JPS60193536A - Film forming device - Google Patents

Film forming device

Info

Publication number
JPS60193536A
JPS60193536A JP4810784A JP4810784A JPS60193536A JP S60193536 A JPS60193536 A JP S60193536A JP 4810784 A JP4810784 A JP 4810784A JP 4810784 A JP4810784 A JP 4810784A JP S60193536 A JPS60193536 A JP S60193536A
Authority
JP
Japan
Prior art keywords
temp
accumulation
water
liquid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4810784A
Other languages
Japanese (ja)
Inventor
Toshihiko Miyazaki
俊彦 宮崎
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4810784A priority Critical patent/JPS60193536A/en
Publication of JPS60193536A publication Critical patent/JPS60193536A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/206LB troughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

PURPOSE:To enable not only the easy continuous accumulation of monomolecular films and an improvement in the attaining rate of the accumulation by controlling the surface pressure of the monomolecular films so as to obtain desired surface density and interposing additionally a temp. control means into a liquid circulating system. CONSTITUTION:A circulating path 12 and a heat exchanger 31 are provided in a liquid tank 3 contg. a liquid for spreading of molecules for film forming. The temp. of the circulating water is controlled by, for example, passing the liquid having a desired temp. into the heat exchanger 31 while controlling the temp. with a temp. controller 32 via a temp. sensor 33 provided in the tank 3. As a result, the temp. of the water in the tank 3 is controlled with + or -0.5 deg.C accuracy in a 5-80 deg.C range. The easy control of the temp. conditions in the stage of accumulating the monomolecular films is thus made possible. As a result, not only the easy continuous accumulation of the monomolecular films but also the improvement in the temp. conditions, i.e., the improvement in the attaining rate of the accumulation in the stage of accumulation are thus made possible.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、半導体あるいは光学デバイスの機能を荷う部
分である薄膜の作製装置に関し、特に、単分子累積法、
すなわちラングミュア・プロジェット法(LB法)を用
いるLB膜作製装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an apparatus for producing a thin film, which is a functional part of a semiconductor or an optical device, and particularly relates to a production apparatus for a thin film that is a functional part of a semiconductor or an optical device, and in particular, a single molecule accumulation method,
That is, the present invention relates to an LB film manufacturing apparatus using the Langmuir-Prodgett method (LB method).

〈背景技術〉 従来、半導体技術分野並びに光学技術分野に於ける素材
利用は、もっばら比較的取扱いが容易な無機物を対象に
して進められてきた。これは有機化学分野の技術進展が
無機材料分野のそれに比べて著しく遅れていたことが一
因している。
<Background Art> Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたといわれている。そこで無機物を凌ぐ
新しい機能素材としての機能性有機材料の開発が要望さ
れている。有機材料の利点は安価かつ製造容易であるこ
と、機能性に富むこと等である。反面、これまで劣ると
されてきた耐熱性、機械的強度に対しても、最近これを
克服した有機材料が次々に生まれている。このような技
術的背景のもとで、論理素子、メモリー素子、光電変換
素子等のICデバイスやマイクロレンズ・アレイ、光導
波路等の光学デ/へイスの機能を荷う部分(主として薄
膜部分)の一部又は全部を従来の無機薄膜に代えて、有
機薄膜で構成しようという提案から、ばては1個の有機
分子に論理素子やメモリ素子等の機能を持たせた分子電
子デバイスや生体関連物質からなる論理素子(例えばバ
イオφチップス)を作ろうという提案が最近、いくつか
の研究機関により発表された。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of organic materials are that they are inexpensive, easy to manufacture, and highly functional. On the other hand, organic materials that have overcome heat resistance and mechanical strength, which have been thought to be inferior, have recently been created one after another. Based on this technical background, the functional parts (mainly thin film parts) of IC devices such as logic elements, memory elements, and photoelectric conversion elements, and optical devices such as microlens arrays and optical waveguides. The proposal to replace part or all of the conventional inorganic thin film with an organic thin film led to the creation of molecular electronic devices and bio-related devices in which a single organic molecule has functions such as logic elements and memory elements. Several research institutes have recently announced proposals to create logic elements made of materials (eg, bio-φ chips).

