JPH058050B2 - - Google Patents

Info

Publication number
JPH058050B2
JPH058050B2 JP59048103A JP4810384A JPH058050B2 JP H058050 B2 JPH058050 B2 JP H058050B2 JP 59048103 A JP59048103 A JP 59048103A JP 4810384 A JP4810384 A JP 4810384A JP H058050 B2 JPH058050 B2 JP H058050B2
Authority
JP
Japan
Prior art keywords
water
monomolecular film
accumulation
film
surface pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59048103A
Other languages
Japanese (ja)
Other versions
JPS60193532A (en
Inventor
Toshihiko Myazaki
Yutaka Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59048103A priority Critical patent/JPS60193532A/en
Publication of JPS60193532A publication Critical patent/JPS60193532A/en
Publication of JPH058050B2 publication Critical patent/JPH058050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/206LB troughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Description

【発明の詳細な説明】 <技術分野> 本発明は、半導体あるいは光学デバイスの機能
を荷う部分である薄膜の作製装置に関し、特に、
単分子累積法、すなわちラングミユア・ブロジエ
ツト法(LB法)を用いるLB膜作製装置に関する
ものである。
[Detailed Description of the Invention] <Technical Field> The present invention relates to an apparatus for producing a thin film, which is a functional part of a semiconductor or an optical device, and in particular,
This invention relates to an LB film fabrication device that uses a single molecule accumulation method, that is, the Langmiur-Blodget method (LB method).

<背景技術> 従来、半導体技術分野並びに光学技術分野に於
ける素材利用は、もつぱら比較的取扱いが容易な
無機物を対象にして進められてきた。これは有機
化学分野の技術進展が無機材料分野のそれに比べ
て著しく遅れていたことが一因している。
<Background Art> Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩
には目をみはるものがあり、又、無機物対象の素
材開発もほぼ限界に近づいてきたといわれてい
る。そこで無機物を凌ぐ新しい機能素材としての
機能性有機材料の開発が要望されている。有機材
料の利点は安価かつ製造容易であること、機能性
に富むこと等である。反面、これまで劣るとされ
てきた耐熱性、機械的強度に対しても、最近これ
を克服した有機材料が次々に生まれている。この
ような技術的背景のもとで、論理素子、メモリー
素子、光電変換素子等のICデバイスやマイクロ
レンズ・アレイ、光導波路等の光学デバイスの機
能を荷う部分(主として薄膜部分)の一部又は全
部を従来の無機薄膜に代えて、有機薄膜で構成し
ようという提案から、はては1個の有機分子に論
理素子やメモリ素子等の機能を持たせた分子電子
デバイスや生体関連物質からなる論理素子(例え
ばバイオ・チツプス)を作ろうという提案が最
近、いくつかの研究機関により発表された。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of organic materials are that they are inexpensive, easy to manufacture, and highly functional. On the other hand, organic materials that have overcome heat resistance and mechanical strength, which have been thought to be inferior, have recently been created one after another. Against this technical background, some of the functional parts (mainly thin film parts) of IC devices such as logic elements, memory elements, and photoelectric conversion elements, and optical devices such as microlens arrays and optical waveguides. Or, from the proposal to replace the conventional inorganic thin film with an organic thin film, we ended up with a molecular electronic device or bio-related material in which a single organic molecule has functions such as a logic element or a memory element. Proposals to create logic devices (eg, biochips) have recently been announced by several research institutions.

かかる有機材料を用いて上記の各種デバイス等
を作成する際の薄膜は、公知の単分子累積法、す
なわちラングミユア・ブロジエツト法(LB法)
によつて形成することができる。
Thin films used to create the above-mentioned devices using such organic materials are prepared using a known single molecule accumulation method, namely the Langmiur-Blodget method (LB method).
It can be formed by

該LB法とは、第1図において、親水基1aと
疎水基1bで構成される単分子1、すなわち膜構
成物質をベンゼン、クロロホルム等の揮発性の溶
媒に溶かし、水槽3内に配設された框4で囲まれ
る水面上に滴下し、該溶媒の揮発後に水面上に残
された単分子膜(この時点では気体膜)2を、框
4が囲む面積を縮めて該単分子膜2の面密度を増
すことにより固体膜へと変態させ、これを垂直浸
漬法や水平付着法によつて不図示の基板に移しと
る方法である。
In the LB method, as shown in FIG. 1, a single molecule 1 consisting of a hydrophilic group 1a and a hydrophobic group 1b, that is, a membrane constituent material, is dissolved in a volatile solvent such as benzene or chloroform, and the mixture is placed in a water tank 3. The monomolecular film 2 (gas film at this point) left on the water surface after the solvent evaporates is reduced by reducing the area surrounded by the frame 4. This is a method in which the material is transformed into a solid film by increasing its areal density, and this is transferred to a substrate (not shown) by a vertical dipping method or a horizontal deposition method.

