JPS60189267A - Manufacture of mis field effect transistor - Google Patents

Manufacture of mis field effect transistor

Info

Publication number
JPS60189267A
JPS60189267A JP4441784A JP4441784A JPS60189267A JP S60189267 A JPS60189267 A JP S60189267A JP 4441784 A JP4441784 A JP 4441784A JP 4441784 A JP4441784 A JP 4441784A JP S60189267 A JPS60189267 A JP S60189267A
Authority
JP
Japan
Prior art keywords
less
field effect
effect transistor
ion implantation
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4441784A
Other languages
Japanese (ja)
Inventor
Tadahiko Horiuchi
堀内 忠彦
Keimei Mikoshiba
御子柴 啓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4441784A priority Critical patent/JPS60189267A/en
Publication of JPS60189267A publication Critical patent/JPS60189267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To check generation of a short channel effect without depending upon a complicated process, and moreover, to reduce formation of hot carriers at manufacture of an MIS field effect transistor by a method wherein a process to perform ion implantation specifying phosphorus and using a gate electrode as a mask, a process to perform the specified heat treatment are provided, or a process to provide an interlayer insulating film, a process to provide an opening, and a process to perform ion implantation are provided between the processes thereof. CONSTITUTION:Selective oxidation is performed on a P type silicon single crystal substrate 1 using a buffer oxide film and a nitride film as masks to provide element isolating oxide films 2. Then a gate oxide film 3 is formed in an element region, and impurity ions 4 are implanted to control the threshold voltage. Then a gate electrode 6 is formed, and to form source junction and drain junction, phosphorus ion implantation 5 is performed by the dose of 1X10<15>cm<-2> or more and 1X10<16>cm<-2> or less, and moreover at energy of 50keV or less. Then PSG is grown on the surface as an interlayer insulating film 7. Then heat treatment is performed for the hour of 30sec or less at the temperature of 900 deg.C or more and 1,100 deg.C or less using a halogen lamp annealer.

Description

【発明の詳細な説明】 (技術分野) 不発明はMIS型電界効果トランジスタの製造方法に関
し、特に短チャンネルで浅い接合を持つMIS型電界効
果トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing an MIS field effect transistor, and more particularly to a method for manufacturing an MIS field effect transistor having a short channel and a shallow junction.

(従来技術) 従来、nチャンネルMIS型電界効果トランジスタのソ
ース及びドレイン接合の形成には不純物としてヒ素やリ
ンをイオン注入し、その後数分から数十分間高温で熱処
理する工程が用いられている。その為不純物にリン全使
用した場合にはリンの拡散係数が大きい為に前記FET
の接合が深くなり短チャンネル効果が生じる欠点がある
(Prior Art) Conventionally, to form source and drain junctions of an n-channel MIS field effect transistor, a process has been used in which ions of arsenic or phosphorus are implanted as impurities, followed by heat treatment at a high temperature for several minutes to several tens of minutes. Therefore, when all phosphorus is used as an impurity, the diffusion coefficient of phosphorus is large, so the above FET
This has the disadvantage that the junction becomes deeper and a short channel effect occurs.

また、不純物としてヒ素を使用した場合にはヒ素の拡散
係数がリンに比べて小さい為に接合は浅く出来るが、拡
散係数が□涜度依存性を持つ為に不純物濃度分布が階段
状となシ、前記FETの接合近傍において電界集中が起
りホットキャリャの生成が多くなる欠点がある。
In addition, when arsenic is used as an impurity, the diffusion coefficient of arsenic is smaller than that of phosphorus, so the junction can be made shallow, but the impurity concentration distribution is step-like because the diffusion coefficient is dependent on the However, there is a drawback that electric field concentration occurs near the junction of the FET, resulting in increased generation of hot carriers.