かかる有機材料を用いて上記の各種デバイス等を作成す
る際の薄膜は、公知の単分子累積法、すなわちラングミ
ュア・プロジェット法(LB法)によって形成すること
ができる。
Thin films used to create the various devices described above using such organic materials can be formed by a known single molecule accumulation method, that is, the Langmuir-Prodgett method (LB method).

該LB法とは、第1図において、親木基1aと疎水基t
bで構成される単分子l、すなわち膜構成物質をベンゼ
ン、クロロホルム等の揮発性の溶媒に溶かし、水槽3内
に配設された框4で囲まれる水面上に滴下し、該溶媒の
揮発後に水面上に残された単分子膜(この時点では気体
膜)2を、框4が囲む面積を縮めて該単分子膜2の面密
度を増すことにより固体膜へと変態させ、これを垂直浸
漬法や水f伺着法によって不図示の基板に移しとる方法
である。
The LB method refers to the parent tree group 1a and the hydrophobic group t in FIG.
A single molecule L composed of b, that is, a membrane constituent substance, is dissolved in a volatile solvent such as benzene or chloroform, and dropped onto the water surface surrounded by a frame 4 arranged in a water tank 3, and after the solvent evaporates. The monomolecular film 2 left on the water surface (at this point, it is a gas film) is transformed into a solid film by reducing the area surrounded by the frame 4 and increasing the areal density of the monomolecular film 2, which is then vertically immersed. This is a method of transferring to a substrate (not shown) by a method or a water immersion method.

しかしながら、この方法によると、基板上に移し取られ
た単分子膜の分だけ、水面上の単分子の面積は減少する
。すなわち、水面上の単分子膜(固体膜)は均一・性が
要求されるため、その面密度を一定に保ったままで、し
かも連続して該単分子膜を基板−Lに移し取っていく場
合には、框で囲まれた面積は徐々に減少しOに近づくの
で、その移し取る回数にはおのずと制限がある。
However, according to this method, the area of the monolayer on the water surface decreases by the amount of the monolayer transferred onto the substrate. In other words, since the monomolecular film (solid film) on the water surface is required to have uniformity and properties, when the monomolecular film is continuously transferred to the substrate-L while keeping its surface density constant. Since the area surrounded by the frame gradually decreases and approaches O, there is naturally a limit to the number of times it can be transferred.

〈発明の開示) 本発明の目的はト述の問題点を解消することであり、そ
の為に所望の面密度が得られるよう単分子膜の表面圧を
制御し、更には液循環系に温度制御手段を介在させるこ
とにより、単分子膜の容易な連続累積に加えて、累積の
際の温度条件の向上化を図ることをも可能とするもので
ある。
<Disclosure of the Invention> The purpose of the present invention is to solve the above-mentioned problems, and for this purpose, the surface pressure of the monomolecular film is controlled so as to obtain the desired areal density, and furthermore, the temperature is controlled in the liquid circulation system. By interposing a control means, it is possible not only to easily and continuously accumulate a monomolecular film, but also to improve the temperature conditions during the accumulation.

以下、本発明の原理を、第2図に従って説明する。The principle of the present invention will be explained below with reference to FIG.

ある一定の流速を持つ水面上に、単分子膜2を展開する
と、該申分f−膜2を構成する分子と水との引力によっ
て、単分子膜2は水の流れの方向(矢印の方向)に一定
の力で引っ張られる。このとき、水の流れに影響するこ
となく単分子膜2の移動のみを阻止し得る障壁8が単分
子膜2の流れの行くfにあれば、該単分子n!!2はあ
る一定の力でこの障壁8に押し当てられる。すなわち、
中分子膜2が障壁8に押し当たる力、言い換えると単分
子膜2の表面圧は、水の流速を変化させることで容易に
制御することができることを示している。本発明は、こ
の原理を応用することを特徴としている。
When the monomolecular film 2 is spread on a water surface with a certain flow velocity, the monomolecular film 2 moves in the direction of the water flow (in the direction of the arrow) due to the attractive force between the molecules constituting the f-film 2 and the water. ) is pulled with a constant force. At this time, if there is a barrier 8 at f where the monomolecular film 2 is flowing, which can block only the movement of the monomolecular film 2 without affecting the flow of water, then the monomolecular n! ! 2 is pressed against this barrier 8 with a certain force. That is,
This shows that the force with which the middle molecular film 2 presses against the barrier 8, in other words, the surface pressure of the monomolecular film 2, can be easily controlled by changing the water flow rate. The present invention is characterized by applying this principle.

