JPS60193328A - Film forming method - Google Patents
Film forming methodInfo
- Publication number
- JPS60193328A JPS60193328A JP59048111A JP4811184A JPS60193328A JP S60193328 A JPS60193328 A JP S60193328A JP 59048111 A JP59048111 A JP 59048111A JP 4811184 A JP4811184 A JP 4811184A JP S60193328 A JPS60193328 A JP S60193328A
- Authority
- JP
- Japan
- Prior art keywords
- water
- film
- molecules
- area
- film forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 52
- 239000010408 film Substances 0.000 abstract description 40
- 230000004888 barrier function Effects 0.000 abstract description 12
- 239000010409 thin film Substances 0.000 abstract description 9
- 230000003287 optical effect Effects 0.000 abstract description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 abstract description 6
- 239000002904 solvent Substances 0.000 abstract description 4
- 230000006870 function Effects 0.000 abstract description 3
- 235000021355 Stearic acid Nutrition 0.000 abstract 1
- 230000001955 cumulated effect Effects 0.000 abstract 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 abstract 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 abstract 1
- 239000008117 stearic acid Substances 0.000 abstract 1
- 238000009825 accumulation Methods 0.000 description 17
- 239000002120 nanofilm Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000428 dust Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- KZMAWJRXKGLWGS-UHFFFAOYSA-N 2-chloro-n-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-n-(3-methoxypropyl)acetamide Chemical compound S1C(N(C(=O)CCl)CCCOC)=NC(C=2C=CC(OC)=CC=2)=C1 KZMAWJRXKGLWGS-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005442 molecular electronic Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
- B05D1/20—Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
- B05D1/202—Langmuir Blodgett films (LB films)
- B05D1/206—LB troughs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野)
本発明は、半導体あるいは光学デバイスの機能を荷う部
分である薄膜の作製方法に関し、特に、j1分子累積法
、すなわちラングミュア・プロジェット法(LB法)を
用いるLB膜作製方法に関するものである。[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for producing a thin film that is a functional part of a semiconductor or an optical device, and in particular, a method for producing a thin film that is a functional part of a semiconductor or an optical device, and in particular, a method for manufacturing a thin film that is a functional part of a semiconductor or optical device, and in particular, a method for manufacturing a thin film that is a functional part of a semiconductor or an optical device. The present invention relates to a method for producing an LB film using.
く背景技術〉
従来、半導体技術分野並びに光学技術分野に於ける素材
利用は、もっばら比較的取扱いが容易な無機物を対象に
して進められてきた。これは有機化学分野の技術進展が
無機材料分野のそれに比べて著しく遅れていたことが一
因している。BACKGROUND ART Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.
しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたといわれている。そこで無機物を凌ぐ
新しり機能素材としての機能性有機材料の開発が要望さ
れている。イIR材料の利点は安価かつ製造容易である
こと、機能性に富むこと等である0反面、これまで劣る
とされてきた耐熱性、機械的強度に対しても、最近これ
を克服した有機材料が次々に生まれている。このような
技術的背景のもとで、論理素子、メモリー素子、光電変
換素子等のICデバイスやマイクロレンズΦアレイ、先
導波路等の光学デバイスの機能を荷う部分(主として薄
膜部分)の一部又は全部を従来の無機薄膜に代えて、有
機薄膜で構成しようという提案から、はては1′個の有
機分子に論理素子やメモリ素子等の機能を持たせた分子
電子デバイスや生体関連物質からなる論理素子(例えば
バイオΦチップス)を作ろうという提案が最近、いくつ
かの研究機関により発表された。However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of IR materials are that they are inexpensive, easy to manufacture, and highly functional.On the other hand, organic materials have recently overcome their heat resistance and mechanical strength, which were previously thought to be inferior. are being born one after another. Based on this technical background, some of the functional parts (mainly thin film parts) of IC devices such as logic elements, memory elements, photoelectric conversion elements, and optical devices such as microlens Φ arrays and guiding waveguides have been developed. Or, from the proposal to replace the conventional inorganic thin film with an organic thin film, or even from molecular electronic devices and bio-related materials in which 1' organic molecules have functions such as logic elements and memory elements. Several research institutes have recently announced proposals to create logic devices (such as bio-Φ chips) that will
かかる有機材料を用いて上記の各種デバイス等を作成す
る際の?diI模は、公知の単分子累積法、すなわちラ
ングミュアΦブロジェッl−?)、(L B ?)、)
によって形成することができる。When creating the various devices mentioned above using such organic materials? The diI model is based on the known single molecule accumulation method, namely Langmuir Φ Blogett l-? ), (LB?),)
can be formed by
該LB法とは、第1図において、親木基1aと疎水ノ、
1; 1 bで構成される単分子l、すなわち11り構
成物質をベンセン、クロロホルム等の揮発性の溶媒に溶
かし、水槽3内に配設された框4で囲まれる水面」二に
滴下し、該溶媒の揮発後に水面上に残された単分子膜(
この時点では気体膜)2を、框4が囲む面積を縮めて該
単分子膜2の面密度を増すことにより固体膜へと変態さ
せ、これを垂直浸漬法や水平刺着法によって不図示の基
板に移しとる方法である。The LB method refers to the parent tree group 1a and the hydrophobic base group 1a in FIG.