前記した電界集中を緩和するMIS型電界効果トランジ
スタの製造方法としては、従来ヒ素のドープと低濃度の
リンのドープとを二重に行う方法があるが、工程が複雑
であることと希望する構造を得るためには2種類のドー
プを充分精度よく行なわなければならない欠点があシ、
又浅い接合が得られず短チャンネル効果を抑えきれない
という恐れがある。
Conventional methods for manufacturing MIS field effect transistors that alleviate the above-mentioned electric field concentration include doping with arsenic and doping with low-concentration phosphorus, but the process is complicated and the desired structure cannot be achieved. The drawback is that two types of doping must be done with sufficient precision in order to obtain
Furthermore, there is a fear that a shallow junction cannot be obtained and the short channel effect cannot be suppressed.

(発明の目的) 本発明の目的は、複雑な工程によらず短チャンネル効果
の発生全防ぎかつ、ホットキャリヤの生成が少ないnチ
ャンネルのMIS型′は界効果トランジスタの製造方法
を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a method for manufacturing an n-channel MIS type field effect transistor that completely prevents short channel effects from occurring and generates fewer hot carriers without using complicated processes. be.

(発明の構成) 不発明の第1の発明のMIS型電界効果トランジスタの
製造方法は、ゲート電極長15μm以下のnチャンネル
MIS型電界効果トランジスタのソースおよびドレイン
領域をp型シリコン単結晶基板の一生面に形成するに当
シ、前記ゲート電極をマスクにしてリンを前記基板にl
Xl0 cm 以上1×1016C1n−2以下のドー
ズ量で50KeV以下のエネルギーでイオン注入する工
程と、前記イオン注入後900’O以上1.10−0°
0以下の温度で30秒以下の時間熱処理全行う工程とを
有することによフ構成される。
(Structure of the Invention) A method for manufacturing an MIS field effect transistor according to the first uninvented invention is to form the source and drain regions of an n-channel MIS field effect transistor with a gate electrode length of 15 μm or less on a p-type silicon single crystal substrate. When forming the substrate on the surface, phosphorus is applied to the substrate using the gate electrode as a mask.
A step of implanting ions with an energy of 50 KeV or less at a dose of Xl0 cm or more and 1x1016C1n-2 or less, and a step of ion implantation with an energy of 900'O or more and 1.10-0° after the ion implantation.
It is constructed by having a step of performing the entire heat treatment at a temperature of 0 or less for a time of 30 seconds or less.

また、不発明の第2の発明のMIS型電果効果トランジ
スタの製造方法は、ゲート電極長15μm以下のnチャ
ンネルMIS型電界効果トランジスタのソースおよびド
レイン領域kp型シリコン単結晶基板の一生面に形成す
るに当シ、前記ゲート電極をマスクにしてリンを前記基
板にI×1015cm−2以上IX 1016 Crn
−2以下のドーズ量で50KeV以下のエネルギーでイ
オン注入する工程と、表面に層間絶縁膜を設ける工程と
、該層間絶縁膜にソースおよびドレイン領域へのコンタ
クト用の開孔を設ける工程と、該開孔部を通してリンを
イオン注入する工程と、イオン注入後900°C以上1
100℃以下の温度で30秒以下の時間熱処理する工程
とを含んで構成される。
In addition, the method for manufacturing an MIS type field effect transistor according to the second uninvented invention is such that the source and drain regions of an n-channel MIS type field effect transistor having a gate electrode length of 15 μm or less are formed on the entire surface of a kp type silicon single crystal substrate. In this case, using the gate electrode as a mask, phosphorus is applied to the substrate at an amount of Ix 1015 cm-2 or more IX 1016 Crn
A step of implanting ions at a dose of -2 or less and an energy of 50 KeV or less, a step of providing an interlayer insulating film on the surface, a step of providing an opening for contacting the source and drain regions in the interlayer insulating film, A step of ion-implanting phosphorus through the opening, and a temperature of 900°C or higher after ion implantation1.
and a step of heat-treating at a temperature of 100° C. or less for a time of 30 seconds or less.

(実施例) 以下、不発明の実施例について、図面全参照して説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to all the drawings.

第1図(al〜(flは本発明の一実施例の説明のため
に工程順に示した断面図である。
FIG. 1 (al to (fl) are sectional views shown in the order of steps for explaining one embodiment of the present invention.

