60193535A (en) 1984-03-15 1984-03-15 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4810684A JPS60193535A (en) 1984-03-15 1984-03-15 Film forming device

Publications (1)

Publication Number Publication Date
JPS60193535A true JPS60193535A (en) 1985-10-02

Family

ID=12794060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4810684A Pending JPS60193535A (en) 1984-03-15 1984-03-15 Film forming device

Country Status (1)

Country Link
JP (1) JPS60193535A (en)

Similar Documents

Publication Publication Date Title
US20200048841A1 (en) Silane based surfaces with extreme wettabilities
US4873033A (en) Process for the production of hyperfiltration membranes
JPH05506401A (en) Supported chiral liquid membranes for enantiomeric separation
US4691982A (en) Optical coupler
JPS60193535A (en) Film forming device
JPS60193531A (en) Film forming device
JPS60193536A (en) Film forming device
JPS60193534A (en) Film forming device
JPH058050B2 (en)
JPS60193327A (en) Film forming apparatus
JPS5833086B2 (en) Casting method for ultra-thin polymer membranes
JPS60193326A (en) Film forming apparatus
JPS60193533A (en) Film forming device
JPS60193325A (en) Film forming apparatus
JPS60193328A (en) Film forming method
JP4645053B2 (en) Micro channel system
Kumeria et al. Nanoporous alumina membranes for chromatography and molecular transporting
CN117000061B (en) Polyamide thin layer composite nanofiltration membrane and preparation method and application thereof
JPS60223117A (en) Forming method of monomolecular deposited film
JPS624468A (en) Production of monomolecular film
JPS60225636A (en) Film forming method
JPS625823A (en) Method and device for manufacturing thin film
JPS61291058A (en) Membrane forming apparatus
GB1599420A (en) Method for internal coating of capillary tube
JPS60222168A (en) Film forming device