しかしながら、この方法によると、基板上に移
し取られた単分子膜の分だけ、水面上の単分子の
面積は減少する。すなわち、水面上の単分子膜
(固体膜)は均一性が要求されるため、その面密
度を一定に保つたままで、しかも連続して該単分
子膜を基板上に移し取つていく場合には、框で囲
まれた面積は徐々に減少し0に近づくので、その
移し取る回数にはおのずと制限がある。
However, according to this method, the area of the monolayer on the water surface decreases by the amount of the monolayer transferred onto the substrate. In other words, since the monomolecular film (solid film) on the water surface is required to be uniform, if the monomolecular film is continuously transferred onto the substrate while keeping its surface density constant, Since the area surrounded by the frame gradually decreases and approaches 0, there is naturally a limit to the number of times it can be transferred.

<発明の開示> 本発明の目的は上述の問題点を解消することで
あり、その為に液流発生装置を備えて、所望の面
密度が得られるよう単分子膜の表面圧を制御し、
更に液流の速度が低下するよう液槽の形状に変化
をつけることにより、単分子膜の連続累積を容易
にし、かつ累積達成率の向上をも図ることを可能
とするものである。
<Disclosure of the Invention> The purpose of the present invention is to solve the above-mentioned problems, and for this purpose, a liquid flow generator is provided to control the surface pressure of the monomolecular film so as to obtain a desired areal density.
Furthermore, by changing the shape of the liquid tank so as to reduce the speed of the liquid flow, it is possible to facilitate the continuous accumulation of a monomolecular film and also to improve the accumulation achievement rate.

以下、本発明の原理を、第2図に従つて説明す
る。
The principle of the present invention will be explained below with reference to FIG.

ある一定の流速を持つ水面上に、単分子膜2を
展開すると、該単分子膜2を構成する分子と水と
の引力によつて、単分子膜2は水の流れの方向
(矢印の方向)に一定の力で引つ張られる。この
とき、水の流れに影響することなく単分子膜2の
移動のみを阻止し得る障壁8が単分子膜2の流れ
の行く手にあれば、該単分子膜2はある一定の力
でこの障壁8に押し当てられる。すなわち、単分
子膜2が障壁8に押し当たる力、言い換えると単
分子膜2の表面圧は、水の流速を変化させること
で容易に制御することができることを示してい
る。本発明は、この原理を応用することを特徴と
している。
When a monomolecular film 2 is spread on a water surface with a certain flow velocity, the monomolecular film 2 moves in the direction of the water flow (in the direction of the arrow) due to the attraction between the molecules constituting the monomolecular film 2 and the water. ) is pulled with a constant force. At this time, if there is a barrier 8 in the path of the monomolecular film 2 that can block only the movement of the monomolecular film 2 without affecting the flow of water, the monomolecular film 2 will act against the barrier with a certain force. It is pressed against 8. That is, this shows that the force with which the monomolecular film 2 presses against the barrier 8, in other words, the surface pressure of the monomolecular film 2, can be easily controlled by changing the flow rate of water. The present invention is characterized by applying this principle.

<発明を実施するための最良の形態> 以下、本発明の実施例について図面を参照しな
がら説明する。なお、各図面において、同じ参照
符号は同じ構成部材であり、同一の機能を有する
ものとする。
<BEST MODE FOR CARRYING OUT THE INVENTION> Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that in each drawing, the same reference numerals represent the same structural members and have the same functions.