不発明の一実施例のnチャンネルのMIS型電界効果ト
ランジスタは次の工程により製造することができる。
An n-channel MIS field effect transistor according to an embodiment of the present invention can be manufactured by the following steps.

先ず、第1図(alに示すp型シリコン単結晶基板1上
に第1図(b)に示すように、バッファ酸化膜と鼠化膜
を用いて選択的に酸化を行ない素子分離酸化膜2を設け
る。なおp型シリコン単結晶基板1はn型シリコン単結
晶基板に形成されたp型ウェルであってもよい、素子分
離酸化膜2全設けた後はバッファ酸化J漠と窒化膜は除
去する。
First, as shown in FIG. 1(b), on a p-type silicon single crystal substrate 1 shown in FIG. Note that the p-type silicon single crystal substrate 1 may be a p-type well formed on an n-type silicon single crystal substrate.After the element isolation oxide film 2 is completely formed, the buffer oxide film and nitride film are removed. do.

次に、第1図(C)に示すように、素子領域にゲート酸
化膜3全形成し、閾値電圧制御の為の不純物4をイオン
注入する。
Next, as shown in FIG. 1C, a gate oxide film 3 is entirely formed in the element region, and impurity 4 for threshold voltage control is ion-implanted.

次に、第1図(dlにボすように、ゲート電極6を形成
し、ソース接合及びドレイン接合を形成するために、リ
ンklX10 cm 以上1xlQ cm以下のドーズ
量、かつ50KeV以下のエネルギーでイオン注入5を
行う、なおドーズ量を上記の如く選んだのはlXl0 
cm 以下ではソース・ドレインの拡散抵抗が高くなシ
すぎ実用的でなく1 X 1016 Crn −2以上
では必要な浅い接合が得られなくなるためである。イオ
ンエネルギー50Ke V以下も浅い接合を得るための
必要条件である。
Next, in order to form the gate electrode 6 and form the source and drain junctions as shown in FIG. Implant 5 was performed, and the dose was chosen as above: lXl0
This is because if the resistance is less than 1.times.cm, the diffusion resistance of the source/drain is too high to be practical, and if it is more than 1.times.10.sup.16 Crn.sup.-2, the necessary shallow junction cannot be obtained. An ion energy of 50 Ke V or less is also a necessary condition for obtaining a shallow junction.

次に、第1図(e)に示すように層間絶縁膜7としてP
SO’i表面に成長させ4図において8は前工程のイオ
ン注入により注入されたソース及びドレイン形成りため
の不純物である。
Next, as shown in FIG. 1(e), P is used as the interlayer insulating film 7.
In FIG. 4, reference numeral 8 denotes an impurity implanted by ion implantation in the previous step to form a source and drain.

次に、第1図(f+に示すように、今迄の工程でイオン
注入された不純物を電気的に活性化するための熱処理を
行う。ただしこの熱処理は/Sロゲンランプアニーラー
を用いて900°C以上J100°0以下の温度で30
秒以下の時間で実施する。なお、900℃以下では活性
化が十分性なわれないし、1100’0以上では接合が
移動し浅い接合が得られにくい。
Next, as shown in FIG. 30 at temperatures above °C and below J100°0
Performed in seconds or less. Note that below 900° C. activation is not sufficient, and above 1100'0 the bond moves and it is difficult to obtain a shallow bond.

30秒以下にしたのもアニールによる接合の変動を防ぐ
ためである。その後コンタクト孔を開孔し、アルミニウ
ム配線9を設けるとnチャンネルMIS型電界効果トラ
ンジスタが得られる。
The reason for setting the time to 30 seconds or less is to prevent bonding fluctuations due to annealing. Thereafter, a contact hole is opened and an aluminum wiring 9 is provided to obtain an n-channel MIS type field effect transistor.

