JPS61291058A - Membrane forming apparatus - Google Patents

Membrane forming apparatus

Info

Publication number
JPS61291058A
JPS61291058A JP60129167A JP12916785A JPS61291058A JP S61291058 A JPS61291058 A JP S61291058A JP 60129167 A JP60129167 A JP 60129167A JP 12916785 A JP12916785 A JP 12916785A JP S61291058 A JPS61291058 A JP S61291058A
Authority
JP
Japan
Prior art keywords
substrate
film
frame
monomolecular
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60129167A
Other languages
Japanese (ja)
Inventor
Toshihiko Miyazaki
俊彦 宮崎
Kenji Saito
謙治 斉藤
Hiroshi Matsuda
宏 松田
Takeshi Eguchi
健 江口
Yukio Nishimura
征生 西村
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60129167A priority Critical patent/JPS61291058A/en
Publication of JPS61291058A publication Critical patent/JPS61291058A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Optical Integrated Circuits (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To form an org. membrane having no monomolecular membrane folded back to the end of a substrate, in a film forming apparatus according to a horizontal adhesion method for taking the monomolecular membrane on the surface of water while transferring the same, by providing a frame dividing a molecular group. CONSTITUTION:A monomolecular membrane 10 set to arbitrary surface pressure has been formed on the surface of water in a water tank 1. An upper plate 15 is pushed down to the direction shown by an arrow A to lower a frame 13 and the monomolecular membrane 10 on the surface of water is partitioned by said frame 13. Next, a substrate holder 8b is pushed down to the direction shown by an arrow B to lower a substrate 7 and the monomolecular membrane partitioned by the frame 13 is transferred to the substrate 7. Thereafter, the substrate 7 and the frame 13 are raised from the surface of water to finish one process for transferring the monomolecular membrane onto the substrate 7. Further, when surface pressure is applied to the monomolecular film to per form the same operation, a built-up membrane can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体技術分野並びに光学技術分野等に於る
デバイスの主要な構成要素である有機薄膜の成膜装置に
関し、特に単分子累積法により、基板上に上記有機薄膜
を形成する成膜装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for forming organic thin films, which are the main components of devices in the semiconductor technology field, optical technology field, etc. The present invention relates to a film forming apparatus for forming the above organic thin film on a substrate.

[開示の概要] 本明細書及び図面は、成膜用分子群を水面上に展開し、
水面に水平に保持された基板を上下移動することによっ
て、水面上の単分子膜を移しとる水平付着法による成膜
装置において、該分子群を枠によって区切ることにより
、単分子膜の基板端への折り返しのない有機薄膜を成膜
する技術を開示するものである。
[Summary of the Disclosure] This specification and drawings describe a method in which a group of molecules for film formation is spread on a water surface,
In a film forming apparatus using the horizontal adhesion method, in which a monomolecular film on the water surface is transferred by vertically moving a substrate held horizontally to the water surface, the molecules are separated by a frame, and the monomolecular film is transferred to the edge of the substrate. The present invention discloses a technique for forming an organic thin film without folding back.

