JPS60193531A - Film forming device - Google Patents

Film forming device

Info

Publication number
JPS60193531A
JPS60193531A JP4810284A JP4810284A JPS60193531A JP S60193531 A JPS60193531 A JP S60193531A JP 4810284 A JP4810284 A JP 4810284A JP 4810284 A JP4810284 A JP 4810284A JP S60193531 A JPS60193531 A JP S60193531A
Authority
JP
Japan
Prior art keywords
accumulation
liquid
water
film
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4810284A
Other languages
Japanese (ja)
Inventor
Toshihiko Miyazaki
俊彦 宮崎
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4810284A priority Critical patent/JPS60193531A/en
Publication of JPS60193531A publication Critical patent/JPS60193531A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/206LB troughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

PURPOSE:To enable easy continuous accumulation of monomolecular films by providing a means for decelerating the flow of a liquid for spreading molecules for film forming to a liquid tank contg. said liquid. CONSTITUTION:A means 7 for decelerating the flow of a liquid for spreading molecules for film forming is provided in a liquid tank 3 contg. said liquid. A good film having 90- about 100% rate of accumulation is obtd. when the accumulation of the monomolecular films on a substrate is executed by a vertical dipping method. The accumulating operation is thereafter repeated under the control of the flow rate so as to maintain the specified surface pressure while the decrease in monomolecular films 2 as a result of transfer to the substrate in an accumulating region 10 is compensated by dropping a film constituting material in a dropping region 9. As a result, the continuous accumulation which is difficult with the conventional device is easily made possible.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、半導体あるいは光学デバイスの機能を荷う部
分である薄膜の作製装置に関し、特に、単分子累積法、
すなわちラングミュア・ブロジェット法(LB法)を用
いるLBH作製装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an apparatus for producing a thin film, which is a functional part of a semiconductor or an optical device, and particularly relates to a production apparatus for a thin film that is a functional part of a semiconductor or an optical device, and in particular, a single molecule accumulation method,
That is, the present invention relates to an LBH manufacturing apparatus using the Langmuir-Blodgett method (LB method).

(背景技術) 従来、半導体技術分野並びに光学技術分野に於ける素材
利用は、もっばら比較的取扱いが容易な無機物を対象に
して進められてきた。これは有機化学分野の技術進展が
無機材料分野のそれに比べ−C著しく匣れていたことが
一因している。
(Background Art) Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that the technological progress in the field of organic chemistry has been much faster than that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたといわれている。そこで無機物を凌ぐ
新しい機能素材としての機能性有機材料の開発が要望さ
れている。有機材料の利点は安価かつ製造容易であるこ
と、機能性に富むこと等である。反面、これまで劣ると
されてきた耐熱性、機械的強度に対しても、最近これを
克服した有機材料が次々に生まれている。このような技
術的背景のもとで、論理素子、メモリー素子、光電変換
素子等のICデバイスやマイクロレンズ・アレイ、光導
波路等の光学デバイスの機能を荷う部分(主として薄膜
部分)の一部又は全部を従来の無機薄膜に代えて、有機
薄膜で構成しようという提案から、ばてはl(!iの有
機分子に論理素子やメモリ素子等の機能を持たせた分子
電子デバイスや生体関連物質からなる論理素子(例えば
バイオ・チップス)を作ろうという提案が最近、いくつ
かの研究機関により発表された。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of organic materials are that they are inexpensive, easy to manufacture, and highly functional. On the other hand, organic materials that have overcome heat resistance and mechanical strength, which have been thought to be inferior, have recently been created one after another. Against this technical background, some of the functional parts (mainly thin film parts) of IC devices such as logic elements, memory elements, and photoelectric conversion elements, and optical devices such as microlens arrays and optical waveguides. Or, the proposal to replace the entire structure with organic thin films instead of conventional inorganic thin films led to the development of molecular electronic devices and bio-related materials in which organic molecules of l(!i have functions such as logic elements and memory elements). Several research institutions have recently announced proposals to create logic devices (e.g., biochips) consisting of

かかる有機材料を用いて上記の各種デバイス等を作成す
る際の薄膜は、公知の単分子累積法、すなわちラングミ
ュア・ブロジェット法(LB法)によって形成すること
ができる。
Thin films used to create the various devices described above using such organic materials can be formed by a known single molecule accumulation method, that is, the Langmuir-Blodgett method (LB method).