まず、第1の実施例を、第3図に従つて説明す
る。ステアリン酸を溶媒クロロホルム中に1×
10-3M/の割合で溶かした溶液0.1mlを、20
cm/sec速度で水流発生装置7から矢印の方向に
水槽3内を流れる水面上の、障壁8から見て上流
の領域9(以降、滴下領域9と称する。)におい
て滴下し、展開を行つたところ、障壁8で囲まれ
た水面上におよそ120cm2の単分子膜2を形成した。
不図示の表面圧測定器で単分子膜2の表面圧を測
定したところ、24dyne/cmの値を示し、単分子
膜2は所望の固体状態を形成していることが確認
された。さらに、速度を15〜25cm/secの範囲で
変化させたところ、表面圧がほぼこれに比例して
変化することを確め、流速で表面圧を制御できる
ことが明らかになつた。また、このとき、滴下量
も0.05〜0.3mlの範囲で変化させたところ、表面
圧もこれに比例して変化することが確認された。
すなわち、滴下量によつても表面圧を制御できる
ことが明らかになつた。一方、障壁8の近傍の領
域10(以降、累積領域10と称する。)に於て、
基板への単分子膜の累積を垂直浸漬法によつて行
つたところ、累積率90ないしほぼ100%の良好な
膜を得ることができた。
First, a first embodiment will be described with reference to FIG. Stearic acid 1x in solvent chloroform
0.1 ml of a solution dissolved at a ratio of 10 -3 M/20
The water is dripped at a speed of cm/sec from the water flow generator 7 in the direction of the arrow in the water surface flowing in the water tank 3 in an area 9 upstream from the barrier 8 (hereinafter referred to as the dripping area 9) and spread. However, a monomolecular film 2 of approximately 120 cm 2 was formed on the water surface surrounded by the barrier 8.
When the surface pressure of the monomolecular film 2 was measured using a surface pressure measuring device (not shown), it showed a value of 24 dyne/cm, confirming that the monomolecular film 2 had formed the desired solid state. Furthermore, when the velocity was varied in the range of 15 to 25 cm/sec, it was confirmed that the surface pressure changed almost in proportion to this, and it became clear that the surface pressure could be controlled by the flow velocity. Furthermore, at this time, when the dropping amount was varied within the range of 0.05 to 0.3 ml, it was confirmed that the surface pressure also varied in proportion to this.
In other words, it has become clear that the surface pressure can also be controlled by the dropping amount. On the other hand, in a region 10 near the barrier 8 (hereinafter referred to as the cumulative region 10),
When the monomolecular film was accumulated on the substrate by the vertical dipping method, a good film with an accumulation rate of 90 to almost 100% could be obtained.

その後、表面圧が一定になる様に流速を制御し
ながら、かつ単分子膜2が累積領域10で基板に
移し取られ減少するのを、滴下領域9での膜構成
物質の滴下によつて補いながら累積操作を繰り返
し行なつた結果、従来装置では難しかつた連続累
積を容易に達成することができた。
Thereafter, while controlling the flow rate so that the surface pressure is constant, the decrease in the monomolecular film 2 transferred to the substrate in the accumulation region 10 is compensated for by dropping the film constituent material in the dropping region 9. As a result of repeating the accumulation operation, we were able to easily achieve continuous accumulation, which was difficult with conventional devices.

次に、第2の実施例を、第4図に従つて説明す
る。
Next, a second embodiment will be described with reference to FIG.

本実施例は、第1の実施例に若干の改良を加え
たものである。すなわち、第1の実施例では、累
積領域10において、水の流れは、垂直浸漬法で
累積する場合の水中に没する基板(不図示)、な
らびに障壁8によつて乱され、単分子膜2が折り
曲げられたり、一定であるべき表面圧が一時的に
変動したりするので、好ましくない。そこで本実
施例では、水槽3の深さに変化をつけて、累積領
域10における水の流れ(流速)を遅くすること
により、第1の実施例を改良した。具体的には、
滴下領域10を含む、単分子膜2の表面圧を形成
する領域11(以降、表面圧形成領域11と称す
る。)における水槽の深さを1cmと浅くし、累積
領域10における水槽の深さを10cmと深くした。
その結果、表面圧形成領域11における流速を20
cm/secとしても累積領域10における流速は約
1/10程度になり、基板への単分子膜の累積を行つ
たところ、第1の実施例では歩留りが20〜60%で
あつたのが、50〜100%と向上した。
This embodiment is a slight improvement of the first embodiment. That is, in the first embodiment, in the accumulation region 10, the flow of water is disturbed by the submerged substrate (not shown) in the case of vertical immersion accumulation, as well as the barrier 8, and the monolayer 2 This is undesirable because the surface pressure may be bent or the surface pressure, which should be constant, may fluctuate temporarily. Therefore, in this embodiment, the first embodiment is improved by varying the depth of the water tank 3 and slowing down the flow (flow velocity) of water in the accumulation region 10. in particular,
The depth of the water tank in the region 11 that forms the surface pressure of the monomolecular film 2 (hereinafter referred to as the surface pressure forming region 11), including the dropping region 10, is made shallow to 1 cm, and the depth of the water tank in the accumulation region 10 is reduced to 1 cm. The depth was 10cm.
As a result, the flow velocity in the surface pressure forming region 11 was reduced to 20
Even in terms of cm/sec, the flow rate in the accumulation region 10 is about 1/10, and when the monomolecular film is accumulated on the substrate, the yield was 20 to 60% in the first example, but It improved by 50-100%.

