JPS60191093A - Manufacture of single crystal - Google Patents

Manufacture of single crystal

Info

Publication number
JPS60191093A
JPS60191093A JP4771384A JP4771384A JPS60191093A JP S60191093 A JPS60191093 A JP S60191093A JP 4771384 A JP4771384 A JP 4771384A JP 4771384 A JP4771384 A JP 4771384A JP S60191093 A JPS60191093 A JP S60191093A
Authority
JP
Japan
Prior art keywords
zone
crystal
molten zone
height
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4771384A
Other languages
Japanese (ja)
Inventor
Kuniharu Yamada
邦晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP4771384A priority Critical patent/JPS60191093A/en
Publication of JPS60191093A publication Critical patent/JPS60191093A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • C30B13/30Stabilisation or shape controlling of the molten zone, e.g. by concentrators, by electromagnetic fields; Controlling the section of the crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To grow the titled crystal stably for many hours by measuring the diameter, height, and external shape of the molten zone by using plural line sensors, and feeding the measured values back to the lamp power in the manufacture of single crystals by the Fz method. CONSTITUTION:A raw material rod 6 is set to the upper shaft 9, and a seed crystal 7 is set to the lower shaft 10. The power of a halogen lampe 2 is increased, and the light of the halogen lamp 2 is concentrated on the central part of a quartz tube 3 by a rotary ellipsoidal mirror 1. An atmospheric gas is introduced at this time from an introducing port 4, and discharged from a discharge port 5. The raw material rod 6 and the seed crystal 7 are melted at the concentrated part, and brought into contact with each other to form a molten zone 8 which is moved downward while rotating the upper and lower shafts 9 and 10 to grow the crystal. The diameter, height, and external shape of the molten zone 8 in said operation are measured by using plural line sensors, and the measured values are fed back to the lamp power to control the growth of the crystal.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、FZ法(フローティングゾーン法)による単
結晶の製造方法に関し、特に自動制御の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a single crystal by the FZ method (floating zone method), and particularly to improvements in automatic control.

〔従来技術〕[Prior art]

従来、FZ法における自動制御は殆んど行なわれておら
ず、単一のラインセンサ、あるいは琳−のエリアセンサ
を用いての結晶製造法が提唱されている。
Conventionally, automatic control in the FZ method has hardly been performed, and a crystal manufacturing method using a single line sensor or a Rin area sensor has been proposed.

しかし、単一のラインセンサを用いただけでは、溶融帯
からの情報量が不足。父型−のエリアセンサを用いた場
合、直径方向の解像度がラインセンサの5分の1と低い
However, using a single line sensor does not provide enough information from the melting zone. When a father-type area sensor is used, the resolution in the diametrical direction is as low as one-fifth that of a line sensor.

以上の理由から必ずしも制御性が優れているとはいえず
、結晶育成を長時間安定して行なうことは不可能である
For the above reasons, it cannot be said that controllability is necessarily excellent, and it is impossible to stably grow crystals for a long period of time.

〔目的〕〔the purpose〕

本発明は以上の問題点を解決するもので、その目的とす
るところは、長時間(10時間以上)安定して結晶育成
を行なう、単結晶の製造方法を提供することにある。
The present invention is intended to solve the above problems, and its purpose is to provide a method for producing a single crystal that allows stable crystal growth for a long period of time (10 hours or more).

〔概要〕〔overview〕

本発明の単結晶製造方法は、複数の2インセンサ、ある
いはラインセンサとエリアセンサを組み合せて使用し、
溶融帯の直径、高さ、外形形状を測定し、これをランプ
パワー、あるいは溶融帯の高さにフィードバックするこ
とを特徴とする。
The single crystal manufacturing method of the present invention uses a combination of a plurality of 2-in sensors or a line sensor and an area sensor,
It is characterized by measuring the diameter, height, and external shape of the molten zone and feeding this back to the lamp power or the height of the molten zone.

本発明のyz法のl1lc要を第1図に示す。FIG. 1 shows the main points of the yz method of the present invention.

ここで1は回転楕円面鏡、2はノーロゲンランプ、3は
石英管、4はガス導入口、5はガス排出口、6は原料棒
、7は種結晶、8は溶融帯、9は上部シャフト、10は
下部シャフトである。
Here, 1 is a spheroidal mirror, 2 is a norogen lamp, 3 is a quartz tube, 4 is a gas inlet, 5 is a gas outlet, 6 is a raw material rod, 7 is a seed crystal, 8 is a molten zone, and 9 is an upper part The shaft 10 is a lower shaft.