該LB法とは、第1図において、親木基1aと疎水基t
bで構成される単分子l、すなわち数構を物質をベンゼ
ン、クロロホルム等の揮発性の溶媒に溶かし、水槽3内
に配設された框4で囲まれる一水面上に滴下し、該溶媒
の揮発後に水面上に残された単分子膜(この時点では気
体s)2を、框4が囲む面積を縮めて該単分子膜2の面
密度を増すことにより固体膜へと変態させ、これを垂直
浸漬法や水平付着法によって不図示の基板に移しとる方
法である。
The LB method refers to the parent tree group 1a and the hydrophobic group t in FIG.
A single molecule l, that is, several molecules composed of b, is dissolved in a volatile solvent such as benzene or chloroform, and dropped onto a water surface surrounded by a frame 4 arranged in a water tank 3. The monomolecular film (gas s at this point) 2 left on the water surface after volatilization is transformed into a solid film by reducing the area surrounded by the frame 4 and increasing the areal density of the monomolecular film 2. This is a method of transferring to a substrate (not shown) by a vertical dipping method or a horizontal adhesion method.

しかしながら、この方法によると、基板上に移し取られ
た単分子膜の分だけ、水面上の単分子の面積は減少する
。すなわち、水面上の単分子膜(固体III)は均一性
が要求されるため、その面密度を一定に保ったままで、
しかも連続して該単分子膜を基板上に移し取っていく場
合には、框で囲まれた面積は徐々に減少し0に近づくの
で、その移し取る回数にはおのずと制限がある。
However, according to this method, the area of the monolayer on the water surface decreases by the amount of the monolayer transferred onto the substrate. In other words, since the monomolecular film (solid III) on the water surface is required to be uniform, while keeping its areal density constant,
Moreover, when the monomolecular film is continuously transferred onto the substrate, the area surrounded by the frame gradually decreases and approaches 0, so there is naturally a limit to the number of times the monomolecular film can be transferred.

【発明の開示〉 本発明の目的は上述の問題点を解消することであり、そ
の為に、所望の面密度が得られるよう単分子膜の表面圧
を制御することで、容易に中分子膜の連続累積を行なう
ことを可能とするものである。
DISCLOSURE OF THE INVENTION The purpose of the present invention is to solve the above-mentioned problems, and for this purpose, by controlling the surface pressure of the monomolecular film so as to obtain a desired areal density, it is possible to easily form a medium-molecular film. This makes it possible to perform continuous accumulation of .

以下、本発明の原理を、第2図に従って説明する。The principle of the present invention will be explained below with reference to FIG.

ポンプやパルプ等で構成される流量制御装置(不図示)
によって制御されるある一定の流速を持つ水面上に、申
分子M2を展開すると、該単分子膜2を構成する分子と
水との引力によって、単分子M2は水の流れの方向(矢
印の方向)に一定の力で引っ張られる。このとき、水の
流れに影響することなく単分子I8!2の移動のみを阻
止し得る障v8が単分子M2の流れの行く手にあれば、
該単分子膜2はある一定の力でこの障壁8に押し当てら
れる。すなわち、単分子膜2が障壁8に押し当たる力、
言い換えると単分子[2の表面圧は、水の流速を変化さ
せることで容易に制御することができることを示してい
る。
Flow control device (not shown) consisting of a pump, pulp, etc.
When a monomolecule M2 is spread out on a water surface with a certain flow velocity controlled by ) is pulled with a constant force. At this time, if there is an obstacle v8 in the flow of the single molecule M2 that can block only the movement of the single molecule I8!2 without affecting the flow of water,
The monomolecular film 2 is pressed against this barrier 8 with a certain force. That is, the force with which the monomolecular film 2 presses against the barrier 8,
In other words, it shows that the surface pressure of the single molecule [2 can be easily controlled by changing the water flow rate.

本発明は、この原理を応用することを特徴としている。The present invention is characterized by applying this principle.

〈発明を実施するための最良の形態) 以下、本発明の実施例について図面を参照しながら説明
する。なお、各図面において、同じ参照符号は同じ構成
部材であり、同一の機能を有するものとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that in each drawing, the same reference numerals represent the same structural members and have the same functions.

