JPS60186804A - Film having periodic multi-layered structure - Google Patents

Film having periodic multi-layered structure

Info

Publication number
JPS60186804A
JPS60186804A JP59042323A JP4232384A JPS60186804A JP S60186804 A JPS60186804 A JP S60186804A JP 59042323 A JP59042323 A JP 59042323A JP 4232384 A JP4232384 A JP 4232384A JP S60186804 A JPS60186804 A JP S60186804A
Authority
JP
Japan
Prior art keywords
film
substrate
films
thickness
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59042323A
Other languages
Japanese (ja)
Other versions
JPH0441670B2 (en
Inventor
Hisanori Bando
坂東 尚周
Takahito Terajima
孝仁 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59042323A priority Critical patent/JPS60186804A/en
Publication of JPS60186804A publication Critical patent/JPS60186804A/en
Publication of JPH0441670B2 publication Critical patent/JPH0441670B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain a film which has a periodic multi-layered structure, is chemically and physically stable and is applicable to various electronic apparatus by laminating alternately silicon oxide films and metallic films at a specified film thickness ratio. CONSTITUTION:A substrate 1 is placed in an upper part and a cooling pipe is provided in the place of the substrate 1 to cool the substrate. The substrate 1 can be heated by a heater 2 if necessary. Thereare two vapor sources 31, 32 in the lower part to evaporate respectively SiO powder and cobalt metal. The inside of a vacuum vessel 100 is evacuated to a high vacuum of <=about 5X10<-6> Torr and thereafter the sources 31, 32 are moved to evaporate alternately Co and SiO thereby forming the films laminated periodically with Co and SiOx. Glass is used for the substrate and is subjected to the vapor deposition under water cooling. The film thickness is monitored by a quartz oscillation type film thickness gage 5. When the prescribed thickness is attained, a shutter is closed and the vapor sources are moved, then the shutter is opened to evaporate the other material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、理イ1学機器、電子機器に対して有用なシリ
コン酸化物膜と金属膜を交互に積層し、それぞれの膜厚
を一定にして周期性構造を持たせた多層構造膜に関する
ものであるO ′(従来技術とその問題点) 一般に金属膜は数百久以下になるとその電気的、磁気的
、光学的性質が著しく変化することが知られており、実
用上望ましい特性が超薄膜で得られる場合がある0しか
し、一層の超薄膜では物理量が小さすぎて実用素子には
適用できない場合が多い口これを解決する目的で、他の
物質合間にはさんで層数を多くして物理量を増加させる
試みがなされている。しかし、金lJ4膜は、薄くなる
と酸化や他の物質との反応性が高まシ、その結果として
金属膜の特性およびその再現性が劣化し、このような多
層化の試みは成功していない0これは、金属膜と反応せ
ず、加えて金属膜に対して保護効果の高い良好な薄膜が
見い出されていないことによっている。この金属膜を分
離する薄膜(以降スペーサーと称す)は、上記化学的性
質に加えて、充分薄い膜厚において連続膜として形成し
得る特性を具備する必璧がある0それは、スペーサーの
厚さが増すと連続膜の形成は容易となるが多層化された
膜の全膜厚が厚くなシすぎ、物理量の積算効果が低下す
るためである。これまで、スペーサー材料として種々検
討されているが、上記特性をすべて満し、さらに実用上
の錆喪請を満す材料は開発されていない。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a method in which silicon oxide films and metal films, which are useful for scientific equipment and electronic equipment, are alternately laminated and the thickness of each film is kept constant. O' (Prior art and its problems) Generally speaking, the electrical, magnetic, and optical properties of a metal film change significantly when it is used for several hundred years or less. It is known that practically desirable properties can sometimes be obtained with ultra-thin films.However, in many cases, a single-layer ultra-thin film has too small a physical quantity to be applied to practical devices. Attempts have been made to increase the physical quantity by increasing the number of layers by sandwiching them between other substances. However, as the gold lJ4 film becomes thinner, its reactivity with oxidation and other substances increases, resulting in deterioration of the properties of the metal film and its reproducibility, and such attempts at multilayering have not been successful. 0 This is because a good thin film that does not react with the metal film and has a high protective effect against the metal film has not yet been found. In addition to the above-mentioned chemical properties, the thin film that separates the metal films (hereinafter referred to as a spacer) must have the property that it can be formed as a continuous film at a sufficiently thin film thickness. This is because, although increasing the thickness makes it easier to form a continuous film, the total thickness of the multilayered film becomes too thick and the cumulative effect of physical quantities decreases. Although various studies have been made so far as spacer materials, no material has been developed that satisfies all of the above characteristics and also satisfies practical rust requirements.

