JPS61291059A - Membrane forming apparatus - Google Patents

Membrane forming apparatus

Info

Publication number
JPS61291059A
JPS61291059A JP13166185A JP13166185A JPS61291059A JP S61291059 A JPS61291059 A JP S61291059A JP 13166185 A JP13166185 A JP 13166185A JP 13166185 A JP13166185 A JP 13166185A JP S61291059 A JPS61291059 A JP S61291059A
Authority
JP
Japan
Prior art keywords
film
liquid surface
membrane
forming
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13166185A
Other languages
Japanese (ja)
Inventor
Toshihiko Miyazaki
俊彦 宮崎
Kunihiro Sakai
酒井 邦裕
Kenji Saito
謙治 斉藤
Harunori Kawada
河田 春紀
Takeshi Eguchi
健 江口
Yukio Nishimura
征生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13166185A priority Critical patent/JPS61291059A/en
Publication of JPS61291059A publication Critical patent/JPS61291059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)

Abstract

PURPOSE:To perform continuous and efficient work, by providing a plurality of a developing liquid surfaces to a membrane forming apparatus and forming a membrane to at least one liquid surface and supplying a membrane forming molecular group to at least the other one liquid surface. CONSTITUTION:A partition 14 is rotated to the direction opposite to an arrow to widen a developing liquid surface and a membrane forming molecular group is dripped on the liquid surface A from a dripping nozzle 17. Next, the partition 14 is rotated to the direction shown by the arrow to reduce the area of the developing liquid surface A and pressure is applied to the membrane forming molecular group. When the membrane forming molecular group shows set sur face pressure and a monomolecular membrane is formed, the monomolecular membrane is built up on a substrate 7. Because the area of the developing liquid surface A is reduced as the transfer of the monomolecular membrane advances, a membrane forming molecule tank 16 is rotated to the side of a developing liquid surface B and the membrane forming group is dripped on the liquid surface B from the dripping nozzle 17. Hereinafter, the same operation as that in the developing liquid surface A is performed to enable the continuous formation of the membrane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体並びに光学技術分野等に於るデバイス
の主要な構成要素である有機薄膜の成膜装置に関し、特
に単分子累積法により、基板上に上記有機薄膜を形成す
る成膜装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for forming an organic thin film, which is a main component of devices in the semiconductor and optical technology fields, and in particular, by a single molecule accumulation method. The present invention relates to a film forming apparatus for forming the above organic thin film on a substrate.

[開示の概要] 本明細書及び図面は、単分子累積法を利用した成膜装置
に、複数個の成膜液面を設け、少なくとも一の液面で膜
付は中に他の少なくとも一の液面に対して成膜用分子群
を供給する構造としたことにより、効率良く成膜を行な
えるようにする技術を開示するものである。
[Summary of the Disclosure] This specification and drawings provide a film forming apparatus using a single molecule accumulation method, which is provided with a plurality of film forming liquid levels, and at least one liquid level is coated with a film while at least one other liquid level is formed. This invention discloses a technique that enables efficient film formation by having a structure in which a group of molecules for film formation are supplied to the liquid surface.

[従来の技術」 従来、半導体技術分野並びに光学技術分野に於る素材利
用はもっばら比較的取扱いが容易な無機物を対象にして
進められてきた。これは有機化学分野の技術進展が無機
材料分野のそれに比べて著しく遅れていたことが一因と
なっている。
[Prior Art] Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたといわれている。そこで無機物を凌ぐ
新しい機能素材としての機能性有機材料の開発が要望さ
れている。有機材料の利点としては安価かつ製造容易で
あること、機能性に富むこと、等である。反面、これま
で劣るとされてきた耐熱性、機械的強度に対しても、最
近、これを克服した有機材料も次から次へと生まれてい
る。このような技術的背景のもとで、論理素子、メモリ
ー素子、光電変換素子等の集積回路デバイスやマイクロ
レンズ・アレイ、光導波路等の光学デバイスの機能をに
なう部分(主として薄膜部分)の一部又は全部を従来の
無機薄膜に代えて、有機薄膜で構成しようという提案か
ら、ばては1個の有機分子に論理素子やメモリー素子等
の機能を持たせた分子電子デバイスや生体関連物質から
なる論理素子(例えば、バイオ・チップス)を作ろうと
いう提案が、最近、いくつかの研究機関により発表され
た。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. Advantages of organic materials include being inexpensive, easy to manufacture, and highly functional. On the other hand, organic materials that have overcome heat resistance and mechanical strength, which have been considered inferior until now, have been produced one after another. Against this technical background, we are developing the functional parts (mainly thin film parts) of integrated circuit devices such as logic elements, memory elements, and photoelectric conversion elements, and optical devices such as microlens arrays and optical waveguides. The proposal to replace part or all of conventional inorganic thin films with organic thin films led to the development of molecular electronic devices and biological materials in which a single organic molecule has functions such as logic elements and memory elements. Several research institutes have recently announced proposals to create logic devices (e.g., biochips) consisting of