し従来の技術」 従来、半導体技術分野並びに光学技術分野に於る素材利
用はもっばら比較的取扱いが容易な無機物を対象にして
進められてきた。これは有機化学分野の技術進展が無機
材料分野のそれに比べて著しく遅れていたことが一因と
なっている。
BACKGROUND OF THE INVENTION Conventionally, the use of materials in the semiconductor technology field and optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたといわれている。そこで無機物を凌ぐ
新しい機能素材としての機能性有機材料の開発が要望さ
れている。有機材料の利点としては安価かつ製造容易で
あること、機能性に富むこと、等である。反面、これま
で劣るとされてきた耐熱性、機械的強度に対しても、最
近、これを克服した有機材料も次から次へと生まれてい
る。このような技術的背景のもとで、論理素子、メモリ
ー素子、光電変換素子等の集積回路デバイスやマイクロ
レンズ・アレイ、光導波路等の光学デバイスの機能をに
なう部分(主として薄膜部分)の一部又は全部を従来の
無機薄膜に代えて、有機薄膜で構成しようという提案か
ら、はては1個の有機分子に論理素子やメモリー素子等
の機能を持たせた分子電子デバイスや生体関連物質から
なる論理素子(例えば、バイオ・チップス)を作ろうと
いう提案が、最近、いくつかの研究機関により発表され
た。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. Advantages of organic materials include being inexpensive, easy to manufacture, and highly functional. On the other hand, organic materials that have overcome heat resistance and mechanical strength, which have been considered inferior until now, have been produced one after another. Against this technical background, we are developing the functional parts (mainly thin film parts) of integrated circuit devices such as logic elements, memory elements, and photoelectric conversion elements, and optical devices such as microlens arrays and optical waveguides. The proposal to replace part or all of conventional inorganic thin films with organic thin films has led to the creation of molecular electronic devices and biological materials in which a single organic molecule has functions such as logic elements and memory elements. Several research institutes have recently announced proposals to create logic devices (e.g., biochips) consisting of

このようなデバイスの主要な構成要素である有機薄膜は
単分子累積法を用いて作製される。中分子累積法(別名
ラングミュア・プロジェット法、LB法)とは、親木基
・疎水基をもった分子の現水性、疎水性を利用して秩序
よく水の」二に展開して単分子膜を形成した後、これを
基板表面に移しとる方法で、基板上に単分子膜あるいは
単分子を積層した中分子累積膜(これらをLB膜という
)の形成が可能である。
Organic thin films, which are the main components of such devices, are fabricated using single-molecule accumulation methods. The middle molecule accumulation method (also known as the Langmuir-Prodgett method, LB method) uses the existing hydrophobicity and hydrophobicity of molecules with parent wood groups and hydrophobic groups to form a single molecule by expanding water in an orderly manner. By forming a film and then transferring it to the substrate surface, it is possible to form a monomolecular film or a medium-molecular cumulative film (these are referred to as LB films) on a substrate, in which monolayers are laminated.

従来この種の装置は、第2図に示すように浅くて広い角
型の水槽1の内側に仕切2が水平に水面3を仕切るよう
に置かれている。仕切2は−次元シリンダとして機能し
、仕切2の内側には方形の浮子4が浮かべられ、浮子4
の幅は仕切2の内寸より僅かに狭く造ってあり、二次元
ピストンとして左右に滑らかに移動できるようになって
いる。
Conventionally, this type of apparatus is arranged such that a partition 2 horizontally partitions a water surface 3 inside a shallow and wide rectangular aquarium 1, as shown in FIG. The partition 2 functions as a -dimensional cylinder, and a rectangular float 4 is floated inside the partition 2.
The width of the piston is made slightly narrower than the inner dimension of the partition 2, so that it can move smoothly from side to side as a two-dimensional piston.

浮子4を左右に移動させるためにワイヤー5を介して浮
子4はモーターなどを利用した巻き取り装置6と結ばれ
ている。
In order to move the float 4 from side to side, the float 4 is connected to a winding device 6 using a motor or the like via a wire 5.

単分子膜の形成の際には、股の構成物質をベンゼン、ク
ロロホルム等の揮発性溶媒に溶かし、水面3」二に滴下
する。溶媒が揮発した後には、二次元系の挙動を示す単
分子膜が水面3−1−に残される。分子の面密度が低い
時は、二次元気体の気体膜と呼ばれる。浮子4を右方向
へ移動することで単分子が展開する水面3の広がりを縮
めて面密度を増加して行くと、分子間の相互作用が強ま
り、二次元液体の液体膜を経て、二次元固体膜へと変化
する。この固体膜になると分子−の配列配向はきれいに
そろい、半導体を構成する材料に要求される高度の秩序
性及び均一な超薄膜性を持つにいたる。
When forming a monomolecular film, the material constituting the crotch is dissolved in a volatile solvent such as benzene or chloroform, and the solution is dropped onto the water surface. After the solvent evaporates, a monomolecular film exhibiting the behavior of a two-dimensional system is left on the water surface 3-1-. When the areal density of molecules is low, it is called a gas film of secondary gas. By moving the float 4 to the right, the expanse of the water surface 3 on which single molecules develop is reduced and the surface density is increased. As a result, the interaction between molecules becomes stronger, and the two-dimensional Transforms into a solid film. When this solid film is formed, the molecules are arranged and oriented neatly, resulting in the high degree of order and uniform ultra-thin film properties required of materials that constitute semiconductors.