1; A single molecule 1 composed of 1b, that is, a constituent substance 11, is dissolved in a volatile solvent such as benzene or chloroform, and dropped onto the water surface surrounded by a frame 4 arranged in a water tank 3, The monomolecular film left on the water surface after the solvent evaporates (
At this point, the gas film (2) is transformed into a solid film by reducing the area surrounded by the frame 4 and increasing the areal density of the monomolecular film 2, and this is transformed into a solid film by a vertical dipping method or a horizontal pricking method (not shown). This is a method of transferring it to a substrate.
しかしながら、この方法によると、基板上に移し取られ
た単分子膜の分だけ、水面上の単分子の面積は減少する
。すなわち、水面上の単分子膜(固体膜)は均一性が要
求されるため、その面密度を一定に保ったままで、しか
も連続して該単分子膜を基板上に移し取っていく場合に
は、框で囲まれた面積は徐々に減少しOに近づくので、
その移し取る回数にはおのずと制限がある。However, according to this method, the area of the monolayer on the water surface decreases by the amount of the monolayer transferred onto the substrate. In other words, since the monomolecular film (solid film) on the water surface is required to be uniform, if the monomolecular film is continuously transferred onto the substrate while keeping its areal density constant, , the area surrounded by the frame gradually decreases and approaches O, so
There is naturally a limit to the number of times it can be transferred.
〈発明の開示〉
本発明の目的は上述の問題点を解消することであり、そ
の為に、所望の面密度が得られるよう単分子膜の表面圧
を液流によって制御することにより、容易に中分子膜の
連続累積を行なうことを可能とするものである。<Disclosure of the Invention> The purpose of the present invention is to solve the above-mentioned problems, and for this purpose, the surface pressure of a monomolecular film is controlled by a liquid flow so as to obtain a desired areal density. This makes it possible to perform continuous accumulation of medium molecular films.
以下、本発明の原理を、:iS2図に従って説明する。The principle of the present invention will be explained below with reference to the iS2 diagram.
ある一定の流速を持つ水面上に、単分子膜2を展開する
と、該中分子膜2を構成する分子と水との引力によって
、単分子膜2は水の流れの方向(矢印の方向)に一定の
力で引っ張られる。このとき、水の流れに影響すること
なく単分子膜2の移動のみを阻止し得る障壁8が単分子
膜2の流れの行く手にあれば、該単分子膜2はある一定
の力でこの障壁8に押し当てられる。すなわち、単分子
M 2が障壁8に押し当たる力、言い換えるとjli分
子膜2の表面圧は、水の流速を変化させることで容易に
制御することができることを示している。本発明は、こ
の原理を応用することを特徴としている。When the monomolecular film 2 is spread on the surface of water with a certain flow rate, the monomolecular film 2 moves in the direction of the water flow (in the direction of the arrow) due to the attraction between the molecules constituting the middle molecular film 2 and the water. It is pulled with a certain force. At this time, if there is a barrier 8 in the path of the monomolecular film 2 that can block only the movement of the monomolecular film 2 without affecting the flow of water, the monomolecular film 2 will act against the barrier with a certain force. It is pressed against 8. That is, this shows that the force with which the single molecules M 2 press against the barrier 8, in other words, the surface pressure of the jli molecular film 2, can be easily controlled by changing the water flow rate. The present invention is characterized by applying this principle.