このようなデバイスの主要な構成要素である有機簿膜は
単分子累積法を用いて作製される。単分子累積法(別名
ラングミュア・プロジェット法、LB法)とは、親木基
・疎水基をもった分子の親水性、疎水性を利用して秩序
よく水の上に展開して単分子膜を形成した後、これを基
板表面に移しとる方法で、基板上に単分子膜あるいは単
分子を積層した単分子累積膜(これらをLB膜という)
の形成が可能である。
Organic films, which are the main components of such devices, are fabricated using single-molecule deposition methods. The single-molecule accumulation method (also known as the Langmuir-Prodgett method, LB method) is a method that utilizes the hydrophilicity and hydrophobicity of molecules with parent wood groups and hydrophobic groups to spread them out on water in an orderly manner to form a monomolecular film. A monomolecular film or a monomolecular cumulative film in which monomolecules are laminated on a substrate (these are called LB films) is created by forming a monolayer and then transferring it to the substrate surface.
It is possible to form

従来この種の装置は、第2図に示すように浅くて広い角
型の水槽1の内側に仕切2が水平に水面3を仕切るよう
に置かれている。仕切2は二次元シリンダとして機能し
、仕切2の内側には方形の浮子4が浮かべられ、浮子4
の幅は仕切2の内寸より僅かに狭く造ってあり、二次元
ピストンとして左右に滑らかに移動できるようになって
いる。
Conventionally, this type of apparatus is arranged such that a partition 2 horizontally partitions a water surface 3 inside a shallow and wide rectangular aquarium 1, as shown in FIG. The partition 2 functions as a two-dimensional cylinder, and a rectangular float 4 is floated inside the partition 2.
The width of the piston is made slightly narrower than the inner dimension of the partition 2, so that it can move smoothly from side to side as a two-dimensional piston.

浮子4を左右に移動させるためにワイヤー5を介して浮
子4はモーターなどを利用した巻き取り装置6と結ばれ
ている。
In order to move the float 4 from side to side, the float 4 is connected to a winding device 6 using a motor or the like via a wire 5.

単分子膜の形成の際には、膜の構成物質をベンゼン、ク
ロロホルム等の揮発性溶媒に溶かし、水面3」二に滴下
する。溶媒が揮発した後には、二次元系の挙動を示す単
分子膜が水面3」二に残される。分子の面密度が低い時
は、二次元気体の気体膜と呼ばれる。浮子4を右方向へ
移動することで単分子が展開する水面3の広がりを縮め
て面密度を増加して行くと、分子間の相互作用が強まり
、二次元液体の液体膜を経て、二次元固体膜へと変化す
る。この固体膜になると分子の配列配向はきれいにそろ
い、半導体を構成する材料に要求される高度の秩序性及
び均一な超薄膜性を持つにいたる。
When forming a monomolecular film, the constituent substances of the film are dissolved in a volatile solvent such as benzene or chloroform, and the solution is dropped onto the water surface. After the solvent evaporates, a monomolecular film exhibiting the behavior of a two-dimensional system is left on the water surface. When the areal density of molecules is low, it is called a gas film of secondary gas. By moving the float 4 to the right, the expanse of the water surface 3 on which single molecules develop is reduced and the surface density is increased. As a result, the interaction between molecules becomes stronger, and the two-dimensional Transforms into a solid film. When this solid film is formed, the molecules are arranged and oriented neatly, resulting in the high degree of order and uniform ultra-thin film properties required of materials that make up semiconductors.

単分子膜を水面3上から基板7表面上に移し取る方法と
して、水面3上の単分子膜に累積操作に好適な一定の表
面圧をかけながら、基板ホルダー8に取付けた基板7を
垂直方向9に上下することにより単分子膜を移しとる垂
直浸漬法がある。この方法では、第3図(a)のように
浸漬時だけ単分子膜lOが付着するX型、第3図(b)
のように浸漬時にも引き上げ詩にも単分子膜10が付着
するY型、第3図(C)のように引き上げ時のみ単分子
膜10が付着するZ型の3種類がある。なお、第3図の
分子にて、11は親水性部分、12は疎水性部分である
As a method of transferring the monomolecular film from the water surface 3 to the substrate 7 surface, the substrate 7 attached to the substrate holder 8 is vertically moved while applying a constant surface pressure suitable for cumulative operation to the monomolecular film on the water surface 3. There is a vertical immersion method in which the monomolecular film is transferred by moving it up and down. This method uses an
There are three types: Y-type, in which the monomolecular film 10 adheres both during immersion and during lifting, as shown in FIG. 3(C), and Z-type, in which monomolecular film 10 adheres only during lifting, as shown in FIG. In the molecule shown in FIG. 3, 11 is a hydrophilic portion and 12 is a hydrophobic portion.