単分子膜を水面3上から基板7表面上に移し取る方法と
して、水面3」二の単分子膜に累積操作に好適な一定の
表面圧をかけながら、基板ホルタ−8aに取付けた基板
7を垂直方向9に上下することにより単分子膜を移しと
る垂直浸漬法がある。
As a method of transferring the monomolecular film from above the water surface 3 to the surface of the substrate 7, the substrate 7 attached to the substrate holter 8a is transferred while applying a constant surface pressure suitable for cumulative operation to the monomolecular film on the water surface 3''. There is a vertical dipping method in which a monomolecular film is transferred by moving up and down in the vertical direction 9.

この方法では、第3図(a)のように浸漬時だけ単分子
膜10が付着するX型、第3図(b)のように浸漬時に
も引き」−げ時にも単分子膜10が付着するY型、第3
図(C)のように引き上げ時のみ単分子膜10が付着す
るZ型の3種類がある。なお、第3図の分子にて、11
は親水性部分、12は疎水性部分である。
In this method, the monomolecular film 10 adheres only during dipping, as shown in FIG. Y type, 3rd
There are three types of Z type, in which the monomolecular film 10 is attached only during pulling as shown in Figure (C). In addition, in the molecule of Figure 3, 11
is a hydrophilic portion, and 12 is a hydrophobic portion.

また、別の方法として、基板の単分子付着面を水平に保
ちつつこの基板を」1下移動し、水面上の単分子膜を移
しとる水平付着法がある。この水平付着法では、水面上
の単分子膜の配向状態をそのまま基板−Lに移しとるこ
とができると考えられ、基板を上方より単分子膜に近づ
けるとX型膜、基板を水中から近づけるとZ型を形成で
きる。また、垂直浸漬法では膜伺けを行なえない低い表
面圧力でも累積を行なえる。
Another method is a horizontal adhesion method in which the monomolecular film on the water surface is transferred by moving the substrate 1" downward while keeping the monomolecular adhesion surface of the substrate horizontal. In this horizontal adhesion method, it is thought that the orientation state of the monomolecular film on the water surface can be directly transferred to the substrate-L. A Z-shape can be formed. In addition, accumulation can be carried out even at low surface pressures where membrane penetration cannot be achieved with the vertical immersion method.

し発明が解決しようとする問題点] 従来の成膜方法は、前述の垂直浸漬法を適用した装置で
行なわれており、水平旧情法はあまり行なわれていない
[Problems to be Solved by the Invention] Conventional film forming methods are carried out using an apparatus to which the above-mentioned vertical immersion method is applied, and the horizontal old-fashioned method is not often used.

垂直浸漬法は、単分子膜の累積の際に重力等の影響で単
分子膜がずり落ちるなど膜の流動が生じ、累積膜の配向
状態が変化するという問題があった。また、膜付は速度
が数mm−cm/winと遅く、大面積の成膜には不向
きであった。
The vertical dipping method has a problem in that during the accumulation of a monomolecular film, the monomolecular film slips down due to the influence of gravity, etc., causing film flow, which changes the orientation state of the accumulated film. Further, the film deposition speed was slow at several mm-cm/win, making it unsuitable for film formation over a large area.

これに対し、水平付着法では、液面−1−の単分子膜の
配向状態をそのまま基板」―に移しとることができる。
On the other hand, in the horizontal deposition method, the orientation state of the monomolecular film at the liquid surface -1- can be directly transferred to the substrate.