まず、第1の実施例を、第3図に従って説明する。ステ
アリン醋を溶媒クロロホルム中に1×10’M#の割合
で溶かした溶液0.l■lを、流量制御装置7の制御を
受けて20cm/sec速度で矢印の方向に流れる水面
上の、障壁8から見て上流の領域9(以降、滴下領域9
と称する。)において滴下し、展開を行ったところ、#
壁8で囲まれた水面上におよそ 120 cm″の単分
子$2を形成した。
First, a first embodiment will be described with reference to FIG. A solution of stearin in the solvent chloroform at a ratio of 1 x 10'M #0. l■l flows in the direction of the arrow at a speed of 20 cm/sec under the control of the flow rate control device 7, on the water surface, in the upstream region 9 as seen from the barrier 8 (hereinafter referred to as the dripping region 9).
It is called. ) and expanded, #
A single molecule $2 of approximately 120 cm'' was formed on the water surface surrounded by walls 8.

不図示の表面圧測定器で単分子[2の表面圧を測定した
ところ、24dyne/c■の値を示し、単分子膜れた
。さらに、速度を15〜25c■/secの範囲で変化
させたところ、表面圧がほぼこれに比例して変化するこ
とを確め、流速で表面圧を制御できることが明らかにな
った。また、このとき1滴下量も0.05〜0.3■l
の範囲で変化させたところ、表面圧もこれに比例して変
化することが確認された。
When the surface pressure of the monomolecule [2] was measured using a surface pressure measuring device (not shown), it showed a value of 24 dyne/c, indicating that a monomolecular film was formed. Furthermore, when the velocity was varied in the range of 15 to 25 c/sec, it was confirmed that the surface pressure changed approximately in proportion to this, and it became clear that the surface pressure could be controlled by the flow velocity. Also, at this time, the amount of one drop is 0.05 to 0.3 ■l.
It was confirmed that when the surface pressure was varied within the range of , the surface pressure also changed in proportion to this.

すなわち、滴下量によっても表面圧を制御できることが
明らかになった。
In other words, it has become clear that the surface pressure can also be controlled by the amount of dripping.

一方、障壁8の近傍の領域!0(以降、累積領域!0と
称する。)に於て、基板への単分子膜の累積を垂直浸漬
法によって行ったところ、累積率80ないしほぼ100
%の良好な膜を得ることができた。
On the other hand, the area near barrier 8! 0 (hereinafter referred to as accumulation area!0), when the monomolecular film was accumulated on the substrate by the vertical dipping method, the accumulation rate was 80 to almost 100.
% of good films could be obtained.

その後、表面圧が一定になる様に流速を制御しながら、
かつ単分子fi2が累積領域lOで基板に移し取られ減
少するのを、滴下領域9での膜構成物質の滴下によって
補いながら累M操作を繰り返し行なった結果、従来装置
では難しかった連続累積を容易に達成することができた
Then, while controlling the flow rate so that the surface pressure remains constant,
In addition, as a result of repeating the cumulative M operation while compensating for the decrease in single-molecule fi2 transferred to the substrate in the accumulation region 10 by dropping the film constituent material in the dropping region 9, continuous accumulation, which was difficult with conventional equipment, was made easier. was able to achieve this.

次に、第2の実施例を、第4図に従って説明する。Next, a second embodiment will be explained according to FIG.

本実施例は、第1の実施例に若干の改良を加えたもので
ある。すなわち、第1の実施例では、累積領域lOにお
いて、水の流れは、垂直浸fN扶で累積する場合の水中
に没する基板(不図示)、ならびに障壁8によって乱さ
れ、単分子B2が折り曲げられたり、一定であるべき表
面圧が一時的に変動したりするので、好ましくない。そ
こで本実施例では、水槽の深さに変化をつけて、累積領
域10における水の流れ(流速)を遅くすることにより
、第1の実施例を改良した。具体的には、滴下領域9を
含む、単分子膜2の表面圧を形成する領域11(以降、
表面圧形成領域11と称する。)における水槽の深さを
1cm+と浅くし、累積領域IOにおける水槽の深さを
10cmと深くした。その結果、表面圧形成領域11に
おける流速を20c層/secとしても累積領域IOに
おける流速は約1/10程度になり、基板への単分子膜
の累積を行ったところ、第1の実施例では歩留りが20
〜60%であったのが、50〜100%と向上した。
This embodiment is a slight improvement of the first embodiment. That is, in the first embodiment, in the accumulation region lO, the flow of water is disturbed by the submerged substrate (not shown) and the barrier 8 when accumulating with vertical immersion fN, and the single molecules B2 are bent. This is undesirable because the surface pressure, which should be constant, may fluctuate temporarily. Therefore, in this embodiment, the first embodiment is improved by varying the depth of the water tank and slowing down the flow (flow velocity) of water in the accumulation region 10. Specifically, a region 11 (hereinafter referred to as
This is called a surface pressure forming region 11. ) was made shallow to 1 cm+, and the depth of the water tank in the cumulative area IO was made deep to 10 cm. As a result, even if the flow rate in the surface pressure forming region 11 was 20 c layers/sec, the flow rate in the accumulation region IO was about 1/10, and when the monomolecular film was accumulated on the substrate, it was found that Yield is 20
It improved from ~60% to 50-100%.