〈発明を実施するための最良の形態〉 以下、本発明の実施例について図面を参照しながら説明
する。なお、各図面において、同じ参照符号は回し構成
部材であり、同一の機能を有するものとする。
<BEST MODE FOR CARRYING OUT THE INVENTION> Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, the same reference numerals indicate rotating components and assume that they have the same functions.

まず、第1の実施例を、第3図に従って説明する。ステ
アリン酸を溶媒クロロホルム中に1×10−’M/!の
割合で溶かした溶液0.1 ma+を、20am/se
c速度で矢印の方向に流れる水面上の、障壁8から見て
ヒ流の領域9(以降、滴下領域9と称する。)において
滴下し、展開を行ったところ、障壁8で囲まれた水面上
におよそ120 cm”の単分子膜2を形成した。不図
示の表面圧測定器で単分子11!! 2の表面圧を測定
したところ、24dyne/cmの値を示し、単分子膜
2は所望の固体状態を形成していることが確認された。
First, a first embodiment will be described with reference to FIG. Stearic acid in the solvent chloroform at 1 x 10-'M/! A solution of 0.1 ma+ dissolved at a rate of 20 am/se
When a drop is dropped in a region 9 of the flow seen from the barrier 8 (hereinafter referred to as the dripping region 9) on the water surface flowing in the direction of the arrow at a speed of A monomolecular film 2 of approximately 120 cm" was formed. When the surface pressure of the monomolecular 11!! 2 was measured using a surface pressure measuring device (not shown), it showed a value of 24 dyne/cm, and the monomolecular film 2 was as desired. It was confirmed that a solid state was formed.

さらに、速度を15〜25cIIl/secの範囲で変
化させたところ、表面圧がほぼこれに比例して変化する
ことを確め、流速で表面圧を制御できることか明らかに
なった。また、このとき、滴下量も0.05〜0.3 
mlの範囲で変化させたところ、表面圧もこれに比例し
て変化することが確認された。すなわち、滴下量によっ
ても表面圧を制御できることが明らかになった。一方、
障壁8の近傍の領域10(以降、累積領域IOと称する
。)に於て、基板への単分子膜の累積を垂直浸漬法によ
って行ったところ、累積率80ないしほぼ100%の良
好な膜を得ることができた。
Furthermore, when the velocity was varied in the range of 15 to 25 cIIl/sec, it was confirmed that the surface pressure changed almost in proportion to this, and it became clear that the surface pressure could be controlled by the flow velocity. Also, at this time, the dropping amount is also 0.05 to 0.3
It was confirmed that when the surface pressure was changed within a range of ml, the surface pressure also changed in proportion to this. In other words, it has become clear that the surface pressure can also be controlled by the amount of dripping. on the other hand,
In a region 10 near the barrier 8 (hereinafter referred to as the accumulation region IO), a monomolecular film was accumulated on the substrate by the vertical dipping method, and a good film with an accumulation rate of 80 to almost 100% was obtained. I was able to get it.

その後、表面圧が一定になる様に流速を制御しながら、
かつ中分子jl! 2が累積領域10で基板に移し取ら
れ減少するのを、滴下領域9での膜構成物質の滴下によ
って補いながら累積操作を繰り返し行なった結果、従来
装置では難しかった連続累積を容易に達成することがで
きた。
Then, while controlling the flow rate so that the surface pressure remains constant,
And middle molecule jl! As a result of repeating the accumulation operation while compensating for the decrease in the amount of film 2 transferred to the substrate in the accumulation region 10 by dropping the film constituent material in the dropping region 9, it is possible to easily achieve continuous accumulation, which was difficult with conventional devices. was completed.

次に、第2の実施例を、第4図に従って説明する。Next, a second embodiment will be explained according to FIG.

本実施例は、第1の実施例において、流出する水を循還
させて水槽中に再び戻すことにより、水の再利用を図っ
ていることを特徴としている。第7図において、循還路
12のほとんどにはパイレックスのガラス管を用い、ま
た貯水槽13に溜った水は、ポンプ14によって送り出
され、ゲートバルブ15によって流速が制御される様に
なっている。
This embodiment is characterized in that, in the first embodiment, the outflowing water is recycled and returned to the aquarium, thereby reusing the water. In FIG. 7, Pyrex glass tubes are used for most of the circulation path 12, and the water accumulated in the water tank 13 is pumped out by a pump 14, and the flow rate is controlled by a gate valve 15. .