また、垂直浸漬法では膜付けを行なえないような低い表
面圧力のもとでも累積ができるという利点をもっている
。しかしながら、この水平付着法では膜を付着した後の
基板の引き」−げ時に液の基板成膜面への回込みが起こ
り、基板端において膜が2層付くなど、きれいな膜を作
製することができないなどの問題があり、従来、垂直浸
漬法を適用した装置で成膜が行なわれている。
It also has the advantage of being able to accumulate even under low surface pressures that would not allow film formation with the vertical immersion method. However, with this horizontal deposition method, when the substrate is pulled out after the film has been deposited, the liquid flows onto the surface of the substrate on which the film is to be deposited, making it difficult to produce a clean film such as two layers of film being deposited at the edge of the substrate. Conventionally, film formation has been carried out using equipment that applies the vertical immersion method.

本発明は、−L述のような従来方法の問題点に鑑みてな
されたもので、中分子膜の基板端への折り返しなどを防
ぎ、従来方法ではできなかった水平側石法を実施できる
ようにし、膜付けの効率を向J二する装置を提案するも
のである。
The present invention was made in view of the problems of the conventional method as described in -L, and it prevents the middle molecule film from folding back to the edge of the substrate, and makes it possible to implement the horizontal side stone method, which was not possible with the conventional method. This paper proposes an apparatus that improves the efficiency of film deposition.

[問題点を解決するための手段] 本発明は、水面−I;に展開された成膜用分子群を、基
板」−に小分イ」りあるいはその累積膜として移しとる
成膜装置であり、該分子群を枠を用いて区切る構造を持
つことを特徴とする成膜装置である。
[Means for Solving the Problems] The present invention is a film forming apparatus that transfers a group of film forming molecules developed on a water surface onto a substrate in small portions or as a cumulative film thereof. , is a film forming apparatus characterized by having a structure in which the molecular groups are separated using frames.

第1図に本発明の成膜装置の一例を模式図として示す。FIG. 1 schematically shows an example of the film forming apparatus of the present invention.

任意の表面圧力に加圧された単分子膜10の」一方に枠
13及び水平に保持された基板7を設置する(第1図a
)。枠13を降ろし、単分子膜10を基板7に合わせて
区切る(第1図b)。この状態で枠13の内側に合わせ
て基板7を降ろし、単分子膜10を付着ごせる(第1図
C)。基板7を」−げ、単分子膜10を完全に基板7」
二へ移しとる(第1図d)。枠13を」−げて膜付けの
工程が完了する(第1図e)。
A frame 13 and a horizontally held substrate 7 are installed on one side of the monomolecular film 10 which is pressurized to an arbitrary surface pressure (see Fig. 1a).
). The frame 13 is lowered and the monomolecular film 10 is sectioned to match the substrate 7 (FIG. 1b). In this state, the substrate 7 is lowered to fit inside the frame 13, and the monomolecular film 10 is attached (FIG. 1C). Remove the substrate 7 and completely cover the monolayer 10 with the substrate 7.
2 (Fig. 1 d). The frame 13 is lifted to complete the film application process (Fig. 1e).

このように、基板を水平に保ちつつ上下し、膜を基板」
二に移しとるとき、枠を設けることにより、単分子膜の
基板端への折り返しなどを防ぐことができ、きれいな膜
を基板」−に製作できる。
In this way, hold the substrate horizontally and move it up and down to place the film on the substrate.
By providing a frame when transferring the monomolecular film to the substrate, it is possible to prevent the monomolecular film from folding back to the edge of the substrate, and a clean film can be produced on the substrate.