次に第3の実施例を、第5図に従つて説明す
る。
Next, a third embodiment will be explained with reference to FIG.

本実施例は、第2の実施例の変形例で、水槽3
の幅に変化をつけて、累積領域10における流速
を遅くすることにより、第1の実施例を改良した
ものである。具体的には、滴下領域9を含む、表
面圧形成領域11における水槽3の幅を2cmと狭
くし、累積領域10における水槽3の幅を20cmと
広くした。その結果、表面圧形成領域11におけ
る流速を20cm/secとしても累積領域10におけ
る流速は約1/10程度になり、基板への単分子膜の
累積を行つたところ、第1の実施例では歩留りが
20〜60%であつたのが、50〜100%と向上した。
This embodiment is a modification of the second embodiment, and is a modification of the second embodiment.
This is an improvement on the first embodiment by varying the width of the flow rate and slowing down the flow velocity in the accumulation region 10. Specifically, the width of the water tank 3 in the surface pressure forming area 11 including the drip area 9 was narrowed to 2 cm, and the width of the water tank 3 in the accumulation area 10 was widened to 20 cm. As a result, even if the flow velocity in the surface pressure forming region 11 was 20 cm/sec, the flow velocity in the accumulation region 10 was about 1/10, and when the monomolecular film was accumulated on the substrate, the yield was lower than in the first embodiment. but
It improved from 20 to 60% to 50 to 100%.

次に、第4の実施例を、第6図a,bに従つて
説明する。
Next, a fourth embodiment will be described with reference to FIGS. 6a and 6b.

本実施例は、1つの水槽3内を、扇形状の複数
(本実施例では5個)の障壁8で水面付近だけを
仕切つたもので(以降仕切られた領域をブロツク
と称する。)、中心付近から外周に向かつて各ブロ
ツク内へ水が流入するよう構成されている。本実
施例による装置は、単分子膜2の基板上への累積
能力や、連続累積が容易な点については、第1の
実施例と同様である。
In this embodiment, only the vicinity of the water surface is partitioned into one aquarium 3 by a plurality of fan-shaped barriers 8 (five in this embodiment) (hereinafter, the partitioned area will be referred to as a block). The structure is such that water flows into each block from the vicinity toward the outer periphery. The apparatus according to this embodiment is similar to the first embodiment in terms of the ability to accumulate the monomolecular film 2 on the substrate and the ease of continuous accumulation.

さらに本実施例に固有の特徴としては、異種単
分子の累積(ヘテロ構造)を容易に行なえること
である。すなわち、あらかじめ各ブロツク毎に、
異なる材料の単分子膜を水面上に展開しておき、
あるブロツクにおいて垂直浸漬法を用いて基板上
に単分子膜を累積したのち、別のブロツクにおい
て同様の操作を繰り返すことにより、ヘテロな累
積(累積方向に単分子膜の構成分子が異なる)膜
を容易に形成することができた。この時、気相中
でブロツク間を移動することも、水相中で移動す
ることも可能であるので、例えばY型膜を形成す
る膜のヘテロ接合は、親水基同志間にも疎水基同
志間にも自由に設定することができた。
Furthermore, a unique feature of this embodiment is that it is possible to easily accumulate different types of single molecules (heterostructure). In other words, for each block in advance,
Monomolecular films of different materials are spread on the water surface,
After a monomolecular film is accumulated on a substrate using the vertical dipping method in one block, the same operation is repeated in another block to form a heterogeneous accumulation (the constituent molecules of the monomolecular film differ in the direction of accumulation). It was easy to form. At this time, it is possible to move between blocks in the gas phase or in the aqueous phase, so for example, in a heterojunction of a film forming a Y-type film, there is a gap between hydrophilic groups and between hydrophobic groups. I was able to set it freely in between.