〈発明を実施するための最良の形態〉
以下、未発明の実施例について図面を参照しながら説明
する。なお、各図面において、同じ参照符号は同じ構成
部材であり、同一の機能を有するものとする。<BEST MODE FOR CARRYING OUT THE INVENTION> Hereinafter, uninvented embodiments will be described with reference to the drawings. Note that in each drawing, the same reference numerals represent the same structural members and have the same functions.
まず、第1の実施例を、第3図に従って説明する。ステ
アリン酩を溶媒クロロホルム中に1×10−’M#!の
割合で溶かした溶液0.1 mlを、20cm/s、e
c 速度で矢印の方向に流れる水面上の、障7壁8から
見て上流の領域9(以降、滴下領域9と称する。)にお
いて滴下し、展開を行ったところ、障壁8で囲まれた水
面上におよそ 120 crn”のI゛11分子膜2を
形成した。不図示の表面圧測定器で中分子膜2の表面圧
を測定したところ、24dyne/Cnlの値を示し、
単分子膜2は所望の固体状態を形成していることが確認
された。さらに、速度を15〜25cm/secの範囲
で変化させたところ、表面圧がほぼこれに比例して変化
することを確め、流速で表面圧を制御できることが明ら
かになった。また、このとき、滴下晴も0.05〜0.
3 ff1i、の範囲で変化させたところ、表面圧もこ
れに比例して女化することが確認された。すなわち、滴
下着によっても表面圧を制御できることが明らかになっ
た。First, a first embodiment will be described with reference to FIG. Stearin in the solvent chloroform at 1 x 10-'M#! 0.1 ml of the solution dissolved at a rate of 20 cm/s, e
c When a drop is applied and developed in an area 9 upstream of the barrier 7 wall 8 (hereinafter referred to as the dripping area 9) on the water surface flowing at a speed in the direction of the arrow, the water surface surrounded by the barrier 8 is An I'11 molecular film 2 of about 120 crn'' was formed on the middle molecular film 2. When the surface pressure of the middle molecular film 2 was measured using a surface pressure measuring device (not shown), it showed a value of 24 dyne/Cnl.
It was confirmed that the monomolecular film 2 formed a desired solid state. Furthermore, when the velocity was varied in the range of 15 to 25 cm/sec, it was confirmed that the surface pressure changed approximately in proportion to this, and it became clear that the surface pressure could be controlled by the flow velocity. Moreover, at this time, the dripping fineness is also 0.05 to 0.
When the surface pressure was varied within the range of 3ff1i, it was confirmed that the surface pressure also became feminized in proportion to this. In other words, it has become clear that the surface pressure can also be controlled using a dropper.
一方、障壁8の近傍の領域10 (以降、累積領域10
と称する。)に於て、基板へのCli分子j1りの累積
を垂直浸漬法によって行ったところ、累積率90ないし
ほぼ100%の良好な膜を得ることができた。On the other hand, a region 10 near the barrier 8 (hereinafter, cumulative region 10
It is called. ), when Cli molecules j1 were accumulated on the substrate by the vertical dipping method, a good film with an accumulation rate of 90 to almost 100% could be obtained.
その後、表面圧が一定になる様に流速を制御しながら、
かつ単分子膜2が累積領域IOで基板に移し取られ減少
するのを、滴下領域9での膜構成物質の滴下によって補
いながら累積操作を繰り返し行なった結果、従来装置で
は難しかった連続累積を容易に達成することができた。Then, while controlling the flow rate so that the surface pressure remains constant,
In addition, the accumulation operation is repeated while the monomolecular film 2 is transferred to the substrate in the accumulation region IO and the decrease is compensated for by the dropping of the film constituent material in the dropping region 9. As a result, continuous accumulation, which was difficult with conventional devices, is facilitated. was able to achieve this.
次に、第2の実施例を、第4図に従って説明する。Next, a second embodiment will be explained according to FIG.
木実流側は、第1の実施例に若干の改良を加えたもので
ある。すなわち、第1の実施例では、累積領域lOにお
いて、水の流れは、垂直浸漬法で累積する場合の水中に
没する基板(不図示)、ならびに障壁8によって乱され
、単分子膜2が折り曲げられたり、一定であるべき表面
圧が一時的に変動したりするので、 kfましくない。The nut flow side is a modification of the first embodiment with some improvements. That is, in the first embodiment, in the accumulation region lO, the flow of water is disturbed by the substrate (not shown) that is submerged in water in the case of accumulation by the vertical immersion method, as well as the barrier 8, and the monomolecular film 2 is bent. kf is not acceptable because the surface pressure, which should be constant, fluctuates temporarily.