すなわち、本実施例のように水槽の深さに変化をつける
ことにより、第1の実施例で達成された容易な連続累積
の実現化に加えて、更に、その累積達成率の向上をも図
ることが可能になった。
In other words, by varying the depth of the water tank as in this embodiment, in addition to realizing the easy continuous accumulation achieved in the first embodiment, it is also possible to improve the accumulation achievement rate. It became possible.

次に、第3の実施例を、第5図に従って説明する。Next, a third embodiment will be described with reference to FIG.

本実施例は、第2の実施例の変形例で、水槽の幅に変化
をつけて、累積領域10における流速を遅くすることに
より、第1の実施例を改良したものである。具体的には
、滴下領域9を含む、表面圧形成領域!■における水槽
の幅を2cmと狭くし、累積領域lOにおける水槽の幅
を20cmと広くした。その結果、表面圧形成領域11
における流速を20c■/secとしても累積領域10
における流速は約1/10程度になり、基板への単分子
膜の累積を行ったところ、第1の実施例では歩留りが2
0〜60%であったのが、50〜100%と向上した。
This embodiment is a modification of the second embodiment, and is an improvement over the first embodiment by varying the width of the water tank and slowing down the flow velocity in the accumulation region 10. Specifically, the surface pressure forming area including the dropping area 9! The width of the water tank in (1) was narrowed to 2 cm, and the width of the water tank in the cumulative area IO was widened to 20 cm. As a result, the surface pressure forming area 11
Even if the flow velocity at is 20c/sec, the cumulative area is 10
The flow rate was reduced to about 1/10, and when the monomolecular film was accumulated on the substrate, the yield was 2 in the first example.
It improved from 0 to 60% to 50 to 100%.

すなわち、水槽の幅に変化をつけることにより、第2の
実施例の場合と同様の効果が得られたことになる。
That is, by varying the width of the water tank, the same effect as in the second embodiment was obtained.

次に、第4の実施例を、第6図(a)、(b)に従って
説明する。
Next, a fourth embodiment will be described with reference to FIGS. 6(a) and 6(b).

本実施例は、1つの水槽内を、扇形状の複数(未実施例
では5(II)の障壁8で水面付近だけを仕切ったもの
で(以降仕切られた領域をブロックと称する。)、中心
付近から外周に向かって各ブロック内へ水が流入するよ
う構成されている。本実施例による装置は、単分子膜2
の基板上への累積能力や、連続累積が容易な点について
は、第1の実施例と同様である。
In this embodiment, one aquarium is partitioned off only near the water surface by a plurality of fan-shaped barriers 8 (5 (II) in the unembodied example (hereinafter, the partitioned area will be referred to as a block)), and the center The structure is such that water flows into each block from the vicinity toward the outer periphery.
The ability to accumulate on the substrate and the ease of continuous accumulation are the same as in the first embodiment.

さらに本実施例に固有の特徴としては、異種単分子の累
積(ヘテロ構造)を容易に行なえることである。すなわ
ち、あらかじめ各ブロック毎に、異なる材料の単分子膜
を水面上に展開しておき、あるブロックにおいて垂直浸
漬法を用いて基板上に単分子膜を累積したのち、別のブ
ロックにおいて同様の操作を繰り返すことにより、ヘテ
ロな累1!1(累積方向に単分子膜の構成分子が異なる
)J8!を容易に形成することかでさた。この時、気相
中でブロック間を移動することも、水相中で移動するこ
とも可能であるので、例えばY型膜を形成する膜のへテ
ロ接合は、親木基同志間にも疎水基同志間にも自由に設
定することができた。
Furthermore, a unique feature of this embodiment is that it is possible to easily accumulate different types of single molecules (heterostructure). That is, a monomolecular film of a different material is spread on the water surface for each block in advance, and after the monomolecular film is accumulated on the substrate using the vertical dipping method in one block, the same operation is performed in another block. By repeating this, a heterogeneous 1!1 (the constituent molecules of the monolayer differ in the cumulative direction) J8! It was easy to form. At this time, it is possible to move between blocks in the gas phase or in the aqueous phase, so for example, a heterojunction in a film forming a Y-type film has hydrophobicity between the parent wood groups as well. They were also able to freely set their own standards among the base comrades.