次に、第5の実施例を、第7図に従つて説明す
る。
Next, a fifth embodiment will be described with reference to FIG.

本実施例は、前述の実施例において、流出する
水を循環させて水槽3中に再び戻すことにより、
水の再利用を図つていることを特徴としている。
第7図において、循環路12のほとんどにはパイ
レツクスのガラス管を用い、また貯水槽13に溜
つた水は、ポンプ14によつて送り出され、ゲー
トバルブ15によつて流量が制御される様になつ
ている。
This embodiment differs from the previous embodiment by circulating the outflowing water and returning it to the water tank 3.
It is characterized by its efforts to reuse water.
In FIG. 7, Pyrex glass tubes are used for most of the circulation path 12, and the water accumulated in the water tank 13 is pumped out by a pump 14, and the flow rate is controlled by a gate valve 15. It's summery.

この様に、流出する水を循環させることで、失
われる水を補給するシステムが不要となり、装置
全体も簡便なものとなつた。
By circulating the outflowing water in this way, there is no need for a system to replenish lost water, and the entire device becomes simpler.

次に、第6の実施例を、第8図に従つて説明す
る。
Next, a sixth embodiment will be described with reference to FIG.

本実施例は、図にも示されるようにその循環路
12の途中に徐塵用のフイルタ16を挿入したこ
とを特徴としている。具体的には、0.5μm以上の
ゴミを取り除くフイルタ16を挿入したところ、
従来は2〜5回(時間にして5〜10時間)程度装
置を使用しただけで、水槽3中に視認できるほど
のゴミが確認されていたのが、100回以上の装置
使用後においても視認できる様なゴミが確認され
なかつた。すなわち、流水路の循環系にフイルタ
を挿入するという簡単な構成で、容易に水の浄化
を図ることができた。
This embodiment is characterized in that a filter 16 for removing dust is inserted in the middle of the circulation path 12, as shown in the figure. Specifically, when a filter 16 was inserted to remove dust of 0.5 μm or more,
Previously, it was possible to see visible dirt in the aquarium 3 after using the device only 2 to 5 times (5 to 10 hours), but now it is visible even after using the device over 100 times. No trash was found. In other words, water can be easily purified with a simple configuration of inserting a filter into the circulation system of the water channel.

次に、第7の実施例を、第9図に従つて説明す
る。
Next, a seventh embodiment will be described with reference to FIG.

本実施例は、図にも示されるように、その循環
路12の一部にPH制御装置30を設けたことを特
徴としている。具体的には、該装置に水酸化ナト
リウム溶液と塩酸とをそれぞれ、マイクロシリン
ダを用いて所定量混入させたところ、従来困難で
あつた水酸化ナトリウムや塩酸の拡散が、本実施
例では水が流れている為に、非常に短時間(5〜
30分)内に所定のPHを得ることが可能となつた。
また、本装置によれば、単分子膜を水面上に形成
したままでPHを制御することも可能であることは
明らかであろう。
As shown in the figure, this embodiment is characterized in that a PH control device 30 is provided in a part of the circulation path 12. Specifically, when predetermined amounts of sodium hydroxide solution and hydrochloric acid were respectively mixed into the device using a micro cylinder, diffusion of sodium hydroxide and hydrochloric acid, which was difficult in the past, was achieved in this example. Because it is flowing, it takes a very short time (5~
It became possible to obtain the specified pH within 30 minutes).
Furthermore, it is clear that according to this device, it is also possible to control the PH while a monomolecular film is formed on the water surface.

次に、第8の実施例を、第10図に従つて説明
する。
Next, an eighth embodiment will be described with reference to FIG.