そこで本実施例では、水槽の深さに変化をつけて、累積
領域1゜における水の流れ(流速)を遅くすることによ
り、第1の実施例を改良した。具体的には、滴下領域9
を含む、単分子膜2の表面圧を形成する領域11(以降
、表面圧形成領域11と称する。)における水槽の深さ
をlc+*と浅くし、累積領域10における水槽の深さ
を10cmと深くした。その結果1表面圧形成領域+1
における流速を20cm/seeとしても累積領域10
における流速は約171o程度になり、基板への単分子
膜の累積を行ったところ、第1の実施例では歩留りが2
0〜60%であったのが、50〜100%と向上した。Therefore, in this embodiment, the first embodiment is improved by varying the depth of the water tank and slowing down the water flow (flow velocity) in the 1° accumulation area. Specifically, the drip area 9
The depth of the water tank in the region 11 (hereinafter referred to as surface pressure forming region 11) that forms the surface pressure of the monomolecular film 2 including I made it deep. As a result, 1 surface pressure formation area + 1
Even if the flow velocity at is 20cm/see, the cumulative area is 10
The flow rate was about 171 degrees, and when the monomolecular film was accumulated on the substrate, the yield was 2 in the first example.
It improved from 0 to 60% to 50 to 100%.
次に第3の実施例を、第5図に従って説明する。Next, a third embodiment will be described with reference to FIG.
本実施例は、第2の実施例の変形例で、水槽の幅に変化
をつけて、累積領域10における流速を遅くすることに
より、第1の実施例を改良したものである。具体的には
、滴下領域9を含む、表面圧形成領域11における水槽
の幅を2cmと狭くし、累積領域10におCする水槽の
幅を20cmと広(した。その結果、表面圧形成領域1
1における流速を20cm/sec としても累積領域
10における流速は約1/10程度になり、)、(板へ
の単分子膜の累積を行ったところ、第1の実施例では歩
留りが20〜60%であったのが、50〜 ioo%と
向上した・
次に、第4の実施例を、第6図(a) 、 (b)に従
って説明する。This embodiment is a modification of the second embodiment, and is an improvement over the first embodiment by varying the width of the water tank and slowing down the flow velocity in the accumulation region 10. Specifically, the width of the water tank in the surface pressure forming area 11 including the dripping area 9 was narrowed to 2 cm, and the width of the water tank connected to the accumulation area 10 was widened to 20 cm.As a result, the surface pressure forming area 1
Even if the flow rate in Example 1 is 20 cm/sec, the flow rate in the accumulation region 10 is about 1/10. %, but this has improved to 50 to ioo%.Next, the fourth embodiment will be described with reference to FIGS. 6(a) and (b).
本実施例は、1つの水槽内を、扇形状の複数(本実施例
では5個)の障壁8で水面付近だけを仕切ったもので(
以降仕切られた領域をブロックと称する。)、中心付近
から外周に向かって各ブロック内へ水が流入するよう構
成されている。本実施例による装置は、単分子膜2の基
板上への累積能力や、連続累積が容易な点については、
第1の実施例と同様である。In this embodiment, a single aquarium is partitioned off only near the water surface by a plurality of (five in this embodiment) fan-shaped barriers 8.
Hereinafter, the partitioned areas will be referred to as blocks. ), water flows into each block from near the center toward the outer periphery. The apparatus according to this embodiment has the following features regarding the ability to accumulate the monomolecular film 2 on the substrate and the ease of continuous accumulation.
This is similar to the first embodiment.