次に、第5の実施例を、第7図に従って説明する。Next, a fifth embodiment will be explained according to FIG. 7.

本実施例は、前述の実施例において、流出する水を循還
させて水槽中に再び戻すことにより、水の再利用を図っ
ていることを特徴としている。第7図において、循還路
12のほとんどにはパイレックスのガラス管を用い、ま
た貯水槽13に溜った水は、ポンプ14によって送り出
され、ゲートバルブ15によって流速が制御される様に
なっている。
This embodiment is characterized in that, in the previous embodiments, the outflowing water is recycled and returned to the aquarium, thereby reusing the water. In FIG. 7, Pyrex glass tubes are used for most of the circulation path 12, and the water accumulated in the water tank 13 is pumped out by a pump 14, and the flow rate is controlled by a gate valve 15. .

この様に、流出する水を循還させることで、失われる水
を補給するシステムが不要となり、装置全体も簡便なも
のとなった。
In this way, by circulating the outflowing water, there is no need for a system to replenish lost water, and the entire device becomes simpler.

次に、第6の実施例を、第8図に従って説明する。Next, a sixth embodiment will be described with reference to FIG.

本実施例は1図にも示されるようにその循還路12の途
中に除塵用のフィルタ16を挿入したことを特徴として
いる。具体的には、0.5μs以上のゴミを取り除くフ
ィルタ16を挿入したところ、従来は2〜5回(時間に
して5〜10時間)程度装置を使用しただけで、水槽中
に視認できるほどのゴミが確認されていたのが、100
回以上の装置使用後においても視認できる様なゴミが確
認されなかった。すなわち、流水路の循還系にフィルタ
を挿入するという簡単な構成で、容易に水の浄化を図る
ことができた。
As shown in FIG. 1, this embodiment is characterized in that a filter 16 for removing dust is inserted in the middle of the circulation path 12. Specifically, when we inserted the filter 16 that removes dust of 0.5 μs or longer, we found that it removed visible particles in the aquarium by using the device only 2 to 5 times (5 to 10 hours). Garbage was confirmed in 100
No visible dust was found even after using the device more than once. That is, water could be easily purified with a simple configuration of inserting a filter into the circulation system of the water channel.

次に、第7の実施例を、第9図に従って説明する。Next, a seventh embodiment will be explained according to FIG. 9.

本実施例は、図にも示されるように、その循還路I2の
一部にPH制御装置3oを設けたことを特徴としている
。具体的には、該装置に水酸化ナトリウム溶液と塩酸と
をそれぞれ、マイクロシリンダを用いて所定量混入させ
たところ、従来困難であった水酸化ナトリウムや塩酸の
拡散が、本実施例では水が流れている為に、非常に短時
間(5〜30分)内に所定のPHを得ることが可能とな
った。また、本装置によれば、単分子膜を水面上に形成
した才までpHを制御することもof能であることは明
らかであろう。
As shown in the figure, this embodiment is characterized in that a PH control device 3o is provided in a part of the circulation path I2. Specifically, when predetermined amounts of sodium hydroxide solution and hydrochloric acid were respectively mixed into the device using a micro cylinder, diffusion of sodium hydroxide and hydrochloric acid, which was difficult in the past, was achieved in this example. Since the water was flowing, it became possible to obtain a predetermined pH within a very short time (5 to 30 minutes). Furthermore, it is clear that this device is capable of controlling pH even when a monomolecular film is formed on the water surface.

次に、第8の実施例を、第10図に従って説明する。Next, an eighth embodiment will be explained according to FIG. 10.

本実施例は1図にも示されてるように、その循還路12
の一部に熱交換器31を設けたことを特徴としている。
In this embodiment, as shown in Figure 1, the circulation path 12
It is characterized in that a heat exchanger 31 is provided in a part of the unit.