」−記の例では、基板及び枠を単分子膜上方より近づけ
、膜を移しとるX型膜の製作を説明したが、逆の方向で
基板及び枠を液中より単分子膜に近づけることでX型膜
の製作を行なえる。また、枠を液中から、基板を」1方
からという位置関係、更にその逆も可能である。また、
基板および枠が上下する例をあげたが、膜と基板、枠が
付着する動きをすれば良いのであって、水面が上下して
も良い。また、基板は水平でなくとも斜めに保持された
場合にも適用できる。
In the above example, we explained the fabrication of an X-shaped membrane in which the substrate and frame were brought closer to the top of the monomolecular film and the film was transferred. We can manufacture X-type membranes. Further, it is also possible to have a positional relationship in which the frame is placed in the liquid and the substrate is placed from one side, and vice versa. Also,
Although we have given an example in which the substrate and frame move up and down, it is sufficient that the membrane, substrate, and frame adhere to each other, and the water surface may move up and down. Furthermore, the present invention can be applied even when the substrate is held diagonally, rather than horizontally.

このような装置によると、膜付けがほとんど瞬時に行な
われ、垂直浸漬法の膜付は速度数mm〜cm/winを
考えると、膜製作において効率に大きな差が出てくる。
With such an apparatus, film deposition is carried out almost instantaneously, and considering that film deposition using the vertical immersion method is performed at a speed of several mm to cm/win, there is a large difference in efficiency in film production.

また、大面積の基板に一度で膜付けができる効果もある
Another advantage is that a film can be applied to a large area of a substrate in one go.

し作 用」 枠によって水面を区切ることにより、水面上に展開して
いる成膜用分子群は基板とほぼ同じ面積に切断される。
By dividing the water surface with a frame, the film-forming molecules spread out on the water surface are cut into approximately the same area as the substrate.

この枠内で基板を上記切断された分子群に接触させ、基
板に単分子膜を付着させることにより、基板の引きあげ
時におこる単分子膜の基板端への折り返しを防ぐことが
できる。
By bringing the substrate into contact with the cut molecules within this frame and adhering the monomolecular film to the substrate, it is possible to prevent the monomolecular film from folding back toward the edge of the substrate, which occurs when the substrate is pulled up.

「実施例」 本発明の実施例を第4図aに示す。lは単分子膜10を
展開する水槽、7は単分子膜を移しとる基板、8bは基
板7を保持する基板ホルダー、13は単分子膜を仕切る
枠、14は枠13と上板15を固定する案内棒、16は
本体フレームであり、水槽lと一体となっている。枠1
3は、ばね17と上板15及び案内棒14で本体フレー
ム16から釣り下げられている。18は基板ホルタ−8
bを支持する支持板であり、19は枠13と基板7との
上下位量を決めるばねである。第4図すに基板7と枠1
3の関係を示す斜親図を示す。
"Example" An example of the present invention is shown in FIG. 4a. 1 is a water tank in which the monomolecular film 10 is developed, 7 is a substrate to which the monomolecular film is transferred, 8b is a substrate holder that holds the substrate 7, 13 is a frame that partitions the monomolecular film, and 14 is a fixing frame 13 and the upper plate 15. The guide rod 16 is the main body frame and is integrated with the water tank l. Frame 1
3 is suspended from the main body frame 16 by means of a spring 17, an upper plate 15, and a guide rod 14. 18 is the substrate holder 8
19 is a support plate that supports b, and 19 is a spring that determines the vertical distance between the frame 13 and the substrate 7. Figure 4: Substrate 7 and frame 1
FIG.

次に膜付は時の説明を行なう。任意の表面圧力に設定さ
れた単分子膜10が水槽1の水面上に形成されている。
Next, we will explain the time required to attach the film. A monomolecular film 10 set to an arbitrary surface pressure is formed on the water surface of the water tank 1.

上板15を矢印Aの方向へ押下げて枠13を降ろし、液
面上の単分子膜10を仕切る。これで基板7に移しとる
部分を切り取ったこととなる。そこで基板ホルダー8b
を矢印Bの方向へ押し下げ、基板7を降ろし、枠13で
仕切った単分子膜を移しとる。そして、基板7及び枠1
3を液面から上げると基板7上に単分子膜10を移しと
る1行程が終わる。更に、表面圧力を単分子膜に加えて
同一の動作をさせると累積膜を作ることができる。
The upper plate 15 is pushed down in the direction of arrow A to lower the frame 13 and partition the monomolecular film 10 on the liquid surface. This means that the portion to be transferred to the substrate 7 has been cut out. Therefore, the board holder 8b
is pushed down in the direction of arrow B, the substrate 7 is lowered, and the monomolecular film partitioned by the frame 13 is transferred. Then, the board 7 and the frame 1
3 from the liquid level, one step of transferring the monomolecular film 10 onto the substrate 7 is completed. Furthermore, if surface pressure is applied to a monomolecular film and the same action is performed, a cumulative film can be created.