[発明が解決しよ、うとする問題点] 従来装置は、実験機としての機能を重視して作られてお
り、多数層の累積膜を製作する場合、展開液面が一ケ所
であるため、この部分の単分子膜を移し取った後、更に
液面上の清掃、成膜用分子群の滴下、液面を加圧し、再
び単分子膜を形成して膜付けを行なう手順を繰り返す必
要があった。
[Problems to be solved by the invention] Conventional devices are made with emphasis on their function as experimental machines, and when producing a multilayer cumulative film, the developing liquid level is only in one place. After transferring the monomolecular film in this area, it is necessary to repeat the steps of cleaning the liquid surface, dropping the film-forming molecules, pressurizing the liquid surface, forming a monomolecular film again, and attaching the film. there were.

液面上の清掃などには、時間や手間がかかり、効率の良
い膜付けを行なえなかった。
Cleaning the surface of the liquid takes time and effort, and it is not possible to apply a film efficiently.

本発明は、」二述従来装伺の欠点を除去し、効率の良い
連続成膜を行なうことを目的とする。
The object of the present invention is to eliminate the drawbacks of the conventional method mentioned above and to perform continuous film formation with high efficiency.

[問題点を解決するための手段] 本発明は、液面上に展開された成膜用分子群を基板上に
単分子膜またはその累積膜として移しとる装置であり、
該液面を複数個設け、少なくとも一の液面で膜付は中に
他の少なくとも一の液面に対して該成膜用分子群を供給
する構造としたごとを特徴とする成膜装置である。
[Means for Solving the Problems] The present invention is an apparatus for transferring a group of film-forming molecules developed on a liquid surface onto a substrate as a monomolecular film or a cumulative film thereof,
A film forming apparatus characterized by having a structure in which a plurality of liquid surfaces are provided, and the film forming molecules are supplied to at least one other liquid surface while forming a film on at least one liquid surface. be.

第4図は本発明において累積膜を製作する方法の一例を
示している。(a)仕切り14を反時計方向に回し、展
開液面Aを広げる。成膜分子群を液面A上に滴下する。
FIG. 4 shows an example of a method for manufacturing a cumulative film according to the present invention. (a) Turn the partition 14 counterclockwise to widen the developing liquid level A. The film-forming molecule group is dropped onto the liquid surface A.

(b)仕切り14を時計方向へ回し、展開液面Aの面積
を小さくし、成膜分子群に圧力を加える。(C)成膜分
子群が設定の表面圧力を示し、単分子膜を形成した後、
一定の設定表面圧力のもとで基板7への単分子膜の累積
を行なう。(d)単分子膜の移し取りが進み展開液面A
の面積が減少して行く。この時展開液面Bに成膜分f一
群を滴下する。(e)基板7を引き−1−げろ。(f)
仕切り14を反時計方向に回し、展開液面B上の成膜分
子群に圧力を加える。(g)成膜分子群が設定の表面圧
力を示し、単分子膜を形成した後、一定の表面圧力のも
とで基板7への単分子膜の累積を行なう。(h) K開
液面Aに成膜分子群を滴下する。更に(a)に戻って同
様の操作を行なうと連続した成膜を行なうことができる
。このように一方で膜付けを行なっているうちに、他方
で成膜分子群を滴下する成膜装置は、連続的な成膜が容
易に行なえる。
(b) Turn the partition 14 clockwise to reduce the area of the developing liquid surface A and apply pressure to the film-forming molecule group. (C) After the film-forming molecular group exhibits the set surface pressure and forms a monomolecular film,
The monomolecular film is deposited on the substrate 7 under a constant set surface pressure. (d) Transfer of monomolecular film progresses and development liquid level A
The area of will continue to decrease. At this time, a group of the film formation amount f is dropped onto the developing liquid surface B. (e) Pull the board 7 -1-. (f)
The partition 14 is turned counterclockwise to apply pressure to the film-forming molecule group on the developing liquid surface B. (g) After the film-forming molecule group exhibits a set surface pressure and a monomolecular film is formed, the monomolecular film is accumulated on the substrate 7 under a constant surface pressure. (h) Drop the film-forming molecule group onto the open liquid surface A of K. Further, by returning to (a) and performing the same operation, continuous film formation can be performed. In this way, a film forming apparatus that drops a group of film-forming molecules on the other side while forming a film on one side can easily form a film continuously.