さらに未実施例に固有の特徴としては、異種中分子の累
積(ヘテロ構造)を容易に行なえることである。すなわ
ち、あらかじめ各ブロックイげに、異なる材料の?11
分子膜を水面上に展開しておき、あるブロックにおいて
屯直侵漬法を用いて基板上に単分子膜を累積したのち、
別のブロックにおいて同様の操作を繰り返すことにより
、ヘテロな累積(累積方向に中分子膜の構成分子が異な
る)膜を容易に形成することができた。この時、気相中
でブロック間を移動することも、水相中で移動すること
も可能であるので、例えばY型膜を形成する膜のへテロ
接合は、親水基同志間にも疎水基同志間にも自由に設定
することができた。Furthermore, a unique feature of the non-examples is that it is possible to easily accumulate different types of medium molecules (heterostructure). That is, each block is made of different materials in advance? 11
The molecular film was developed on the water surface, and the monomolecular film was accumulated on the substrate using the tonnai dipping method in a certain block.
By repeating the same operation in another block, it was possible to easily form a hetero-accumulated film (the constituent molecules of the middle molecular film differ in the direction of accumulation). At this time, it is possible to move between blocks in the gas phase or in the aqueous phase, so for example, in a heterojunction of a film that forms a Y-type film, hydrophobic groups are also present between hydrophilic groups. It was also possible to freely set the rules between comrades.
次に、第5の実施例を、第7図に従って説明する。Next, a fifth embodiment will be explained according to FIG. 7.
本実施例は、前述の実施例において、流出する水を循=
させて水槽中に再び戻すことにより、水の再利用を図っ
ていることを特徴としている。第7図において、wj還
路12のほとんどにはパイレックスのガラス管を用い、
また貯水槽13に溜った水は、ポンプ14によって送り
出され、ゲートバルブ15によって流速が制御される様
になっている。In this embodiment, the outflow water is circulated in the previous embodiment.
It is characterized by the fact that water is reused by letting it drain and returning it to the aquarium. In Fig. 7, Pyrex glass tubes are used for most of the wj return path 12,
Further, the water accumulated in the water tank 13 is pumped out by a pump 14, and the flow rate is controlled by a gate valve 15.
この様に、流出する水を循還させることで、失われる水
を補給するシステムが不要となり、装置全体も簡便なも
のとなった。In this way, by circulating the outflowing water, there is no need for a system to replenish lost water, and the entire device becomes simpler.
次に5、第6の実施例を、第8図に従って説明する。Next, the fifth and sixth embodiments will be explained according to FIG.
本実施例は1図にも示されるようにその’fam路12
の途中に除塵用のフィルタ16を挿入したことを特徴と
している。具体的には、05μ以上のゴミを取り除くフ
ィルタ16を挿入したところ、従来は2〜5回(時間に
して5〜lO時間)程度装置を使用しただけで、水槽中
に視認できるほどのゴミが確認されていたのが、100
回以上の装置使用後においても視認できる様なゴミが確
認されなかった。すなわち、流水路の循還系にフィルタ
を挿入するという簡単な構成で、容易に水の浄化を図る
ことができた。In this embodiment, as shown in FIG.
It is characterized in that a filter 16 for removing dust is inserted in the middle of the filter. Specifically, when we inserted the filter 16 that removes dust of 0.5 μm or more, we were able to remove a visible amount of dust in the aquarium by using the device only 2 to 5 times (5 to 10 hours). It was confirmed that 100
No visible dust was found even after using the device more than once. That is, water could be easily purified with a simple configuration of inserting a filter into the circulation system of the water channel.
次に、第7の実施例を、第9図に従って説明する。Next, a seventh embodiment will be explained according to FIG. 9.
本実施例は、図にも示されるように、その循還路12の
一部にpH制御装置30を設けたことを特徴としている
。具体的には、該装置に水酸化ナトリウム溶液と塩酩と
をそれぞれ、マイクロシリングを用いて所定量混入させ
たところ、従来困難であった水酸化ナトリウムや塩醜の
拡散が、本実施例では水が流れている為に、非常に短時
間(5〜30分)内に所定のpHを得ることが可能とな
った。また、本装置によれば、単分子膜を水面上に形成
したままでPHを制御することも可能であることは明ら
かであろう。As shown in the figure, this embodiment is characterized in that a pH control device 30 is provided in a part of the circulation path 12. Specifically, when predetermined amounts of sodium hydroxide solution and salt alcohol were mixed into the device using microsilling, diffusion of sodium hydroxide and salt alcohol, which was difficult in the past, was achieved in this example. Because the water was flowing, it became possible to obtain a predetermined pH within a very short time (5 to 30 minutes). Furthermore, it is clear that according to the present device, it is also possible to control the pH while the monomolecular film is formed on the water surface.