(発明の目的) 本発明の目的は、前述の従来技術の欠点を改良し、化学
的、物理的に安定な周期性多層構造膜を提供することに
ある。
(Objective of the Invention) An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a chemically and physically stable periodic multilayer structure film.

(発明の構成) すなわち本発明は、シリコン酸化物膜と金属膜とを一定
の暎厚比で交互に積層した周期性多層構造膜である。
(Structure of the Invention) That is, the present invention is a periodic multilayer structure film in which silicon oxide films and metal films are alternately laminated at a constant thickness ratio.

(構成の詳細な説明) 前述したスペーサーに要求される緒特性を満す材料につ
いて、本発明者らが鋭意研究を重ねた結果、シリコン酸
化物膜が該当することを見い出し本発明に到った。本発
明におけるシリコン酸化物膜は、8i0.あるいはSi
Oをソース拐料として、真窒蒸着、スパッタリング、イ
オンビームデボジシ書ン、イオンブレーティングなどの
真空伺着法により形成された膜を意味する。通常このよ
うに形成された膜は、必ずしも5i02あるいはSiO
の膜が得られるとは限らず、成膜条件によシ、化学量論
からずれた験が得られる。ここでは、これらを総称して
SiOxとする。このよりなS iox mは、薄膜や
半導体材料の研究者らにはよく知られた材料である。即
ち、S ioxは非晶質であって、電気絶縁体であり、
金属に対して@滑性がよく、均一な膜を作り、金属など
の保護膜として広く利用されている。この特性は、本発
明にかかわるスペーサーに適したものであるが、これら
S iox膜の特性は数百X以上数μmの膜厚に関する
ものであって、本発明のスペーサーに要請される厚さ1
00X以下の薄膜の特性は明らかでない。特に多層膜の
場合にどのような挙動を示すかは、本発明により初めて
明らかになったものである。
(Detailed explanation of the structure) As a result of extensive research by the present inventors regarding materials that satisfy the above-mentioned characteristics required for the spacer, they discovered that a silicon oxide film satisfies the requirements, leading to the present invention. . The silicon oxide film in the present invention is 8i0. Or Si
It refers to a film formed by a vacuum deposition method such as true nitrogen evaporation, sputtering, ion beam deposition, or ion blating using O as a source material. Usually, the film formed in this way is not necessarily 5i02 or SiO
However, depending on the film forming conditions, a film that deviates from stoichiometry may be obtained. Here, these are collectively referred to as SiOx. This flexible Siox m is a material well known to researchers of thin films and semiconductor materials. That is, Siox is amorphous and an electrical insulator,
It has good lubricity against metals, forms a uniform film, and is widely used as a protective film for metals. These characteristics are suitable for the spacer according to the present invention, but the characteristics of these Siox films relate to a film thickness of several hundred times more than several μm, and the thickness 1 μm required for the spacer of the present invention is
The characteristics of thin films below 00X are not clear. In particular, the behavior of multilayer films has been clarified for the first time by the present invention.

