JPS601869A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS601869A
JPS601869A JP11051883A JP11051883A JPS601869A JP S601869 A JPS601869 A JP S601869A JP 11051883 A JP11051883 A JP 11051883A JP 11051883 A JP11051883 A JP 11051883A JP S601869 A JPS601869 A JP S601869A
Authority
JP
Japan
Prior art keywords
heat treatment
layer
aluminum
contact
diffused layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11051883A
Other languages
Japanese (ja)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP11051883A priority Critical patent/JPS601869A/en
Publication of JPS601869A publication Critical patent/JPS601869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the improper contact in an ultrafine contact by heat treating for a long period in H2 before laminating an aluminum layer, and heat treating for a short time after forming an aluminum wiring layer, thereby avoiding a punch-through in the shallow diffused layer of aluminum wirings. CONSTITUTION:After a well field 2, a gate film 4, a gate electrode 5 and a source drain diffused layer 3 are formed, a contacting hole is formed at the second field 6, high temperature hydrogen heat treatment (450 deg.C or higher, 15min or longer) is performed for a long time, thereby chemically stabilizing an Si<+> of the boundary between an SiO2 and Si or a dangling bond. An aluminum wiring layer 7 is formed, a short time heat treatment is executed in nitrogen or hydrogen atmosphere by an instantaneous annealing device such as a halogen lamp. Since Si solid phase growth of Al-Si is eliminated, improper contact does not occur even in an ultrafine contacting hole. Aluminum is not punched through even in the diffused layer having a shallow junction.

Description

【発明の詳細な説明】 本発明は、MO8型FF1Tの製造に関する。特に高集
積度L81において有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the manufacture of MO8 type FF1T. This is particularly effective in the highly integrated L81.

従来、MO8・FF、Tの製造において、At配線層と
拡散層のオーミック・コンタクトは、At配線層蓄積後
、長時間H1熱処理シンタリングにより形成された。し
かしながら、LSIの高集積化に伴い、コンタクトホー
ルが微小化した1μ惧口以下になり、かつ拡散層がα3
μ惧より浅い接合が必要となるVL8工製造において、
長時間H2シンタリング(例えば 450℃ 20分)
熱処理は、At配線の浅い拡散層からシリコン基板への
つき抜けの問題があり、さらに配線にAtE]iを用い
ると微細コンタクトホールにおいて81の固相成長によ
るコンタクト不良の問題が、■LSIの歩留り低下の原
因になるという欠点があった本発明は、かかる従来の欠
点を取り除き、At配線の浅い拡散層におけるつき抜け
を回避し、微小コンタクトにおけるコンタクト不良を防
ぎ、しかも安定したゲートおよびフィールドにおける8
10、・81界面を与えるMO8−FITの製造方法を
提供することを目的とする。
Conventionally, in the manufacture of MO8 FFs and Ts, the ohmic contact between the At wiring layer and the diffusion layer was formed by long-time H1 heat treatment sintering after accumulation of the At wiring layer. However, with the increasing integration of LSIs, contact holes have become smaller and smaller than 1μ, and diffusion layers have become smaller than α3.
In VL8 manufacturing, which requires a bond shallower than µm,
Long-term H2 sintering (e.g. 450℃ 20 minutes)
Heat treatment has the problem of penetration from the shallow diffusion layer of the At wiring to the silicon substrate, and furthermore, when AtE]i is used for the wiring, there is a problem of contact failure due to solid phase growth of 81 in fine contact holes, which reduces the yield of LSI. The present invention eliminates such conventional drawbacks, avoids penetration in the shallow diffusion layer of At wiring, prevents contact failure in minute contacts, and provides stable gate and field 8.
The present invention aims to provide a method for manufacturing MO8-FIT that provides a 10,·81 interface.

上記目的を達成するため、本発明による熱処理は、81
0!と81の界面を安定化させるための長時間H7熱処
理(例えば 480℃ 30分)を、At層蓄積前に行
ない、AtまたはAA−S1配線層と拡散層のオーミッ
ク−コンタクト形成の短時間熱処理(例えば450℃1
5秒〜30秒)を、hLfk!Ila層形成後に行なう
ことを特徴としている。
In order to achieve the above object, the heat treatment according to the present invention
0! A long-time H7 heat treatment (e.g., 480°C for 30 minutes) to stabilize the interface between and 81 is performed before the At layer accumulation, and a short-time heat treatment (for example, 480°C for 30 minutes) to form an ohmic contact between the At or AA-S1 wiring layer and the diffusion layer is performed. For example, 450℃1
5 seconds to 30 seconds), hLfk! It is characterized by being carried out after the formation of the Ila layer.

以下、実施例にて説明する。Examples will be described below.