上部シャフト9に、原料棒6をセットし、下部シャフト
10に、種結晶7をセットする。
The raw material rod 6 is set on the upper shaft 9, and the seed crystal 7 is set on the lower shaft 10.

ハロゲンランプ2のパワーを上げ、回転楕円面鏡1によ
り該ハロゲンランプの光を、石英管3の中央部に集光す
る。この時ガス導入口4から雰囲気ガスを導入し、ガス
排出口5から雰囲気ガスを排出する。
The power of the halogen lamp 2 is increased, and the spheroidal mirror 1 focuses the light from the halogen lamp onto the center of the quartz tube 3. At this time, atmospheric gas is introduced from the gas inlet 4 and exhausted from the gas exhaust port 5.

集光部において原料棒6の先端と、種結晶7の先端とを
溶融接触させて、溶融帯8を形成する。
The tip of the raw material rod 6 and the tip of the seed crystal 7 are brought into molten contact in the light condensing section to form a molten zone 8.

この時上部シャフト9及び下部シャフト1oは、同方向
ないしは逆方向に回転させ、上下のシャフトが同時に下
方へ移動することにより、結晶が育成される。
At this time, the upper shaft 9 and the lower shaft 1o are rotated in the same direction or in opposite directions, and the upper and lower shafts simultaneously move downward, thereby growing a crystal.

本発明のシステムのブロック図を第2図に示すココで2
1は光学系、22はセンサ部、23はコントローラ部、
24はキー人力部、25はDA変換器、26はAD変換
器、27は表示部、28はプリンタ一部、29はランプ
パワーコントロール部、50はギャップ調整部である。
The block diagram of the system of the present invention is shown in Fig. 2.
1 is an optical system, 22 is a sensor section, 23 is a controller section,
Reference numeral 24 designates a key power section, 25 a DA converter, 26 an AD converter, 27 a display section, 28 a part of the printer, 29 a lamp power control section, and 50 a gap adjustment section.

溶融帯の像は光学系21を経て、センサ部22に到達し
、コントローラ部23で演算処理される。処理された信
号は、DA変換器25を経て、ランプパワーコントロー
ル部29でランプパワーを調節し、溶融帯の温度を制御
する。あるいはギャップ調整部50で融液の高さを調節
する。
The image of the melted zone passes through the optical system 21, reaches the sensor section 22, and is subjected to calculation processing by the controller section 23. The processed signal passes through the DA converter 25, and the lamp power controller 29 adjusts the lamp power to control the temperature of the melting zone. Alternatively, the height of the melt may be adjusted using the gap adjustment section 50.

ランプパワーあるいはギャップはAD変換器26を経て
、コントローラ部23に再度フィードバックされる。
The lamp power or gap is fed back to the controller section 23 again through the AD converter 26.

一方キー人力部24では初期の各種定数をインプットし
、表示部27はその時のランプパワー等を表示する。更
にプリンタ一部28では所定の時間毎にランプパワー、
溶融帯径、溶融帯の高さ等をプリントアウトする。
On the other hand, the key input section 24 inputs various initial constants, and the display section 27 displays the lamp power and the like at that time. Furthermore, in the printer part 28, the lamp power,
Print out the molten zone diameter, molten zone height, etc.

〔実施例〕〔Example〕

以下、本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

〔実施例−1〕 第3図は、溶融帯部の正面図であり、ジインセンサを縦
横に2本使用する場合を示す。
[Example-1] Fig. 3 is a front view of the melted zone, and shows a case where two sensors are used vertically and horizontally.

第3図において、31は原料棒、32は育成結晶、3S
は浴融帯、64及び35は2インセンサの測定部を示す
In Figure 3, 31 is a raw material rod, 32 is a grown crystal, 3S
64 and 35 indicate the bath melting zone, and 2-in sensor measurement parts.

溶融帯径を測定するラインセンサ34は、固液界面の直
上0.5〜5ミリメートルの部位にセットし、溶融帯の
高さを測定するラインセン?35は、溶融帯のほぼ中央
部にセットする。
A line sensor 34 that measures the diameter of the melted zone is set at a location 0.5 to 5 mm directly above the solid-liquid interface, and a line sensor 34 that measures the height of the melted zone. 35 is set approximately at the center of the melting zone.