他の実施例を第5図に示す。第5図aの1は水槽、3は
単分子膜を形成する液面、13は単分子膜を仕切る格子
状の枠である。設定値の表面圧力を加えて単分子膜を形
成した液面3上に枠13を手前に倒して単分子膜を仕切
る(第5図b)。この状態で基板7を個々の仕切りに合
わせて上下させ、単分子膜を移しとる(A)。更に隣の
仕切りに基板を移動し、上下させ単分子膜を移しとる(
B)。この動作を繰り返して累積膜を容易に作ることが
できる。
Another embodiment is shown in FIG. In FIG. 5a, 1 is a water tank, 3 is a liquid surface forming a monomolecular film, and 13 is a lattice-like frame that partitions the monomolecular film. The frame 13 is tilted forward onto the liquid surface 3 on which a monomolecular film has been formed by applying a set value of surface pressure to partition the monomolecular film (FIG. 5b). In this state, the substrate 7 is moved up and down according to the individual partitions, and the monomolecular film is transferred (A). Furthermore, move the substrate to the next partition and move it up and down to transfer the monolayer (
B). By repeating this operation, a cumulative film can be easily formed.

上述実施例では、基板が1枚で格子状の枠に合わせて移
動し、累積膜を製作したが、格子状枠の仕切りの数に合
わせて基板を置き、膜付けを同時に多数の基板に対して
行なうことも可能である(第5図C)。また本実施例で
は、枠の形状が長方形であったが、形状にこだわる必要
はなく、三角形、円形、その他ある程度のパターニング
も行なえる。また、基板7を先に降ろし、次に枠13を
降ろしてもよいし、同時に降ろしても良い。
In the above example, a single substrate was moved according to the lattice-shaped frame to produce a cumulative film, but it is possible to place the substrates according to the number of partitions in the lattice-shaped frame and apply films to many substrates at the same time. It is also possible to do so (FIG. 5C). Further, in this embodiment, the shape of the frame is rectangular, but there is no need to be particular about the shape, and patterns such as triangular, circular, and other patterns to some extent can be used. Further, the substrate 7 may be lowered first and then the frame 13 may be lowered, or they may be lowered at the same time.

[発明の効果J 以上説明したように、基板を水平に保持しながら」−下
し膜付けを行なう成膜装置において、成膜液面上に成膜
用分子群を仕切る枠を設け、成膜用分子群を分割するこ
とにより、折り返しがなく、配向状態に乱れのない単分
子膜またはその累積膜を基板上に容易に効率よく形成で
きる。
[Effect of the invention J As explained above, in a film forming apparatus that performs film deposition while holding the substrate horizontally, a frame is provided above the surface of the film forming liquid to separate the groups of molecules for film forming. By dividing the group of molecules for use, it is possible to easily and efficiently form a monomolecular film or a cumulative film thereof on a substrate without folding or disordered orientation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成膜方法の模式図、第2図は従来の成
膜装置の概要斜視図、第3図は中分子膜または累積膜の
分子配向から見た構造の分類図、第4図aは本発明の実
施例の#1面図、第4図すは実施例の主要な部分の斜視
図、第5図は複数の枠を格子状に設けた実施例の斜視図
である。 1:水槽、2:仕切、3:水面、4:浮子、5:ワイヤ
ー、6:巻き取り装置、7:基板、8a、8b:基板ホ
ルタ−1]0:単分子膜、11:現水性部分、12:@
水性部分、13:枠、14:案内棒、15:」皿板、1
6二本体フレーム、17:ばね、1日:支持板、19:
ばね。
Fig. 1 is a schematic diagram of the film forming method of the present invention, Fig. 2 is a schematic perspective view of a conventional film forming apparatus, Fig. 3 is a classification diagram of the structure of a medium molecular film or a cumulative film as seen from the molecular orientation, and Fig. Figure 4a is a #1 side view of an embodiment of the present invention, Figure 4 is a perspective view of the main parts of the embodiment, and Figure 5 is a perspective view of an embodiment in which a plurality of frames are provided in a grid pattern. . 1: Water tank, 2: Partition, 3: Water surface, 4: Float, 5: Wire, 6: Winding device, 7: Substrate, 8a, 8b: Substrate halter-1] 0: Monomolecular film, 11: Current aqueous part , 12:@
Water-based part, 13: frame, 14: guide rod, 15: dish plate, 1
62 main frame, 17: spring, 1st: support plate, 19:
Spring.