なお、液槽または展開液面の形は半円や扇型に限らず、
表面圧力を一定に保つための可動な仕切り14を設ける
ことができる形ならどのような形でも本発明を適用でき
る。
Note that the shape of the liquid tank or developing liquid surface is not limited to semicircle or fan-shaped.
The present invention can be applied to any shape that can be provided with a movable partition 14 to keep the surface pressure constant.

[作 用] 展開液面A及びBは、仕切り14の回転で面積を調整す
ることにより液面」二の成膜用分子群に一定の表面圧力
が加わる構造をもつ。すなわち基板7に成膜を行なう側
の液面は、成膜が進むにつれ面積が小さくなる。
[Function] The developing liquid levels A and B have a structure in which a constant surface pressure is applied to the film-forming molecule group on the liquid level 2 by adjusting the area by rotating the partition 14. That is, the area of the liquid surface on the side where the film is formed on the substrate 7 becomes smaller as the film formation progresses.

[実施例] 本発明の実施例を第1図に示す。■は単分子nりを形成
させる液槽、3は単分子膜を形成させる液面、7は単分
子膜を移しとる基板、8は基板7を支持する基板ホルダ
ーである。13は表面圧力を検出する表面圧力計、14
は展開分子群に圧力を加える仕切りである。15は基板
7を移動するためのガイドである。16は成膜分子群を
入れるタンク、17は滴下用ノズル部、18はタンクの
回転を与える台である。仕切り14は、回転軸19を中
心として液槽1の内壁を隙間なく滑らかに動くようにな
っている。成膜分子群を入れるタンク16は、回転台1
8の上にのせられ、滴下用ノズル17を液槽上の任意の
位置へ移動できる。仕切り14を回転し、展開用液面を
広げ、この液面上にノズル17を移動し成膜用分子群を
滴下する。表面圧力計で表面圧力を計測しつつ仕切り1
4を動かし圧力を加え、設定値に表面圧力が達した時に
仕切り14を止める。ここで、基板7をこの液面上に移
動し、垂直方向に上下することで基板7に単分子膜を移
しとる。この際、単分子膜に一定の表面圧力が加わるよ
うに仕切り14は移動する。
[Example] An example of the present invention is shown in FIG. 3 is a liquid tank for forming a monomolecular film, 3 is a liquid surface for forming a monomolecular film, 7 is a substrate to which the monomolecular film is transferred, and 8 is a substrate holder for supporting the substrate 7. 13 is a surface pressure gauge that detects surface pressure; 14
is a partition that applies pressure to the unfolded molecular group. 15 is a guide for moving the substrate 7. Reference numeral 16 indicates a tank for containing a group of molecules to be formed into a film, 17 indicates a dropping nozzle section, and 18 indicates a table for rotating the tank. The partition 14 is configured to move smoothly on the inner wall of the liquid tank 1 with no gaps around the rotating shaft 19. The tank 16 containing the film-forming molecules is mounted on the rotary table 1.
8, and the dripping nozzle 17 can be moved to any position on the liquid tank. The partition 14 is rotated to widen the surface of the developing liquid, and the nozzle 17 is moved onto this liquid surface to drop a group of molecules for film formation. Partition 1 while measuring the surface pressure with a surface pressure gauge
4 to apply pressure, and when the surface pressure reaches the set value, stop the partition 14. Here, the monomolecular film is transferred onto the substrate 7 by moving the substrate 7 above this liquid level and moving it up and down in the vertical direction. At this time, the partition 14 is moved so that a constant surface pressure is applied to the monomolecular film.

前記実施例において、成膜分子群は同一の物質を累積し
たが、展開液面AとBとに異なる成膜分子群を展開して
膜付けを行なっても良い。このようにへテロ膜の成膜も
効率よく行なえる。
In the above embodiment, the same substance was accumulated as the film-forming molecule group, but the film may be formed by developing different film-forming molecule groups on the developing liquid levels A and B. In this way, a hetero film can also be formed efficiently.