この場合、大半の結晶は固液界面の位置が時間とともに
変動する為、ラインセンサ54のみでは、ジインセンサ
が溶融帯に留まることが困難であり、極端な場合、結晶
側にはみ出してしまう。すると、もはや溶融帯の形状を
維持することが不可能となり、結晶育成が不可能となる
In this case, since the position of the solid-liquid interface of most crystals fluctuates over time, it is difficult for the line sensor 54 alone to keep the line sensor in the melting zone, and in extreme cases it may protrude to the crystal side. Then, it is no longer possible to maintain the shape of the molten zone, and crystal growth becomes impossible.

そこで、溶融帯の高さを測定する2インセンサ55を1
同時に機能させることにより、溶融帯の高さを維持し、
ジインセンサ34を溶融帯中の所定の位置に留めること
が可能となり、長時間安定した結晶育成が可能となる。
Therefore, the 2-inch sensor 55 that measures the height of the melting zone is
By working simultaneously, the height of the melting zone is maintained,
It becomes possible to keep the sensor 34 at a predetermined position in the melting zone, and stable crystal growth becomes possible for a long period of time.

〔実施例−2〕 fs4図は、溶融帯部の正面図であり、ラインセンナを
3本使用する場合を示す。
[Example 2] The fs4 diagram is a front view of the melted zone, and shows the case where three line sennas are used.

第4図において、41は原料棒、42は育成結晶、43
は溶融帯、44,45.46は2インセンサの測定部を
示す。
In Fig. 4, 41 is a raw material rod, 42 is a grown crystal, and 43 is a raw material rod.
44, 45, and 46 indicate the molten zone, and 2-in sensor measurement parts.

実施例1と同様の理由で、ラインセンサ44のみでは結
晶育成が不可能であるが、ラインセンサを3本使用し、
溶融帯の曲率を演算すること&Qよリ、溶融帯の高さを
判定することが可能である。
For the same reason as in Example 1, it is impossible to grow crystals using only the line sensor 44, but by using three line sensors,
By calculating the curvature of the molten zone, it is possible to determine the height of the molten zone.

従りてラインセンサ44を溶融帯の所定の位置に留める
ことが可可であり、長時間安定した結晶育成が可能とな
る。
Therefore, it is possible to keep the line sensor 44 at a predetermined position in the molten zone, and stable crystal growth for a long period of time is possible.

〔実施例−3〕 第5図は、溶融帯部の正面図であり、ラインセンサとエ
リアセンサを組み合わせて使用する場合を示す。
[Example 3] FIG. 5 is a front view of the molten zone, showing a case where a line sensor and an area sensor are used in combination.

第5図において、51は原料棒(152は育成結晶、5
3は溶融帯、54.55はそれぞれツインセンサ及びエ
リアセンサの測定部を示す。
In Fig. 5, 51 is a raw material rod (152 is a grown crystal, 5
3 indicates the melting zone, and 54 and 55 indicate the measurement parts of the twin sensor and the area sensor, respectively.

実施例1と同様の理由で、ラインセンサ54のみでは、
結晶育成が不可能であるが、溶融帯の概略の形状を、エ
リアセンサ55で判定し、そこでラインセンサ54を溶
融帯の所定の位置に留めることが可能となり、長時間安
定した結晶育成が可能となる。
For the same reason as in Example 1, with only the line sensor 54,
Although crystal growth is impossible, the approximate shape of the molten zone can be determined by the area sensor 55, and the line sensor 54 can then be kept at a predetermined position in the molten zone, allowing stable crystal growth for a long time. becomes.

尚、本実施例では、ラインセンサあるいはエリアセンナ
を2〜6台組み合わせて使用する場合を例にあげて説明
したが、それ以上セットしても十分な効果を有するもの
である。
In this embodiment, the case where two to six line sensors or area sensors are used in combination has been described as an example, but even if more than that are used, sufficient effects can be obtained.