この様に、流出する水を循還させることで、失われる水
を補給するシステムが不要となり、装置全体も簡便なも
のとなった。
In this way, by circulating the outflowing water, there is no need for a system to replenish lost water, and the entire device becomes simpler.

次に、第3の実施例を、第5図に従って説明する。Next, a third embodiment will be described with reference to FIG.

本実施例は、図にも示されてるように、その循鑓路12
の一部に熱交換器31を設けたことを特徴としている。
In this embodiment, as shown in the figure, the circulation path 12
It is characterized in that a heat exchanger 31 is provided in a part of the unit.

具体的には、循還する水の通る 378インチ径、肉厚
0.5 mmのパイレックスのガラス管を中空の銅パイ
プで巻いた熱交換器31を設け、水槽3内に設けられた
温度センサ33を介して、温度制御装置32で制御しな
がら銅パイプ中に所望の温度の液体を流すことで、循還
する水の温度制御を行った。その結果、水槽中の水を、
5〜80°Cの範囲において±0.5°Cの精度で制御
することができた。したがって、単分子膜の累積の際の
温度条件を容易に制御することが可能となった。また、
本装置によれば、単分子膜を水面トに形成したままで温
度制御を行うことも可能であることは明らかであろう。
Specifically, a heat exchanger 31 is installed, which is a Pyrex glass tube with a diameter of 378 inches and a wall thickness of 0.5 mm, wrapped around a hollow copper pipe through which circulating water passes, and a temperature sensor installed in the water tank 3 is installed. The temperature of the circulating water was controlled by flowing a liquid at a desired temperature into the copper pipe through the copper pipe 33 under control of the temperature control device 32. As a result, the water in the aquarium,
It was possible to control with an accuracy of ±0.5°C in the range of 5 to 80°C. Therefore, it has become possible to easily control the temperature conditions during monomolecular film accumulation. Also,
It is clear that according to this apparatus, it is also possible to control the temperature while the monomolecular film is formed on the water surface.

次に、第4の実施例を、第6図に従って説明する。Next, a fourth embodiment will be explained according to FIG.

本実施例は、図にも示されるようにその循還路12の途
中に除塵用のフィルタ18を挿入したことを特徴として
いる。具体的には、0.5μs以上のゴミを取り除くフ
ィルタ16を挿入したところ、従来は2〜5回(時間に
して5〜10時間)程度装置を使用しただけで、水槽中
に視認できるほどのゴミが確認されていたのが、100
回以りの装置使用後においても視認できる様なゴミが確
認されなかった。すなわち、流水路の循還系にフィルタ
を挿入するという簡単な構成で、容易に水の浄化を図る
ことができた。
This embodiment is characterized in that a dust removal filter 18 is inserted in the middle of the circulation path 12, as shown in the figure. Specifically, when we inserted the filter 16 that removes dust of 0.5 μs or longer, we found that it removed visible particles in the aquarium by using the device only 2 to 5 times (5 to 10 hours). Garbage was confirmed in 100
No visible dust was found even after using the device several times. That is, water could be easily purified with a simple configuration of inserting a filter into the circulation system of the water channel.

次に、第5の実施例を、第7図に従って説明する。Next, a fifth embodiment will be explained according to FIG. 7.

本実施例は、図にも示されるように、その循還路12の
一部にPH制御装置30を設けたことを特徴としている
。具体的には、該装置に水酸化ナトリウム溶液と塩酸と
をそれぞれ、マイクロシリンダを用いて所定量混入させ
たところ、従来困難であった水酸化ナトリウムや塩酸の
拡散が、本実施例では水が流れている為に、非常に短時
間(5〜30分)内に所足のp)lを得ることが可能と
なった。また、本装置によれば、単分子膜を水面りに形
成したままでpHを制御することも可能であることは明
らかであろう。
As shown in the figure, this embodiment is characterized in that a PH control device 30 is provided in a part of the circulation path 12. Specifically, when predetermined amounts of sodium hydroxide solution and hydrochloric acid were respectively mixed into the device using a micro cylinder, diffusion of sodium hydroxide and hydrochloric acid, which was difficult in the past, was achieved in this example. Because of the flow, it became possible to obtain the required p)l within a very short time (5 to 30 minutes). Furthermore, it is clear that according to this device, it is also possible to control the pH while the monomolecular film is formed on the water surface.