[発明の効果] 以上説明したように、成膜装置に展開液面を複数個設け
、少なくとも一の液面で膜付けを行ない他の少なくとも
一の展開液面に成膜分子群を供給する構造としたことで
、連続した効率の良い成膜を行なうことかで゛きるよう
になった。また、ヘテロ膜の成膜も可能となった。
[Effects of the Invention] As explained above, the film forming apparatus has a structure in which a plurality of developing liquid surfaces are provided, a film is formed on at least one liquid surface, and a group of film-forming molecules is supplied to at least one other developing liquid surface. This makes it possible to perform continuous and efficient film formation. Furthermore, it has become possible to form a heterolayer film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の成膜装置の実施例の斜視図、第
1図(b)はその平面図、第2図は従来の成膜装置の斜
視図、第3図は単分子膜又は累積膜の分子配向からみた
構造の分類図、第4図は、本発明の装置による膜付は手
順の説明図である。 1:液槽、2:枠、3:液面、4:浮子、5:ワイヤー
、6:巻き取り装置、7:基板、8:基板ホルタ−11
0;単分子膜、 11:親水性部分、12:疎水性部分、13:表面圧力
計、14:仕切り、15ニガイド、16:成膜分子用タ
ンク、17:滴下ノズル、18:回転台、18:回転軸
Fig. 1(a) is a perspective view of an embodiment of the film forming apparatus of the present invention, Fig. 1(b) is a plan view thereof, Fig. 2 is a perspective view of a conventional film forming apparatus, and Fig. 3 is a single molecule FIG. 4, which is a classification diagram of the structure of a film or a cumulative film viewed from the molecular orientation, is an explanatory diagram of the procedure for film deposition using the apparatus of the present invention. 1: Liquid tank, 2: Frame, 3: Liquid surface, 4: Float, 5: Wire, 6: Winding device, 7: Substrate, 8: Substrate holter 11
0: Monomolecular film, 11: Hydrophilic part, 12: Hydrophobic part, 13: Surface pressure gauge, 14: Partition, 15 Ni guide, 16: Tank for film-forming molecules, 17: Dripping nozzle, 18: Rotating table, 18 :Axis of rotation.

Claims (1)

【特許請求の範囲】[Claims] 液面上に展開された成膜用分子群を、基板上に単分子膜
又はその累積膜として移しとる装置であり、該液面を複
数個設け、少なくとも一の液面で膜付け中に他の少なく
とも一の液面に対して該成膜用分子群を供給する構造と
したことを特徴とする成膜装置。
This is a device that transfers a group of molecules for film formation developed on a liquid surface onto a substrate as a monomolecular film or a cumulative film thereof, and has a plurality of such liquid surfaces, and at least one liquid surface is used to transfer a group of molecules for film formation onto a substrate. A film forming apparatus characterized by having a structure in which the film forming molecule group is supplied to at least one liquid surface of the liquid surface.
JP13166185A 1985-06-19 1985-06-19 Membrane forming apparatus Pending JPS61291059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13166185A JPS61291059A (en) 1985-06-19 1985-06-19 Membrane forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13166185A JPS61291059A (en) 1985-06-19 1985-06-19 Membrane forming apparatus

Publications (1)

Publication Number Publication Date
JPS61291059A true JPS61291059A (en) 1986-12-20

Family

ID=15063268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13166185A Pending JPS61291059A (en) 1985-06-19 1985-06-19 Membrane forming apparatus

Country Status (1)

Country Link
JP (1) JPS61291059A (en)

Similar Documents

Publication Publication Date Title
JPS59183861A (en) Method and apparatus for forming alternate monomolecular layers
JPH0626705B2 (en) Method for applying a monolayer on a substrate
CN101932754A (en) Single phase fluid imprint lithography method
CN101370731B (en) Method for making nanostructures with chromonics
US20050118338A1 (en) Control of the spatial distribution and sorting of micro-or nano-meter or molecular scale objects on patterned surfaces
US4840821A (en) Method of and apparatus for forming film
US5006374A (en) Method of forming thin organic films
EP0183426A2 (en) Assembly and method for Langmuir-Blodgett film production
JPS61291059A (en) Membrane forming apparatus
EP3189899B1 (en) Device for producing nanostructured coatings on a solid surface
US4674436A (en) Film forming apparatus
US20080020141A1 (en) Method to apply membrane-lipids to a substrate
US4785762A (en) Apparatus for forming film
JPS62286576A (en) Film forming method
JPS60222167A (en) Film forming device
JPS60222172A (en) Film forming device
JPS60223117A (en) Forming method of monomolecular deposited film
JPS61291058A (en) Membrane forming apparatus
Nichogi et al. Structural analysis of Langmuir-Blodgett films of alkylated tetracyanoquinodimethanes
JP3134295B2 (en) Monomolecular film formation method
JPS61271049A (en) Film forming device
JPS61291070A (en) Membrane forming method
JPS60222171A (en) Film forming device
JPS61271048A (en) Film forming device
JPS62294433A (en) Film forming apparatus