Claims (1)

【特許請求の範囲】[Claims] 水面上に展開された成膜用分子群を、基板上に単分子膜
あるいはその累積膜として移し取る成膜装置であり、該
分子群を枠を用いて区切る構造を持つことを特徴とする
成膜装置。
It is a film forming apparatus that transfers a group of molecules for film forming developed on a water surface onto a substrate as a monomolecular film or a cumulative film thereof, and has a structure in which the group of molecules is separated using a frame. Membrane device.
JP60129167A 1985-06-15 1985-06-15 Membrane forming apparatus Pending JPS61291058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129167A JPS61291058A (en) 1985-06-15 1985-06-15 Membrane forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129167A JPS61291058A (en) 1985-06-15 1985-06-15 Membrane forming apparatus

Publications (1)

Publication Number Publication Date
JPS61291058A true JPS61291058A (en) 1986-12-20

Family

ID=15002796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129167A Pending JPS61291058A (en) 1985-06-15 1985-06-15 Membrane forming apparatus

Country Status (1)

Country Link
JP (1) JPS61291058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180663A (en) * 1988-06-25 1990-07-13 Nippon Mektron Ltd Manufacture of laminate and its device
US5217670A (en) * 1987-03-16 1993-06-08 Shingitjyutsu Kaihatsu Jigyoudan Method of forming monomolecular film and overlaying apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217670A (en) * 1987-03-16 1993-06-08 Shingitjyutsu Kaihatsu Jigyoudan Method of forming monomolecular film and overlaying apparatus thereof
JPH02180663A (en) * 1988-06-25 1990-07-13 Nippon Mektron Ltd Manufacture of laminate and its device

Similar Documents

Publication Publication Date Title
US10472769B2 (en) Silane based surfaces with extreme wettabilities
JPS60173842A (en) Forming method of pattern
JP2010530810A (en) Method and system for printing oriented nanowires and other electrical elements
US20050118338A1 (en) Control of the spatial distribution and sorting of micro-or nano-meter or molecular scale objects on patterned surfaces
TWI271390B (en) Non-mask micro-flow etching process
CN110294455A (en) Functional material located growth method
US4840821A (en) Method of and apparatus for forming film
JPS61291058A (en) Membrane forming apparatus
CN108528078A (en) Nanostructure transfer method and the method for preparing multi-layer nano structure using stacking method
Wang et al. Assembling and patterning of diatom frustules onto PDMS substrates using photoassisted chemical bonding
JPS61291070A (en) Membrane forming method
JPS60223117A (en) Forming method of monomolecular deposited film
JP2003290648A (en) Fine particle structure formation method
JPS60222167A (en) Film forming device
JPS62286576A (en) Film forming method
JPS60222170A (en) Film forming device
JPS61291059A (en) Membrane forming apparatus
JPS60222169A (en) Film forming device
JPH04100568A (en) Formation of monomolecular film
JPS60222172A (en) Film forming device
JPS61271053A (en) Film forming device
JPS61271049A (en) Film forming device
JPS61271060A (en) Formation of film
JPS60222168A (en) Film forming device
JPS60193537A (en) Formation of accumulated monomolecular film