上記した一実施例で得られたnチャンネルMIS型電界
効果トランジスタは不純物としてリンをイオン注入する
ので不純物濃度分布が階段状にならずガウス型分布にな
シトレイン近傍で電界集中が小さくなり、ホットキャリ
ヤの生成が少ない、このため該FETにおいてはホット
キャリアを原因とする閾値電圧の変動等の性能劣化が起
こシにくい。
In the n-channel MIS type field effect transistor obtained in the above-mentioned example, phosphorus is ion-implanted as an impurity, so the impurity concentration distribution does not become step-like but becomes a Gaussian-like distribution, and the electric field concentration is small near the cell train, and hot carriers are Therefore, in the FET, performance deterioration such as threshold voltage fluctuation due to hot carriers is less likely to occur.

さらに不実施例では短時間で熱処理を行うので不純物が
必要以上に拡散されず浅い接合を得ることができる。従
ってパンチスルーや閾値電圧の低下等の短チャンネル効
果が生じない。
Further, in the non-example, since the heat treatment is performed in a short time, impurities are not diffused more than necessary, and a shallow junction can be obtained. Therefore, short channel effects such as punch-through and reduction in threshold voltage do not occur.

また5本実施例の方法はnチャンネルMIS電界効果ト
ランジスタの従来の製造方法に無理なく組み合わせるこ
とが出来、複雑な工程を持たないので答易に実施するこ
とができる。
Furthermore, the method of the fifth embodiment can be easily combined with the conventional manufacturing method of an n-channel MIS field effect transistor, and can be easily implemented since it does not involve complicated steps.

次に、第2の実施例について説明する。第2図(a)〜
(d)は不発明の第2の実施例を説明するために工程順
に示した断面図である。
Next, a second example will be described. Figure 2(a)~
(d) is a sectional view shown in the order of steps for explaining the second embodiment of the invention.

第2の実施例では全工程のうち最初の工程から層間絶縁
膜のPSG膜の成長まで、すなわち第1図(a)から第
1図te+までは全く同じである。その後の工程を第2
図fa)〜(d)により説明する。第2図(a)〜(d
lで絹1図(a)〜(e+と同一部分は同一番号で示し
である。
In the second embodiment, all steps from the first step to the growth of the PSG film as an interlayer insulating film, that is, from FIG. 1(a) to FIG. 1te+ are completely the same. The subsequent process is the second
This will be explained with reference to Figures fa) to (d). Figure 2 (a) to (d)
The same parts as in Figures (a) to (e+) of Silk 1 are indicated by the same numbers.

先ず第1図ia)〜(e)の工程後、第2図(a)に示
すように、表面に形成した層間絶縁膜であるPSG膜7
にソースおよびドレイン領域へコンタクト孔ヲ141孔
する・ 次に、第2図(b)に示すように%PSG膜7をマスク
としてリンのイオン注入11を行う。このイオン注入は
エネルギー50KeV、ドーズ量5X1015cm−2
程度の条件で行う。
First, after the steps in FIG. 1 ia) to (e), as shown in FIG. 2 (a), the PSG film 7 which is an interlayer insulating film formed on the surface is
Then, contact holes 141 are formed in the source and drain regions.Next, as shown in FIG. 2(b), ion implantation 11 of phosphorus is performed using the %PSG film 7 as a mask. This ion implantation has an energy of 50KeV and a dose of 5X1015cm-2.
This is done under certain conditions.

次に、第2図(C1に示すように、イオン打込み領域を
活性化するため)・ロゲンランブアニール1900’0
以上IJ00°C以下の温度で30秒以下の時間で行う
と、ソースおよびドレイン接合12が形成される。
Next, as shown in FIG.
When the above is performed at a temperature of IJ00°C or less for a time of 30 seconds or less, the source and drain junctions 12 are formed.

次に、第2図(d)に示すように、アルミニウム配線9
を設けるとnチャンネルMIS型電界効果ト・ランジス
タが得られる。
Next, as shown in FIG. 2(d), the aluminum wiring 9
By providing , an n-channel MIS type field effect transistor can be obtained.