次に、第8の実施例を、第10図に従って説明する。Next, an eighth embodiment will be explained according to FIG. 10.
本実施例は、図にも示されてるように、その循還路12
の一部に熱交換器31を設けたことを特徴としている。In this embodiment, as shown in the figure, the circulation path 12
It is characterized in that a heat exchanger 31 is provided in a part of the unit.
具体的には、循還する水の通る3/8インチ径、肉厚0
.5 mw+のパイレックスのガラス管を中空の銅パイ
プで巻いた熱交換器31を設け、水槽3内に設けられた
温度センサ33を介して、温度制御装置32で制御しな
がら銅パイプ中に所望の温度の液体を流すことで、循還
する水の温度制御を行った。その結果、水槽中の水を、
5〜80°Cの範囲において± 0.5℃の精度で制御
することができた。したがって、単分子膜の累積の際の
温度条件を容易に制御することが可能となった。また、
本装置によれば、中分子膜を水面上に形成したままで温
度制御を行うことも可能であることは明らかであろう。Specifically, the diameter is 3/8 inch, the wall thickness is 0, through which the circulating water passes.
.. A heat exchanger 31 is provided in which a 5 mW+ Pyrex glass tube is wrapped around a hollow copper pipe, and a desired temperature is heated inside the copper pipe while being controlled by a temperature control device 32 via a temperature sensor 33 provided in the water tank 3. The temperature of the circulating water was controlled by flowing a liquid at that temperature. As a result, the water in the aquarium,
It was possible to control the temperature within the range of 5 to 80°C with an accuracy of ±0.5°C. Therefore, it has become possible to easily control the temperature conditions during monomolecular film accumulation. Also,
It is clear that according to this apparatus, it is also possible to control the temperature while the middle molecular film is formed on the water surface.
最後に、第9の実施例を、第11図(a)、(b)に従
って説明する。Finally, the ninth embodiment will be described with reference to FIGS. 11(a) and 11(b).
本実施例は、前述の実施例において、障壁8を上下方向
に可動゛自在に構成したことを特徴として・ O
いδ。具体的には、不図示のモータにより障壁8を操作
する(ただしく人為的操作でも可能である。)ことに・
より、不必要となった水面上のt11分子膜2を流し去
り、該水面上を清汀茅にすることが可能となり、単分子
膜累積のための準備に要する手間と時間を大きく短縮す
ることができた。The present embodiment is characterized in that the barrier 8 is configured to be freely movable in the vertical direction in the previous embodiment. Specifically, the barrier 8 is operated by a motor (not shown) (however, manual operation is also possible).
This makes it possible to wash away the unnecessary t11 molecular film 2 on the water surface and turn the water surface into clear grass, which greatly reduces the effort and time required for preparation for monomolecular film accumulation. was completed.
本発明は、以上説明したように、単分子膜の表面圧を液
流によって制御することにより、単分子膜の連続累積を
容易に行なえる効果がある。As explained above, the present invention has the effect of facilitating continuous accumulation of a monomolecular film by controlling the surface pressure of the monomolecular film using a liquid flow.
第1図は、従来のLB膜作製装置の模式図、第2図は、
単分子膜の表面圧を水流により制御する方法の原理を説
明する図、第3図は本発明の第1の実施例の概略断面図
、第4図は第2の実施例の概略断面図、第5図は第3の
実施例の概略斜視図、第6図(a)、 (b)はそれぞ
れ、第4の実施例の概略斜視図および断面図、第7図は
第5の実施例の概略構成図、第8図は第6の実施例の概
略″構成図、第9図は第7の実施例の概略構成図、第1
θ図は第8の実施例の概略構成図、第11図(a)、
(b)はそれぞれ、第9の実施例において障壁8を取り
去る前および取り去った後の概略断面図である。
1 −−一 単分子
+a −−一 親水基
1b−m−疎水基
2−m−単分子膜
3−m−水槽
4− 框
7−m−水流発生装置
8−m−障壁
9−m−滴下領域
10−m−累積領域
11−m−表面圧形成領域
12−−一 循還路
13−m−貯水槽
■4−−− ポンプ
15−−− ゲートバルブ
18−−− フィルタ
21−−− pH−eンサ
30−−− PH制御装置
31−m−熱交換器
32−m−温度制御装置
33−m−温度センサー
特許出願人 キャノン株式会社
第7図
フ
第8図
第 9 図Figure 1 is a schematic diagram of a conventional LB film production apparatus, and Figure 2 is a
A diagram explaining the principle of a method for controlling the surface pressure of a monomolecular film by a water flow, FIG. 3 is a schematic sectional view of the first embodiment of the present invention, and FIG. 4 is a schematic sectional diagram of the second embodiment. 5 is a schematic perspective view of the third embodiment, FIGS. 6(a) and 6(b) are a schematic perspective view and a sectional view of the fourth embodiment, respectively, and FIG. 7 is a schematic perspective view of the fifth embodiment. 8 is a schematic configuration diagram of the sixth embodiment. FIG. 9 is a schematic configuration diagram of the seventh embodiment.