具体的には、循還する水の通る378インチ径、肉厚0
.5 amのパイレックスのガラス管を中空の銅パイプ
で巻いた熱交換器31を設け、水槽3内に設けられた温
度センサ33を介して、温度制御装置32で制御しなが
ら銅パイプ中に所望の温度の液体を流すことで、循還す
る水の温度制御を行った。その結果、水槽中の水を、5
〜80 ’Oの範囲において± 0.5℃の精漬で制御
することができた。したがって、単分子膜の累積の際の
温度条件を容易に制御することが可能となった。また、
本装置によれば、単分子膜を水面上に形成したままで温
度制御を行うことも可能であることは明らかであろう。
Specifically, it has a diameter of 378 inches and a wall thickness of 0 through which the circulating water passes.
.. A heat exchanger 31 is provided in which a 5 am Pyrex glass tube is wrapped around a hollow copper pipe. The temperature of the circulating water was controlled by flowing a liquid at that temperature. As a result, the water in the aquarium was reduced to 5
It was possible to control the temperature by pre-soaking at ±0.5°C in the range of ~80'O. Therefore, it has become possible to easily control the temperature conditions during monomolecular film accumulation. Also,
It is clear that according to this apparatus, it is also possible to control the temperature while the monomolecular film is formed on the water surface.

最後に、第9の実施例を、第1!図(a) 、(b)に
従って説明する。
Finally, let us explain the ninth embodiment to the first! This will be explained according to figures (a) and (b).

本実施例は、前述の実施例において、障壁8を上下方向
に可動自在に構成したことを特徴としている。具体的に
は、不図示のモータにより障壁8を操作する(ただし、
人為的操作でも可能である。)ことにより、不必要とな
った水面上の単分子膜2を流し去り、該水面上を清浄に
することが可能となり、単分子膜累積のための準備に要
する手間と時間を大きく短縮することができた。
This embodiment is characterized in that the barrier 8 in the previous embodiment is configured to be movable in the vertical direction. Specifically, the barrier 8 is operated by a motor (not shown) (however,
It is also possible to do it manually. ), it becomes possible to wash away the unnecessary monomolecular film 2 on the water surface and clean the water surface, greatly reducing the effort and time required for preparation for monomolecular film accumulation. was completed.

本発明は、以上説明したように、滴下領域から累積領域
への成膜用分子の移動速度が低下するよう、液槽の深さ
あるいは幅に変化をつけることにより、単分子膜の容易
な連続累積に加えて、単分子膜の累積達成率の向上を図
ることができる効果がある。
As explained above, the present invention facilitates continuous formation of a monomolecular film by varying the depth or width of the liquid bath so as to reduce the movement speed of film-forming molecules from the dropping region to the accumulation region. In addition to the accumulation, there is an effect of improving the cumulative achievement rate of the monolayer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のLB膜作製装置の模式図、第2図は、
単分子膜の表面圧を水流により制御する方法の原理を説
明する図、第3図は本発明の第1の実施例の概略断面図
、第4図は第2の実施例の概略断面図、第5図は第3の
実施例の概略斜視図、第6図(a)、 (b)はそれぞ
れ、第4の実施例の概略斜視図および断面図、第7図は
第5の実施例の概略構成図、第8図は第6の実施例の概
略構成図、第9図は第7の実施例の概略構成図、第10
図は第8の実施例の概略構成図、第11図(a)、 (
b)はそれぞれ、第9の実施例において障壁8を取り去
る前および取り去った後の概略断面図である。 1 −−一 単分子 1a−m−親木基 1b−m−疎水基 2−m−単分子膜 3−m−水槽 4− 框 7−m−水流発生装置 8−m−障壁 9−m−滴下領域 10−−一 累積領域 11−−一 表面圧形成領域 12−m−循還路 13−m−貯水槽 14−m−ポンプ l5−m−ゲートバルブ 18−m−フィルタ 21−−− pHセンサ 3O−−−pH制御装置 31−m−熱交換器 32−m−温度制御装置 33−m−温度センサー 特許出願人 キャノン株式会社 第 1 図 第 2 図 第 7 図 2 第8図 第 9 図
Figure 1 is a schematic diagram of a conventional LB film production apparatus, and Figure 2 is a
A diagram explaining the principle of a method for controlling the surface pressure of a monomolecular film by a water flow, FIG. 3 is a schematic sectional view of the first embodiment of the present invention, and FIG. 4 is a schematic sectional diagram of the second embodiment. 5 is a schematic perspective view of the third embodiment, FIGS. 6(a) and 6(b) are a schematic perspective view and a sectional view of the fourth embodiment, respectively, and FIG. 7 is a schematic perspective view of the fifth embodiment. 8 is a schematic configuration diagram of the sixth embodiment, FIG. 9 is a schematic configuration diagram of the seventh embodiment, and FIG. 10 is a schematic configuration diagram of the seventh embodiment.
The figure is a schematic configuration diagram of the eighth embodiment, FIG. 11(a), (
b) are schematic cross-sectional views before and after removing the barrier 8 in the ninth embodiment, respectively. 1--1 Monomolecule 1a-m-parent wood group 1b-m-hydrophobic group 2-m-monolayer 3-m-water tank 4-frame 7-m-water flow generator 8-m-barrier 9-m- Dripping region 10--1 Accumulation region 11--1 Surface pressure forming region 12-m-Circulation path 13-m-Water tank 14-m-Pump 15-m-Gate valve 18-m-Filter 21--pH Sensor 3O---pH control device 31-m-Heat exchanger 32-m-Temperature control device 33-m-Temperature sensor Patent applicant Canon Corporation Fig. 1 Fig. 2 Fig. 7 Fig. 2 Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】[Claims] 成膜用分子を展開する液体を収容した液槽を有し、前記
液体の流れを減速させる手段を備えたことを特徴とする
成膜装置。
A film forming apparatus comprising: a liquid tank containing a liquid for developing film forming molecules; and means for slowing down the flow of the liquid.
JP4810284A 1984-03-15 1984-03-15 Film forming device Pending JPS60193531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4810284A JPS60193531A (en) 1984-03-15 1984-03-15 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4810284A JPS60193531A (en) 1984-03-15 1984-03-15 Film forming device