次に、第6の実施例を、第8図に従って説明する。Next, a sixth embodiment will be described with reference to FIG.

本実施例は、第1の実施例に若干の改良を加えたもので
ある。すなわち、第1の実施例では、累積領域10にお
いて、水の流れは、垂直浸漬法で累積する場合の水中に
没する基板(不図示)、ならびに障壁8によって乱され
、単分子膜2が折り曲げられたり、−・足であるべき表
面圧が一時的に変動したりするので、好ましくない。そ
こで本実施例では、水槽の深さに変化をつけて、累積領
域IOにおける水の流れ(流速)を遅くすることにより
、第1の実施例を改良した。具体的には、滴下領域9を
含む、中分子II@2の表面圧を形成する領域11 (
以降、表面圧形成領域11と称する。)における水槽の
深さを1cmと浅くし、累積領域10における水槽の深
さを10c+oと深くした。その結果、表面圧形成領域
11における流速を20cm/sθCとしても累積領域
lOにおける流速は約1/10程瓜になり、基板への中
分子膜の累積を行ったところ、第1の実施例では歩留り
が20〜60%であったのが、50〜100%と向卜し
た。
This embodiment is a slight improvement of the first embodiment. That is, in the first embodiment, in the accumulation region 10, the flow of water is disturbed by the substrate (not shown) submerged in water in the case of accumulation by the vertical immersion method, as well as by the barrier 8, and the monomolecular film 2 is bent. This is not desirable because the surface pressure that should be on the feet may change temporarily. Therefore, in this embodiment, the first embodiment is improved by varying the depth of the water tank and slowing down the flow (flow velocity) of water in the accumulation area IO. Specifically, a region 11 (including the dropping region 9) that forms the surface pressure of the middle molecule II@2 (
Hereinafter, it will be referred to as a surface pressure forming region 11. ) was made shallow to 1 cm, and the depth of the water tank in cumulative area 10 was made deep to 10c+o. As a result, even if the flow velocity in the surface pressure forming region 11 was 20 cm/sθC, the flow velocity in the accumulation region 1O was about 1/10 that of the one found in the first embodiment. The yield has increased from 20 to 60% to 50 to 100%.

次に第7の実施例を、第9図に従って説明する。Next, a seventh embodiment will be described with reference to FIG.

本実施例は、第6の実施例の変形例で、水槽の幅に変化
をつけて、累積領域10における流速を遅くすることに
より、第1の実施例を改良したものである。具体的には
、滴)゛領域9を含む、表面圧形成領域11における水
槽の幅を2c+++と狭くし、累積領域10における水
槽の幅を20cmと広くした。その結果、表面圧形成領
域11における流速を20cm/sec としても累積
領域lOにおける流速は約1/10程度になり、基板へ
の単分子膜の累積を行ったところ、第1の実施例では歩
留りが20〜60%であったのが、50〜100%と向
上した。
This embodiment is a modification of the sixth embodiment, and is an improvement over the first embodiment by varying the width of the water tank and slowing down the flow velocity in the accumulation region 10. Specifically, the width of the water tank in the surface pressure forming area 11 including the droplet area 9 was narrowed to 2c+++, and the width of the water tank in the accumulation area 10 was widened to 20 cm. As a result, even if the flow velocity in the surface pressure forming region 11 was 20 cm/sec, the flow velocity in the accumulation region IO was about 1/10, and when the monomolecular film was accumulated on the substrate, the yield was lower in the first embodiment. improved from 20 to 60% to 50 to 100%.

次に、第8の実施例を、第1θ図(a)、(、b)に従
って説明する。
Next, the eighth embodiment will be described with reference to FIGS. 1θ (a) and (, b).

本実施例は、1つの水槽内を、扇形状の複数(本実施例
では5個)の障壁8で水面付近だけを仕切ったもので(
以降仕切られた領域をブロックと称する。)、中心付近
から外周に向かって各ブロック内へ水が流入するよう構
成されている。本実施例による装置は、単分子膜2の基
板上への累積能力や、連続累積が容易な点については、
第1の実施例と同様である。
In this embodiment, a single aquarium is partitioned off only near the water surface by a plurality of (five in this embodiment) fan-shaped barriers 8.
Hereinafter, the partitioned areas will be referred to as blocks. ), water flows into each block from near the center toward the outer periphery. The apparatus according to this embodiment has the following features regarding the ability to accumulate the monomolecular film 2 on the substrate and the ease of continuous accumulation.
This is similar to the first embodiment.