以上説明したように、本発明の第2の実施秒1によれば
第1の実施例の効果を損うことなしにソースおよびドレ
インの接合のコンタクト抵抗を減少させることが出来る
As described above, according to the second embodiment of the present invention, the contact resistance of the source and drain junctions can be reduced without impairing the effects of the first embodiment.

なお上記実施例では短時間熱処理方法としてノ・ロゲン
ランブアニールを用いたが、これに限定されるものでな
く、レーザアニール、電子ビームアニール、フラッシュ
ランプアニール等の他の短時間アニール方法が使用でき
ることは言うまでもないことである。
Note that in the above embodiments, Norogen-lamb annealing was used as the short-time heat treatment method, but the present invention is not limited to this, and other short-time annealing methods such as laser annealing, electron beam annealing, and flash lamp annealing can be used. It goes without saying.

(発明の効果) 以上説明したとお汎不発明によれば、複雑な工程による
ことなく、短チャンネル効果の発生を防ぎ、かつホット
キャリヤの生成の少ないnチャンネルのMIS型電界効
果トランジスタを製造することが出来る・
(Effects of the Invention) As explained above, according to the invention, it is possible to manufacture an n-channel MIS type field effect transistor that prevents the short channel effect from occurring and generates fewer hot carriers without using complicated processes. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は不発明の第1の実施例を説明す
るために工程順に示した断面図、第2図(a)〜Fdl
は不発明の第2の実施例を説明するために工程順に示し
た断面図である。 1・・・・・p型シリコン単結晶基板、2・・・・素子
分離酸化膜、3・・・・・ゲート酸化膜、4・・・・・
・閾値電圧制御のための不純物、5・・・・・ソースお
よびドレイン形成のためのイオン注入、6・・・・・ゲ
ート電極、7・・・・・P S O層間絶縁膜、8・・
・・・・ソースおよびドレイン形成のための不純物、9
・・・・・・アルミニウム配縁、10・・・・・・形成
された接合、11・・・・・・コンタクト形成用イオン
注入、12・・・・・形成された接合。 U 躬 l 図
FIGS. 1(a) to (f) are cross-sectional views shown in the order of steps for explaining the first embodiment of the invention, and FIGS. 2(a) to Fdl
FIG. 3 is a cross-sectional view showing a second embodiment of the present invention in order of steps. 1...P-type silicon single crystal substrate, 2...Element isolation oxide film, 3...Gate oxide film, 4...
・Impurity for threshold voltage control, 5... Ion implantation for source and drain formation, 6... Gate electrode, 7... P SO interlayer insulating film, 8...
...Impurity for source and drain formation, 9
... Aluminum interconnection, 10 ... Junction formed, 11 ... Ion implantation for contact formation, 12 ... Junction formed. U 謬 l fig.

Claims (3)