金属膜は種々のものが使用できるが、応用に↓υ最適材
料を選択することができる。例えは、磁気記録用媒体あ
るいはヘッド材料としては、磁性金属であるFe、 C
+・、Niおよびこれらの磁性合金を使用することがで
きる。レーザ光を用いる光記録媒体としては、前記磁性
金属に加えて、低融点半金属、希土類・遷移金属非晶質
合金などが使用できる0又、X@の単色化あるいはマス
ク伺としては、前記金属に加えて、A、u、pt など
の貴金属やTa、vvなとの重金属を用いることができ
るOこのX線応用の具体例としては、X線回折装置のフ
ィルター、微細パターン形成用X線露光装置のマスクパ
ターンなどが挙げられるOさらに電気抵抗材料として応
用する場合は、クロム、ニクロムなどが金属膜として使
用できる。
Various metal films can be used, but the most suitable material can be selected for the application. For example, as a magnetic recording medium or head material, magnetic metals such as Fe and C are used.
+., Ni and magnetic alloys thereof can be used. In addition to the magnetic metals mentioned above, low melting point semimetals, rare earth/transition metal amorphous alloys, etc. can be used as optical recording media using laser light. In addition, noble metals such as A, U, and PT, and heavy metals such as Ta and VV can be used. Specific examples of this X-ray application include filters for X-ray diffraction equipment, and X-ray exposure for forming fine patterns. Examples include mask patterns for devices, etc. Furthermore, when applied as an electrical resistance material, chromium, nichrome, etc. can be used as the metal film.

本発明にかかる周期性とは、金属膜とスペーサー膜がそ
れぞれ一定の膜厚で交互に積層されていることを意味す
る。各層間の厚さを一定にするのは、金属膜の特性が厚
さに依存するためであシ、斧層膜の特性を制御する場合
、各層の特性が一定である方が望ましいことに因ってい
る0同様な意味で、スペーサー膜の各層での厚さも一定
である方が望ましい0金属嗅とスペーサー膜の一層の厚
さは、前述した応用により異なるが概ね2001以下が
望ましい0それは、金属膜の場合、200X前後を境と
して結晶構造、微細構造が変化し、応用上望ましい特性
が得られるからである。スペーサー膜の厚さは、多層膜
の物理特性を検出する方法を考慮して決定されなければ
ならないが、通常は金属膜と同様に200X以下の値が
望ましい。
Periodicity according to the present invention means that metal films and spacer films are alternately laminated with a constant thickness. The reason why the thickness between each layer is constant is because the properties of the metal film depend on the thickness, and when controlling the properties of the ax layer film, it is desirable that the properties of each layer be constant. In the same sense, it is desirable that the thickness of each layer of the spacer film be constant.The thickness of each layer of the metal layer and spacer film varies depending on the application mentioned above, but it is generally desirable to be 2001 or less. This is because, in the case of a metal film, the crystal structure and fine structure change at around 200X, and desired characteristics for the application can be obtained. The thickness of the spacer film must be determined in consideration of the method of detecting the physical properties of the multilayer film, but normally a value of 200X or less is desirable, similar to the metal film.

多層膜の周期性を確認する最も一般的な方法は、X線回
折を使用することである。金属膜とスペーサー膜がそれ
ぞれ均一に作成されかつ明瞭に層間分離された場合、2
dSInθ=nλ(d:面間距離、02回折角、n:反
射次数、λ:X線波長)を満足するX線回折ピークが得
られる。周期性が良好になるにつれて、回折ピークの半
値幅は狭くなり、かつ高次の回折ピークも観測されるよ
うになる。
The most common method to confirm the periodicity of multilayer films is to use X-ray diffraction. When the metal film and the spacer film are each created uniformly and have clear interlayer separation, 2
An X-ray diffraction peak satisfying dSInθ=nλ (d: interplanar distance, 02 diffraction angle, n: reflection order, λ: X-ray wavelength) is obtained. As the periodicity becomes better, the half-value width of the diffraction peak becomes narrower, and higher-order diffraction peaks are also observed.

このことから、多層膜の周期性の品質が判定できる。回
折ピーク強度は金属膜とスペーサー膜の材質によシ変化
するが、主として2種類の物質量のX線に対する原子散
乱因子の差が大きくなるにつれて強度も強くなると考え
られている。
From this, the quality of the periodicity of the multilayer film can be determined. The diffraction peak intensity varies depending on the materials of the metal film and the spacer film, but it is thought that the intensity increases mainly as the difference in the atomic scattering factors for X-rays between the amounts of the two types of substances increases.

以下本発明を実施例によシ詳細に説明する。The present invention will be explained in detail below using examples.