本実施例は、図にも示されてるように、その循
環路12の一部に熱交換器31を設けたことを特
徴としている。具体的には、循環する水の通る3/
8インチ径、肉厚0.5mmのパイレツクスのガラス管
を中空の銅パイプで巻いた熱交換器31を設け、
水槽3内に設けられた温度センサ33を介して、
温度制御装置32で制御しながら銅パイプ中に所
望の温度の液体を流すことで、循環する水の温度
制御を行つた。その結果、水槽3中の水を、5〜
80℃の範囲において±0.5℃の精度で制御するこ
とができた。したがつて、単分子膜の累積の際の
温度条件を容易に制御することが可能となつた。
また、本装置によれば、単分子膜を水面上に形成
したままで温度制御を行うことも可能であること
は明らかであろう。
As shown in the figure, this embodiment is characterized in that a heat exchanger 31 is provided in a part of the circulation path 12. Specifically, the circulating water passes through 3/
A heat exchanger 31 is installed, which is a Pyrex glass tube with a diameter of 8 inches and a wall thickness of 0.5 mm, wrapped around a hollow copper pipe.
Via the temperature sensor 33 provided in the water tank 3,
The temperature of the circulating water was controlled by flowing a liquid at a desired temperature into the copper pipe while controlling it with the temperature control device 32. As a result, the water in tank 3 was
It was possible to control the temperature within a range of 80°C with an accuracy of ±0.5°C. Therefore, it has become possible to easily control the temperature conditions during monomolecular film accumulation.
Furthermore, it is clear that according to this apparatus, it is also possible to perform temperature control while the monomolecular film is formed on the water surface.

最後に、第9の実施例を、第11図a,bに従
つて説明する。
Finally, the ninth embodiment will be explained with reference to FIGS. 11a and 11b.

本実施例は、前述の実施例において、障壁8を
上下方向に可動自在に構成したことを特徴として
いる。具体的には、不図示のモータにより障壁8
を操作する(ただし、人為的操作でも可能であ
る。)ことにより、不必要となつた水面上の単分
子膜2を流し去り、該水面上を清浄にすることが
可能となり、単分子膜累積のための準備に要する
手間と時間を大きく短縮することができた。
This embodiment is characterized in that the barrier 8 in the previous embodiment is configured to be movable in the vertical direction. Specifically, the barrier 8 is moved by a motor (not shown).
(However, manual operation is also possible.) It becomes possible to wash away the unnecessary monomolecular film 2 on the water surface and clean the water surface, reducing the monomolecular film accumulation. This greatly reduced the time and effort required for preparation.

本発明は、以上説明したように、液流によつて
単分子膜の表面圧を制御する装置に関し、液槽に
液流を発生する手段を設けることにより任意の流
量を槽へ流し、さらに液流の速度が低下するよう
液槽の深さあるいは幅に変化をつけた液流の減速
手段を設けることにより、単分子膜の連続累積を
容易にし、また累積達成率の向上をも図ることが
できる装置を提供することができる。
As explained above, the present invention relates to a device for controlling the surface pressure of a monomolecular film using a liquid flow, and the present invention relates to a device for controlling the surface pressure of a monomolecular film by a liquid flow, and by providing a means for generating a liquid flow in a liquid tank, an arbitrary flow rate can be caused to flow into the tank, and the liquid can be further controlled. By providing a means for slowing down the liquid flow by varying the depth or width of the liquid tank so as to reduce the speed of the flow, it is possible to facilitate the continuous accumulation of a monomolecular film and also to improve the accumulation achievement rate. We can provide equipment that can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のLB膜作製装置の模式図、第
2図は、単分子膜の表面圧を水流により制御する
方法の原理を説明する図、第3図は本発明の第1
の実施例の概略断面図、第4図は第2の実施例の
概略断面図、第5図は第3の実施例の概略斜視
図、第6図a,bはそれぞれ、第4の実施例の概
略斜視図および断面図、第7図は第5の実施例の
概略構成図、第8図は第6の実施例の概略構成
図、第9図は第7の実施例の概略構成図、第10
図は第8の実施例の概略構成図、第11図a,b
はそれぞれ、第9の実施例において障壁8を取り
去る前および取り去つた後の概略断面図である。 1……単分子、1a……親水基、1b……疎水
基、2……単分子膜、3……水槽、4……框、7
……水流発生装置、8……障壁、9……滴下領
域、10……累積領域、11……表面圧形成領
域、12……循環路、13……貯水槽、14……
ポンプ、15……ゲートバルブ、16……フイル
タ、21……PHセンサ、30……PH制御装置、3
1……熱交換器、32……温度制御装置、33…
…温度センサー。
Fig. 1 is a schematic diagram of a conventional LB film production apparatus, Fig. 2 is a diagram explaining the principle of a method for controlling the surface pressure of a monomolecular film by a water flow, and Fig. 3 is a schematic diagram of a conventional LB film production apparatus.
4 is a schematic sectional view of the second embodiment, FIG. 5 is a schematic perspective view of the third embodiment, and FIGS. 6a and 6b are respectively the fourth embodiment. 7 is a schematic diagram of the fifth embodiment, FIG. 8 is a schematic diagram of the sixth embodiment, FIG. 9 is a schematic diagram of the seventh embodiment, 10th
The figure is a schematic configuration diagram of the eighth embodiment, and Figures 11a and b
are schematic cross-sectional views before and after removing the barrier 8 in the ninth embodiment, respectively. 1... Monomolecule, 1a... Hydrophilic group, 1b... Hydrophobic group, 2... Monomolecular film, 3... Water tank, 4... Frame, 7
... Water flow generator, 8 ... Barrier, 9 ... Dripping region, 10 ... Accumulation region, 11 ... Surface pressure formation region, 12 ... Circulation path, 13 ... Water tank, 14 ...
Pump, 15...gate valve, 16...filter, 21...PH sensor, 30...PH control device, 3
1... Heat exchanger, 32... Temperature control device, 33...
…Temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 成膜用分子を展開する液槽を有し、該液槽に
液流の発生手段と該液流の減速手段とを設けたこ
とを特徴とする成膜装置。
1. A film forming apparatus comprising a liquid tank in which film forming molecules are developed, and the liquid tank is provided with means for generating a liquid flow and means for decelerating the liquid flow.
JP59048103A 1984-03-15 1984-03-15 Film forming device Granted JPS60193532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048103A JPS60193532A (en) 1984-03-15 1984-03-15 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048103A JPS60193532A (en) 1984-03-15 1984-03-15 Film forming device