θ diagram is a schematic configuration diagram of the eighth embodiment, FIG. 11(a),
(b) is a schematic sectional view before and after removing the barrier 8 in the ninth embodiment, respectively. 1--1 Monomolecule +a--1 Hydrophilic group 1b-m-Hydrophobic group 2-m-Monolayer 3-m-Water tank 4-Stile 7-m-Water flow generator 8-m-Barrier 9-m-Dripping Region 10-m-cumulative region 11-m-surface pressure forming region 12--1 Circulation path 13-m-water tank ■4--Pump 15--Gate valve 18--Filter 21---pH -en sensor 30---PH control device 31-m-heat exchanger 32-m-temperature control device 33-m-temperature sensor Patent applicant: Canon Co., Ltd. Fig. 7, Fig. 8, Fig. 9
Claims (1)
なうようにしたことを特徴とする成膜方法。A film formation method characterized in that film formation is performed after controlling the areal density of molecules for film formation by a liquid flow.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59048111A JPS60193328A (en) | 1984-03-15 | 1984-03-15 | Film forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59048111A JPS60193328A (en) | 1984-03-15 | 1984-03-15 | Film forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60193328A true JPS60193328A (en) | 1985-10-01 |
Family
ID=12794199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59048111A Pending JPS60193328A (en) | 1984-03-15 | 1984-03-15 | Film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60193328A (en) |
-
1984
- 1984-03-15 JP JP59048111A patent/JPS60193328A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | A Self‐Assembly Approach to the Fabrication of Patterned, Two‐Dimensional Arrays of Microlenses of Organic Polymers | |
US7704462B2 (en) | Method and apparatus for producing aligned carbon nanotube thermal interface structure | |
DE2824934C2 (en) | Method and device for producing a tube sheet | |
CN104076600B (en) | Method for manufacturing seamless mold | |
DE2503452A1 (en) | PROCESS FOR PRODUCING SPHERICAL SEMICONDUCTOR PARTICLES | |
DE60029087T2 (en) | STOCK EXCHANGE WITH HOLLOW FIBERMEMBRANE | |
DE60303509T2 (en) | METHOD AND DEVICE FOR THE TWO-DIMENSIONAL CONSTRUCTION OF PARTICLES | |
JPS60193328A (en) | Film forming method | |
DE112006001845T5 (en) | Shaping apparatus, manufacturing method of a molding apparatus and molding method | |
CN102590901A (en) | Process for manufacturing micro-lens array with large numerical aperture | |
DE10141525B4 (en) | Mass and heat exchange reactor | |
JPS60193534A (en) | Film forming device | |
JPS60193325A (en) | Film forming apparatus | |
JPS60193327A (en) | Film forming apparatus | |
JPS60193536A (en) | Film forming device | |
JPS60193531A (en) | Film forming device | |
JPS60193535A (en) | Film forming device | |
JPS60193532A (en) | Film forming device | |
JPS60193326A (en) | Film forming apparatus | |
JPS60193533A (en) | Film forming device | |
KR101466771B1 (en) | Method for Fabrication of Janus Emulsion | |
JPH02235936A (en) | Self-cohesive,extremly thin molecular film, and method and device for preparing it and applying it to surface | |
Kang et al. | Fabrication of gold nanoparticle pattern using imprinted hydrogen silsesquioxane pattern for surface-enhanced Raman scattering | |
Clint | Partial deposition of mixed monolayers onto solid surfaces | |
GB1599420A (en) | Method for internal coating of capillary tube |