Publications (1)

Publication Number Publication Date
JPS60193531A true JPS60193531A (en) 1985-10-02

Family

ID=12793948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4810284A Pending JPS60193531A (en) 1984-03-15 1984-03-15 Film forming device

Country Status (1)

Country Link
JP (1) JPS60193531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770330B2 (en) 1993-08-31 2004-08-03 Research Development Corporation Of Japan Method for producing a continuous, large-area particle film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948103A (en) * 1982-09-14 1984-03-19 清水 忠 Manufacture of plate from bamboo material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948103A (en) * 1982-09-14 1984-03-19 清水 忠 Manufacture of plate from bamboo material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770330B2 (en) 1993-08-31 2004-08-03 Research Development Corporation Of Japan Method for producing a continuous, large-area particle film

Similar Documents

Publication Publication Date Title
EP0472990B1 (en) Mono or multilayer deposits on a substrat and process for making them
DE2705193C2 (en) Method and device for applying a monomolecular layer of amphiphilic molecules to a substrate
CA2386616A1 (en) Rapid-prototyping method and apparatus
CN107075435A (en) Use the separation based on size of the continuous flow type of the entity of the as little as nanoscale of nano column array
DE2503452A1 (en) PROCESS FOR PRODUCING SPHERICAL SEMICONDUCTOR PARTICLES
DE2454111B2 (en) METHOD FOR MANUFACTURING POROUS GLASS OBJECTS BY THERMAL PHASE SEPARATION AND SUBSEQUENT LENGTH AND USE OF THE POROUS GLASS OBJECTS
DE19653097A1 (en) Layer with a porous layer area, an interference filter containing such a layer and method for its production
EP0583676B1 (en) Process and apparatus for making ultra-thin layers and elements with such layers
JPS60193531A (en) Film forming device
JPS60137612A (en) Casting device for ultra-thin polymer film
JPS60193536A (en) Film forming device
JPH058050B2 (en)
JPS60193534A (en) Film forming device
JPS60193327A (en) Film forming apparatus
JPS60193535A (en) Film forming device
JPS60193533A (en) Film forming device
JPH04367720A (en) Method and apparatus for forming monomolecular film or laminated monomolecular film
JPS60193326A (en) Film forming apparatus
JPS60193325A (en) Film forming apparatus
CN113041856A (en) Method for preparing polyamide composite membrane with assistance of hydrophobic oleophylic microporous membrane
JPS60193328A (en) Film forming method
US4785762A (en) Apparatus for forming film
EP0433325B1 (en) Process and device for producing thin layers
KR101466771B1 (en) Method for Fabrication of Janus Emulsion
DE102020122857B4 (en) Process for the production of an ultra-thin free-standing 2D membrane with pores and its application-related modification and use of the 2D membranes produced using this process