【特許請求の範囲】[Claims] (1)ゲート電極長1.5μm以下のnチャンネルMf
S型電界効果トランジスタのソースおよびドレイン領域
をn型シリコン単結晶基板の一生面に形成するに当り、
前記ゲート電極をマスクにしてリンを前記基板にlXl
0 cm 以上1×1016cm 以下のドーズ量で5
0KeV以下のエネルギーでイオン注入する工程と、前
記イオン注入後900℃以上1100℃以下の温度で3
0秒以下の時間熱処理を行う工程とを有することを特徴
とするMIS型電界効果トランジスタの製造方法・
(1) N-channel Mf with gate electrode length of 1.5 μm or less
When forming the source and drain regions of an S-type field effect transistor on the entire surface of an n-type silicon single crystal substrate,
Using the gate electrode as a mask, phosphorus is applied to the substrate.
5 at a dose of 0 cm or more and 1 x 1016 cm or less
A process of ion implantation with an energy of 0 KeV or less, and a step of ion implantation at a temperature of 900°C or more and 1100°C or less after the ion implantation.
A method for manufacturing an MIS type field effect transistor, comprising a step of performing heat treatment for a time of 0 seconds or less.
(2)ゲート電極長1.5μm 以下のnチャンネルM
Ia型電界効果トランジスタのソースおよびドレイン領
域をn型シリコン単結晶基板の一生面に形成するに当り
、前記ゲート電極をマスクにしてリンtnIJ記基板に
1x1015cm−2以上lXl016cm 以下のド
ーズ量で50KeV以下のエネルギーでイオン注入する
工程と、表面に層間絶縁膜を設ける工程と、該層間絶縁
膜にソースおよびドレイン領域へのコンタクト用の開孔
を設ける工程と、該開孔部を通してリン全イオン注入す
る工程と、イオン注入後900”0以上1100°C以
下の温度で30秒以下の時間熱処理する工程とを含むこ
と全特徴とするMIS型電界効果トランジスタの製造方
法。
(2) N-channel M with gate electrode length of 1.5 μm or less
When forming the source and drain regions of a type Ia field effect transistor on the entire surface of an n-type silicon single crystal substrate, using the gate electrode as a mask, the phosphorus tnIJ substrate is heated at a dose of 1x1015cm-2 or more and 1x1016cm or less and 50KeV or less. a step of implanting ions with an energy of 1. A method for manufacturing an MIS field effect transistor, which comprises the following steps: and a step of heat treatment at a temperature of 900"0 to 1100° C. for a period of 30 seconds or less after ion implantation.
(3)n型シリコン単結晶基板がn型シリコン単結晶基
板の一生面に形成されたp型ウェルである特許請求の範
囲第(1)項又は第(2)項記載のMIS型電界効果ト
ランジスタの製造方法。
(3) The MIS type field effect transistor according to claim (1) or (2), wherein the n-type silicon single crystal substrate is a p-type well formed on the entire surface of the n-type silicon single crystal substrate. manufacturing method.
JP4441784A 1984-03-08 1984-03-08 Manufacture of mis field effect transistor Pending JPS60189267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4441784A JPS60189267A (en) 1984-03-08 1984-03-08 Manufacture of mis field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4441784A JPS60189267A (en) 1984-03-08 1984-03-08 Manufacture of mis field effect transistor

Publications (1)

Publication Number Publication Date
JPS60189267A true JPS60189267A (en) 1985-09-26

Family

ID=12690916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4441784A Pending JPS60189267A (en) 1984-03-08 1984-03-08 Manufacture of mis field effect transistor

Country Status (1)

Country Link
JP (1) JPS60189267A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642373A (en) * 1979-09-13 1981-04-20 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642373A (en) * 1979-09-13 1981-04-20 Seiko Epson Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US5219773A (en) Method of making reoxidized nitrided oxide MOSFETs
JPS59920A (en) Manufacture of semiconductor device
JPS6362227A (en) Correction of characteristics of p-type dopant by other p-type dopant
JPH02191341A (en) Manufacture of mos field effect transistor
JPH05267327A (en) Misfet and its manufacture
US6180470B1 (en) FETs having lightly doped drain regions that are shaped with counter and noncounter dorant elements
JPS60189267A (en) Manufacture of mis field effect transistor
JPH1032330A (en) Manufacture of lateral mos transistor
JP2700320B2 (en) Method for manufacturing semiconductor device
JP2900698B2 (en) Manufacturing method of insulated field effect transistor
JP2781989B2 (en) Method for manufacturing semiconductor device
JPH0434942A (en) Manufacture of semiconductor device
JPH0526343B2 (en)
JPH0575041A (en) Cmos semiconductor device
JP2000349039A (en) Manufacture of semiconductor device having shallow diffusion layer
JPH09306862A (en) Manufacturing semiconductor device
KR100334965B1 (en) Formation method of device of mos field effect transistor
JPS6359547B2 (en)
JPH04196525A (en) Manufacture of semiconductor device
JP2545904B2 (en) Semiconductor device
JPH05267338A (en) Manufacture of semiconductor device
JPH1027855A (en) Manufacture of cmos transistor
JPH0415950A (en) Complementary field-effect semiconductor device and manufacture thereof
JPH11204783A (en) Semiconductor device and manufacture therefor
JP2601209B2 (en) Method for manufacturing semiconductor device