表1は、従来技術によるMOS−FITの製造方法のフ
ロー・チャートであり、第2図のMOS・FF1T断面
図に示すごとくウェル・フィールド21ゲート膜4・ゲ
ー)11U極5・ソース・ドレイン拡散層3形成後、表
1■において第2フイールド6にコンタクトホールを形
成し、次にAt配線JvI7を形成後、長時間熱処理H
2シンタリングを行すっている。H2シンタリングは、
Atと拡散層のオーミック・コンタクト形成とゲートお
よびフィールド領域の81と8102の界面に存在する
S1+やダングリング・ボンドを安定化する役目を果し
ている。しかしながら、Slと810゜界面の安定化に
は長時間熱処理が必要なことと、短時間熱処理を可能に
する装置が存在しなかったため、該H2シンタ廿はl長
時間熱処理(例えば、450℃30分)を行なってきた
。このため、高集積度LSIに必要とされる浅い接合の
拡散層においてAtのつき抜けによるリーク不良が発生
する。また、微小コンタクトにおいてはAt−81の8
1による固相成長によりコンタクト不良が生じる。従っ
て、コンタクト・ホールの微小化・拡散接合深さの微小
化に制限を与え、LSIの高集積化を困難にしている。
Table 1 is a flow chart of a method for manufacturing MOS-FIT according to the conventional technology, and as shown in the cross-sectional view of MOS/FF1T in Fig. 2, the well field 21 gate film 4 11U pole 5 source/drain diffusion After forming the layer 3, a contact hole is formed in the second field 6 in Table 1■, and then an At wiring JvI7 is formed, followed by long-term heat treatment H.
2. Sintering is performed. H2 sintering is
It serves to form an ohmic contact between At and the diffusion layer, and to stabilize S1+ and dangling bonds existing at the interface between 81 and 8102 in the gate and field regions. However, since long-term heat treatment was required to stabilize the 810° interface with Sl, and there was no equipment that could perform short-time heat treatment, the H2 sinter area had to undergo long-time heat treatment (e.g., 450°C, 30°C). minutes). For this reason, leakage defects occur due to penetration of At in the shallow junction diffusion layer required for highly integrated LSIs. In addition, for microcontacts, At-81's 8
Contact failure occurs due to solid phase growth due to No. 1. Therefore, this limits the miniaturization of contact holes and the depth of diffusion junctions, making it difficult to achieve high integration of LSIs.

表2は、本発明によるMOS・FKTの製造方法のフロ
ーチャートであり、■番目のイオン注入層のアニールま
では従来の方法と同じである。
Table 2 is a flowchart of the method for manufacturing a MOS/FKT according to the present invention, and the steps up to the annealing of the ■th ion-implanted layer are the same as the conventional method.

本発明においては、H2雰囲気中での長時間熱処理をA
t配線形成前に行なっている。表2では、第1図のMO
S・FIDTの断面図に示すごとくコンタクト・ホール
形成後に長時間熱処理を行なっているが、コンタクト・
ホール形成前でも良い。
In the present invention, long-term heat treatment in an H2 atmosphere is
This is done before forming the t-wiring. In Table 2, the MO of Figure 1 is
As shown in the cross-sectional view of the S-FIDT, long-term heat treatment is performed after contact holes are formed, but the contact
It may be done even before the hole is formed.

従って、Atの浅い拡散接合でのつき抜けはあり得ない
ため、高温長時間(例えば、480℃。60分)のH6
熱処理を行なうことができ、’S i O。
Therefore, since it is impossible for At to penetrate through shallow diffusion bonding, H6
Heat treatment can be performed, 'S i O.

と81との界面の81+やダングリングボンドを化学的
に安定化させるに充分な熱処理時間と温度が確保できる
。次に第2図のMOS・FITの断面図に示すごと<h
t配線層7を形成後、ノ・ロゲン・ランプ、グラファイ
ト・ヒータなどの瞬間アニール装置により、短時間熱処
理を行なう。この熱処理は、真空中・窒素雰囲気中・水
素雰囲気中のいずれでも可能である。熱処理(例えば、
450℃、10秒)において、AA−8iの81が固相
成長するには、時間が少なすぎるため、微小コンタクト
ホールにおいてもコンタクト不良は生じない。また、0
.3μ惧以下の浅い接合を持つ拡散層においてもAlの
つき抜けは生じない。さらに、短時間熱処理によるコン
タクト抵抗のウェーッ・内のばらつきは、長時間熱処理
に比べてずつと小さい。従って、本発明によれば、81
0□と81界面が安定して電気特性のばらつきが少ない
、しかも浅い接合を持つ拡散層と微小フンタクトホール
に制限を与えないMOS・’FETの制造が可能になる
A heat treatment time and temperature sufficient to chemically stabilize 81+ and dangling bonds at the interface between and 81 can be secured. Next, as shown in the cross-sectional view of the MOS/FIT in Figure 2,
After forming the t-wiring layer 7, heat treatment is performed for a short time using an instantaneous annealing device such as a nitrogen lamp or a graphite heater. This heat treatment can be performed in a vacuum, in a nitrogen atmosphere, or in a hydrogen atmosphere. Heat treatment (e.g.
450° C. for 10 seconds), the time is too short for 81 of AA-8i to grow in a solid phase, so no contact failure occurs even in minute contact holes. Also, 0
.. Even in a diffusion layer having a shallow junction of 3 μm or less, no penetration of Al occurs. Furthermore, the within-wafer variation in contact resistance due to short-time heat treatment is much smaller than that due to long-time heat treatment. Therefore, according to the invention, 81
It is possible to manufacture a MOS/'FET with a stable 0□ and 81 interface with little variation in electrical characteristics and without restrictions on the diffusion layer and microscopic holes with shallow junctions.