(実施例1) 第1図に示すような真空蒸着装置を用い、上方に基板1
を置き、基板1の所に水冷管(図示せず)を設けて冷却
する0必璧あればヒータ2で基板lを加熱することも出
来る。下部には2個の蒸発源31.32があυ、それぞ
れ8i0粉末とコバルト(CO)金属を蒸発させる。ま
ず真空槽ioo全5 X 10−6Torr以下の高真
空に排気後、蒸発源31.32を移動させてCoとSi
Oを交互に蒸発させてC。
(Example 1) Using a vacuum evaporation apparatus as shown in FIG.
If necessary, the substrate 1 can also be heated by the heater 2. At the bottom are two evaporation sources 31, 32, which evaporate 8i0 powder and cobalt (CO) metal, respectively. First, after evacuating the entire vacuum chamber to a high vacuum of 5 X 10-6 Torr or less, move the evaporation sources 31 and 32 to evacuate Co and Si.
C by evaporating O alternately.

とS iOxが周期的に積層した膜を作った。基板とし
てはガラスを用い、これを水冷しながら蒸着した0膜厚
は水晶振動式膜厚計5で監視して所定の膜厚になればシ
ャッターを閉じ、かつ蒸発源を移動させ、再びシャッタ
ーを開き他力の物質を蒸着させるという操作を繰返した
。Co、 SiOxの付着速度はともにIJ/sec程
度であシ、これは各層の膜厚を正確に制御するために採
用した。このようにして蒸着されたSiOx膜の可視光
での屈折率は1.6であυ、5i02とSiOの中間の
組成を有していると予想される0最後に被着されるSi
Ox映は、最上層のCo膜を保護するために100Xの
厚さとした。
A film was created in which SiOx and SiOx were periodically stacked. Glass was used as the substrate, and the film was deposited while cooling with water.The zero film thickness was monitored using a crystal vibrating film thickness gauge 5. When the film reached a predetermined thickness, the shutter was closed, the evaporation source was moved, and the shutter was opened again. The process of opening and depositing the other-power substance was repeated. The deposition rates of both Co and SiOx were approximately IJ/sec, which was adopted to accurately control the film thickness of each layer. The SiOx film deposited in this way has a refractive index of 1.6 in visible light, and is expected to have a composition between that of 5i02 and SiO.
The Ox film was 100X thick to protect the top Co film.

第2図はCoを80X、 SiOxを15Xの厚さで交
互に10回繰返し蒸着した多層膜の小角におけるCuK
CA線を用いたX線回折ピークを示す。これよシ面間距
離dをめると反射次数n = 1で76.81゜n =
 7で97Xであった。X線回折では高角度の方がよシ
正しい値を示すと考えられるので、d=97Xを採用す
れに、膜厚計の読みで設定した周期95Xとよく一致す
ることが判る。このことと、8次という筒次の回折ピー
クが得られることから本多層膜は優れた周期構造を有し
ていることが判る。
Figure 2 shows CuK at a small angle of a multilayer film in which Co was deposited at a thickness of 80X and SiOx was alternately deposited 10 times at a thickness of 15X.
X-ray diffraction peaks using CA rays are shown. If we add the distance d between the surfaces, the reflection order n = 1 and 76.81゜n =
7 and it was 97X. In X-ray diffraction, it is thought that higher angles show more accurate values, so when d=97X is used, it is found that it matches well with the period of 95X set by the reading of the film thickness meter. From this fact and the fact that a cylindrical diffraction peak of the 8th order is obtained, it can be seen that the present multilayer film has an excellent periodic structure.