さらに本実施例に固有の特徴としては、異種単分子の累
積(ヘテロ構造)を容易に行なえることである。すなわ
ち、あらかじめ各ブロック毎に、異なる材料の単分子膜
を水面上に展開しておき、あるブロックにおいて垂直浸
漬法を用いて基板上に単分子膜を累積したのち、別のブ
ロックにおいて同様の操作を繰り返すことにより、ヘテ
ロな累積(累積方向に単分子膜の構成分子が異なる)膜
を容易に形成することができた。この時、気相中でブロ
ック間を移動することも、水相中で移動することも可能
であるので、例えばY型膜を形成する膜のへテロ接合は
、親木糸同志間にも疎水基同志間にも自由に設定するこ
とができた。
Furthermore, a unique feature of this embodiment is that it is possible to easily accumulate different types of single molecules (heterostructure). That is, a monomolecular film of a different material is spread on the water surface for each block in advance, and after the monomolecular film is accumulated on the substrate using the vertical dipping method in one block, the same operation is performed in another block. By repeating this process, it was possible to easily form a hetero-accumulated film (the constituent molecules of the monolayer differ in the direction of accumulation). At this time, it is possible to move between blocks in the gas phase or in the aqueous phase, so for example, a heterojunction in a membrane that forms a Y-type membrane has hydrophobicity between the parent wood yarns as well. They were also able to freely set their own standards among the base comrades.

最後に、第9の実施例を、第11図(a) 、 (b)
に従って説明する。
Finally, the ninth embodiment is shown in FIGS. 11(a) and (b).
Explain according to the following.

本実施例は、前述の実施例において、障壁8を1−1一
方向に可動自在に構成したことを4¥i徴としている。
This embodiment differs from the previous embodiment in that the barrier 8 is configured to be movable in one direction (1-1).

具体的には、不図示のモータにより障壁8を操作する(
ただし、人為的操作でも可能である。)ことにより、不
必要となった水面−トの単分子膜2を流し去り、該水面
上を清浄にすることがり能となり、単分子膜累積のため
の準備に要する手間と時間を大きく短縮することができ
た。
Specifically, the barrier 8 is operated by a motor (not shown) (
However, it is also possible to do it manually. ), it becomes possible to wash away the unnecessary monomolecular film 2 on the water surface and clean the water surface, greatly reducing the effort and time required for preparation for monomolecular film accumulation. I was able to do that.