以上説明したように、本発明は、高集積!LS■を可能
にするMOS・FF1Tの製造方法を与える。
As explained above, the present invention is highly integrated! A method for manufacturing MOS/FF1T that enables LS■ is provided.

く表−1〉 従来のMOB会FET製造フロー・チャー
ト く表−2〉 本発明によるMO8・FF1T製造フロー
・チャート
Table 1〉 Conventional MOB FET manufacturing flow chart Table 2〉 MO8/FF1T manufacturing flow chart according to the present invention

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・・・・・At配線形成前のMO8−FIT断
面図 第2図・・・・・・At配線形成後のMO8・FBAT
断面図 1・・・・・・81基板 2・・・・・・Sin、(LOC!08)3・・・・・
・ソース・ドレイン領域 4・・・・・・ゲート膜 5・・・・・・Po1y 81 ゲート電極6・・・・
・・810゜ 7・・・・・・At配線 以 上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上 務
Figure 1: Cross-sectional view of MO8-FIT before At wiring formation Figure 2: MO8-FBAT after At wiring formation
Cross-sectional view 1...81 Substrate 2...Sin, (LOC!08)3...
・Source/drain region 4...Gate film 5...Poly 81 Gate electrode 6...
・・・810゜7・・・・・・At wiring or above Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】[Claims] AA配線を有するMOS @FKTからなるLSI製造
において、At配線層の形成以前に長時間高温水素熱処
理(450℃以上 15分以上)を行ない、h、L配線
層形成後に短時間N2またはH2熱処理シンタリングを
行なうことを特徴とする半導体装置の製造方法。
In manufacturing LSIs consisting of MOS @FKT with AA wiring, long-term high-temperature hydrogen heat treatment (450°C or higher, 15 minutes or more) is performed before the formation of the At wiring layer, and short-time N2 or H2 heat treatment sintering is performed after the formation of the h and L wiring layers. A method for manufacturing a semiconductor device, characterized by performing a ring process.
JP11051883A 1983-06-20 1983-06-20 Manufacture of semiconductor device Pending JPS601869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11051883A JPS601869A (en) 1983-06-20 1983-06-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11051883A JPS601869A (en) 1983-06-20 1983-06-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS601869A true JPS601869A (en) 1985-01-08

Family

ID=14537822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11051883A Pending JPS601869A (en) 1983-06-20 1983-06-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS601869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196870A (en) * 1986-02-24 1987-08-31 Seiko Epson Corp Manufacture of semiconductor device
US6114236A (en) * 1996-10-17 2000-09-05 Nec Corporation Process for production of semiconductor device having an insulating film of low dielectric constant
KR100486229B1 (en) * 1998-02-02 2005-08-05 삼성전자주식회사 Method for tisix silicide gate transistor forming using hydrogen anneal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196870A (en) * 1986-02-24 1987-08-31 Seiko Epson Corp Manufacture of semiconductor device
US6114236A (en) * 1996-10-17 2000-09-05 Nec Corporation Process for production of semiconductor device having an insulating film of low dielectric constant
KR100486229B1 (en) * 1998-02-02 2005-08-05 삼성전자주식회사 Method for tisix silicide gate transistor forming using hydrogen anneal

Similar Documents

Publication Publication Date Title
JPS601869A (en) Manufacture of semiconductor device
JPS5856977B2 (en) Manufacturing method of semiconductor device
JPS62266829A (en) Formation of shallow junction layer
JPH0526343B2 (en)
JPH0456456B2 (en)
JPH0212924A (en) Manufacture of bipolar transistor
JPS62196870A (en) Manufacture of semiconductor device
JPS62296472A (en) Manufactore of semiconductor device
JPS62122173A (en) Semiconductor device
JPS6222437A (en) Forming method of contact hole
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JPH06124960A (en) Manufacture of semiconductor device
JPS60198813A (en) Diffusion of impurity to semiconductor
JPS60193330A (en) Method for diffusing impurities into semiconductor
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current
JPH04116820A (en) Manufacture of semiconductor device
JPS62183142A (en) Manufacture of semiconductor device
JPS6149428A (en) Manufacture of semiconductor device
JPS61265868A (en) Manufacture of semiconductor device
JPH0441510B2 (en)
JPH03166759A (en) Manufacture of semiconductor device
JPS5933825A (en) Manufacture of semiconductor device
JPS60187015A (en) Manufacture of semiconductor device
JPS605561A (en) Manufacture of semiconductor device
JPH03206612A (en) Manufacture of semiconductor device