〔効果〕〔effect〕

以上述べたように本発明によれば、ルビー、サファイア
、アレキサンドライト等の宝石用単結晶は勿論、Y工G
 、YAG 、GGG等の工業用単結晶を長時間安定し
て育成することが可能であり、無人稼動によるコストダ
ウン、及び安定育成による結晶の高品質化(色ムラ、気
泡、欠陥等の除去)に大きく貢献するという効果を有す
る。
As described above, according to the present invention, not only single crystals for gemstones such as ruby, sapphire, alexandrite, etc.
It is possible to grow industrial single crystals such as YAG, GGG, etc. stably for a long time, reducing costs through unmanned operation, and improving the quality of crystals through stable growth (removal of uneven color, bubbles, defects, etc.) This has the effect of greatly contributing to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の?Z法の概要を示す。 第2図は本発明のシステムのブロック図を示す第3図は
本発明の実施例を示す溶融帯部の正面図を示す。 第4図は本発明の他の実施例を示す溶融帯部の正面図を
示す。 85図は本発明の更に他の実施例を示す溶融帯部の正面
図を示す。 第1図 第2図 第4図
Figure 1 shows the present invention? An overview of the Z method is shown. FIG. 2 shows a block diagram of the system of the present invention. FIG. 3 shows a front view of a melting zone section showing an embodiment of the invention. FIG. 4 shows a front view of a melt zone showing another embodiment of the present invention. FIG. 85 shows a front view of a melt zone showing still another embodiment of the present invention. Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ハロゲンランプ等の、高温の光源から発する光を、反射
鏡、又はレンズを用いて集光し、該集光部において、原
料棒と種結晶とを、溶融帯を仲介として結合し゛C1フ
ローティングゾーンを形成し、該フローティングゾーン
を、一定速度で移動することにより、前記種結晶上に結
晶を析出させる、70−ティングゾーン法において、複
数のラインセンサ、あるいはラインセンサとエリアセン
サを組み合わせて使用し、溶融帯の直径、高さ、外形形
状等を測定し、これをランプパワー、あるいは溶融帯の
高さにフィードバックすることにより、結晶を育成する
ことを特徴とする単結晶の製造方法。
Light emitted from a high-temperature light source, such as a halogen lamp, is focused using a reflecting mirror or lens, and in the focusing section, the raw material rod and the seed crystal are combined via the molten zone to form the C1 floating zone. In the 70-ting zone method, in which crystals are deposited on the seed crystal by forming a floating zone and moving the floating zone at a constant speed, a plurality of line sensors or a combination of a line sensor and an area sensor are used, A single crystal manufacturing method characterized by growing a crystal by measuring the diameter, height, external shape, etc. of a molten zone and feeding this back to the lamp power or the height of the molten zone.
JP4771384A 1984-03-13 1984-03-13 Manufacture of single crystal Pending JPS60191093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4771384A JPS60191093A (en) 1984-03-13 1984-03-13 Manufacture of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4771384A JPS60191093A (en) 1984-03-13 1984-03-13 Manufacture of single crystal

Publications (1)

Publication Number Publication Date
JPS60191093A true JPS60191093A (en) 1985-09-28

Family

ID=12782944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4771384A Pending JPS60191093A (en) 1984-03-13 1984-03-13 Manufacture of single crystal

Country Status (1)

Country Link
JP (1) JPS60191093A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418478A (en) * 1977-07-11 1979-02-10 Siemens Ag Method and apparatus for crucibleefree zone melting semiconductor rods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418478A (en) * 1977-07-11 1979-02-10 Siemens Ag Method and apparatus for crucibleefree zone melting semiconductor rods

Similar Documents

Publication Publication Date Title
JP2826589B2 (en) Single crystal silicon growing method
JPS60191093A (en) Manufacture of single crystal
JP2979462B2 (en) Single crystal pulling method
JP2001019588A (en) Method for controlling diameter of single crystal and device for growing crystal
JP2003176199A (en) Apparatus and method for pulling single crystal
JPH0534317B2 (en)
US5292486A (en) Crystal pulling method and apparatus for the practice thereof
JPS6197186A (en) Preparation of single crystal
JPH0534318B2 (en)
JPH08239293A (en) Control of diameter of single crystal
JPS63291892A (en) Production of single crystal
JPS60221387A (en) Manufacturing apparatus of single crystal by infrared heating
JPS63291891A (en) Production of single crystal
JPS60103095A (en) Production of single crystal
JPH0541599B2 (en)
JPS6197185A (en) Preparation of single crystal
JPH0541597B2 (en)
JPH0541598B2 (en)
JPS6121992A (en) Device for preparation single crystal heated with convergent infrared ray
JPS6027686A (en) Apparatus for manufacturing single crystal
JPH11130585A (en) Apparatus for pulling single crystal
JPS60221386A (en) Manufacturing apparatus of single crystal by infrared-condensing heating
JPH07172993A (en) Production of rutile single crystal
JPS61209984A (en) Device for preparing single crystal provided with convergent infrared ray heating means
KR20210117780A (en) Apparatus and method for growing silicon single crystal ingot