Publications (2)

Publication Number Publication Date
JPS60193532A JPS60193532A (en) 1985-10-02
JPH058050B2 true JPH058050B2 (en) 1993-02-01

Family

ID=12793976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048103A Granted JPS60193532A (en) 1984-03-15 1984-03-15 Film forming device

Country Status (1)

Country Link
JP (1) JPS60193532A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541806B2 (en) * 1987-01-20 1996-10-09 アルプス電気株式会社 Method for forming alignment film for liquid crystal display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948102A (en) * 1982-04-24 1984-03-19 太田 正之 Device for constructing veneer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551653A (en) * 1978-06-19 1980-01-08 Matsushita Electric Ind Co Ltd Switching unit
JPS58123656U (en) * 1982-02-15 1983-08-23 株式会社田村電機製作所 telephone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948102A (en) * 1982-04-24 1984-03-19 太田 正之 Device for constructing veneer

Also Published As

Publication number Publication date
JPS60193532A (en) 1985-10-02

Similar Documents

Publication Publication Date Title
JP3854620B2 (en) Method for patterning colloidal self-assembled photonic crystal and method for producing inverted opal structure three-dimensional photonic crystal optical waveguide using the same
US8192668B2 (en) Structuring method and component with a structured surface
DE2503452A1 (en) PROCESS FOR PRODUCING SPHERICAL SEMICONDUCTOR PARTICLES
DE102008009365A1 (en) Nonvolatile memory electronic device using nanowire as a charging cable and nanoparticles as a charge trap, and a method of manufacturing the same
CA2386616A1 (en) Rapid-prototyping method and apparatus
JPH0418886B2 (en)
JPH058050B2 (en)
DE102007059153A1 (en) Process for increasing the efficiency of the heat and mass transport and the chemical reactivity and selectivity of systems for the transfer of heat energy and systems for technical reaction, in particular heterogeneous catalysis, used with formed structures molded components and methods for the production of microstructures on these components
US9676913B2 (en) Manufacturing method of porous polymer film using vanadium oxide nanowire, and porous polymer film prepared therefrom
JPS60193531A (en) Film forming device
JPS60193534A (en) Film forming device
JPS60193536A (en) Film forming device
JPS60193533A (en) Film forming device
JPS60193535A (en) Film forming device
JPS60193325A (en) Film forming apparatus
JPS60193327A (en) Film forming apparatus
JPS60193326A (en) Film forming apparatus
JPS60193328A (en) Film forming method
US4785762A (en) Apparatus for forming film
Kumeria et al. Nanoporous alumina membranes for chromatography and molecular transporting
JPS624468A (en) Production of monomolecular film
AT526465A1 (en) Method and device for embossing structures
JPS60223117A (en) Forming method of monomolecular deposited film
JPH067737A (en) Continuous preparation of built-up film
DE102020122857B4 (en) Process for the production of an ultra-thin free-standing 2D membrane with pores and its application-related modification and use of the 2D membranes produced using this process

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term