本発明は、以上説明したように、液循環系に温度制御機
構を介在させることにより、単分子膜の容易な連続累積
に加えて、累積の際の温度条件の向」二化、すなわち累
積達成率の向上をも図ることができる効果がある。
As explained above, by interposing a temperature control mechanism in the liquid circulation system, the present invention not only allows easy continuous accumulation of a monomolecular film, but also achieves bidirectional temperature conditions during accumulation, that is, accumulation is achieved. This has the effect of improving the ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のLB膜作製装置の模式図、第2図は、
単分子膜の表面圧を水流により制御する方法の原理を説
明する図、第3図は本発明の第1第4図は第2の実施例
の概略構成図、第5図は第3の実施例の概略構成図、第
6図は第4の実施例の概略構成図、第7図は第5の実施
例の概略構成図、第8図は第6の実施例の概略断面図、
第9図は第7の実施例の概略斜視図、第1θ図(a)、
 (b)はそれぞれ、第8の実施例の概略斜視図および
断面図、第11図(a)、 (b)はそれぞれ、第9の
実施例において障壁8を取り去る前および取り去った後
の概略断面図である。 1−m−単分子 1a−m−親木基 lb −−一 疎水基 2−m−単分子膜 3−m−水槽 4− 框 7−m−水流発生装置 8−m−障壁 9−m−滴下領域 10−−一 累積領域 11−m−表面圧形成領域 12−m−循還路 13−m−貯水槽 14−m−ポンプ 15−一−ゲートバルブ 16−−− フィルタ 21−−− pHセンサ 30−−− pH制御装置 31−m−熱交換器 32−m−温度制御装置 33−m−温度センサー 特許出願人 キャノン株式会社 第4図 フ 第6図 第 11 図・
Figure 1 is a schematic diagram of a conventional LB film production apparatus, and Figure 2 is a
A diagram explaining the principle of the method of controlling the surface pressure of a monomolecular film by a water flow. Figure 3 is the first embodiment of the present invention. Figure 4 is a schematic diagram of the second embodiment. Figure 5 is the third embodiment. FIG. 6 is a schematic diagram of the fourth embodiment, FIG. 7 is a schematic diagram of the fifth embodiment, FIG. 8 is a schematic cross-sectional diagram of the sixth embodiment,
FIG. 9 is a schematic perspective view of the seventh embodiment, 1θ diagram (a),
11(b) is a schematic perspective view and a cross-sectional view of the eighth embodiment, and FIGS. 11(a) and (b) are schematic cross-sectional views of the ninth embodiment before and after removing the barrier 8, respectively. It is a diagram. 1-m-monomolecule 1a-m-parent wood group lb--1 hydrophobic group 2-m-monolayer 3-m-water tank 4-frame 7-m-water flow generator 8-m-barrier 9-m- Dripping region 10--1 Accumulation region 11-m-Surface pressure forming region 12-m-Circulation path 13-m-Water tank 14-m-Pump 15--Gate valve 16--Filter 21--pH Sensor 30---pH control device 31-m-heat exchanger 32-m-temperature control device 33-m-temperature sensor Patent applicant: Canon Corporation Figure 4F Figure 6 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 成膜用分子を展開する液体を収容した液槽を有し、前記
液体の温度制御手段を付加したことを特徴とする成膜装
置。
A film forming apparatus comprising a liquid tank containing a liquid for developing molecules for film forming, and further comprising means for controlling the temperature of the liquid.
JP4810784A 1984-03-15 1984-03-15 Film forming device Pending JPS60193536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4810784A JPS60193536A (en) 1984-03-15 1984-03-15 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4810784A JPS60193536A (en) 1984-03-15 1984-03-15 Film forming device

Publications (1)

Publication Number Publication Date
JPS60193536A true JPS60193536A (en) 1985-10-02

Family

ID=12794087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4810784A Pending JPS60193536A (en) 1984-03-15 1984-03-15 Film forming device

Country Status (1)

Country Link
JP (1) JPS60193536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041023A (en) * 2005-07-29 2007-02-15 Eastman Kodak Co Camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041023A (en) * 2005-07-29 2007-02-15 Eastman Kodak Co Camera

Similar Documents

Publication Publication Date Title
KR930008108B1 (en) Liquid chromatography using microporous hollow fiber
US7591905B2 (en) Method and apparatus for two dimensional assembly of particles
US8192668B2 (en) Structuring method and component with a structured surface
CN107075435A (en) Use the separation based on size of the continuous flow type of the entity of the as little as nanoscale of nano column array
CN100393501C (en) Method for forming hollow fibers
DE2503452A1 (en) PROCESS FOR PRODUCING SPHERICAL SEMICONDUCTOR PARTICLES
Liu et al. Polymerization-induced phase separation fabrication: A versatile microfluidic technique to prepare microfibers with various cross sectional shapes and structures
US4691982A (en) Optical coupler
EP1647334B1 (en) Apparatus for two dimensional assembly of particles
JPS60193536A (en) Film forming device
CN102192966B (en) Ionic liquid quartz capillary gas chromatographic column and preparation and application thereof
JPS60193531A (en) Film forming device
JPS60193534A (en) Film forming device
JPH06218309A (en) Method and apparatus for forming ultrathin layer and layer element
EP1144097B1 (en) Process for the production of microporous hollow fiber membranes from perfluorinated thermoplastic polymers
JPH058050B2 (en)
JPS60193535A (en) Film forming device
JPS60193325A (en) Film forming apparatus
JPS60193326A (en) Film forming apparatus
JPS60193533A (en) Film forming device
JPS60193327A (en) Film forming apparatus
US20040251171A1 (en) Separation apparatus, method of separation, and process for producing separation apparatus
JPS60193328A (en) Film forming method
JP4645053B2 (en) Micro channel system
Kumeria et al. Nanoporous alumina membranes for chromatography and molecular transporting