次に周期の層数によってX線回折ピークの高さ半値幅、
強度がどのように変化するのかを示したのが次の表であ
る〇 表 この表から層数mが2でも大きい強度のピークが現われ
、mが増加しても強度はおまシ増加しないが、半値幅は
小さくなシ、ピークは鋭くなることが判るっ 以上の結果よシ、このような周期性多層構造膜は、その
周期を変えることによシ、特定のX線波長を効率良く反
射させるのでX%1のフ・イルター、マスク材として使
用できるo 5iOx−金属多層膜は、原子散乱因子差
を大きく取れるので、他の多層膜よシ回折強度が犬きく
なシ応用上有利である。
Next, depending on the number of periodic layers, the height and half-width of the X-ray diffraction peak,
The following table shows how the strength changes. From this table, even when the number of layers m is 2, a large strength peak appears, and even when m increases, the strength does not increase much, but It can be seen that the half-width is small and the peak is sharp.The above results show that such a periodic multilayer structure film can efficiently reflect specific X-ray wavelengths by changing its period. Therefore, the o5iOx-metal multilayer film, which can be used as a filter or a mask material of X%1, has a large difference in atomic scattering factors, and is therefore advantageous in applications where the diffraction intensity is not as strong as that of other multilayer films.

(実施例2) 実施例1と同様にして、810x−Co多層1換に加え
て、8i0x−Fe、 5iOx−Ni、 5iOx−
In、 5iOx−Auの多層膜を作成し、これらの光
学偶作を’?J4べた。
(Example 2) In the same manner as in Example 1, in addition to the 810x-Co multilayer, 8i0x-Fe, 5iOx-Ni, 5iOx-
Create a multilayer film of In, 5iOx-Au, and investigate these optical coincidences. J4 solid.

これらすべての多層膜において、S ioxの厚さが1
5X以下では、可視から近赤外光域での膜の光学特性(
反則率R1透過率T、吸収率A)は、8 r Oxの厚
さに依存しないことが判った。この場合の光学特性は、
SiOx%の厚さをゼロとし、全金属膜〃に等しい金属
単/m膜のそれにほぼ一致した。
In all these multilayer films, the thickness of Siox is 1
Below 5X, the optical properties of the film in the visible to near-infrared light range (
It has been found that the fouling rate R1, transmittance T, and absorption rate A) do not depend on the thickness of 8 r Ox. The optical properties in this case are
When the thickness of SiOx% was set to zero, it almost matched that of a metal single/m film, which is equivalent to an all-metal film.

このことは、このような条件では、多層化によシ光学特
性を変えることなく、熱的、電気的特性を変化させるこ
とができることを意味しているO8 iox膜を厚くす
ると、各金属層間での繰返し反射干渉が現われ、その厚
さを調節することによシ、反射率を低下させ、金属膜で
の吸収率を高くすることができる。例えば、Co 40
1−810xの10回繰返し多層膜で、S iox膜一
層の厚さを15X。
This means that under these conditions, it is possible to change the thermal and electrical properties without changing the optical properties by multilayering. Repeated reflection interference appears, and by adjusting the thickness, the reflectance can be lowered and the absorption rate in the metal film can be increased. For example, Co40
A multilayer film of 1-810x repeated 10 times, with a single Siox film thickness of 15x.

50X、100X、150Xと変化させるとそれぞれ反
射率、透過率は53%、7%、:40%、6%:27チ
、5%:22多、4%と変化した。
When changing to 50X, 100X, and 150X, the reflectance and transmittance changed to 53%, 7%, 40%, 6%: 27%, 5%: 22%, and 4%, respectively.

これらの膜に半導体レーザを集光して照射すると、成る
パワー、照射時間で反射率が増加するモードで記録が可
能であった0例えば、Co(80X)−8iOx(15
X)10回縁シ返し多層膜の場合、記録パワー5mW、
照射時間500 n5eeで、約1μm径のビットが記
録でき、その瀞宛の反射率は初期値よシ8%増加した。
When these films are irradiated with a focused semiconductor laser, it is possible to record in a mode in which the reflectance increases with the power and irradiation time.For example, Co(80X)-8iOx(15
X) In the case of a 10-times edge-turned multilayer film, the recording power is 5 mW,
With an irradiation time of 500 n5ee, a bit with a diameter of about 1 μm could be recorded, and the reflectance of the bit was increased by 8% from the initial value.

なお、この場合は基板材料としてPへIMAを使用し、
集光レンズの開口数れ0.55でありた。
In this case, IMA is used for P as the substrate material,
The numerical aperture of the condenser lens was 0.55.

これらの光学特性は高温高湿の環境下で1カ月以上放置
しても何ら変化が認められなかった。比較のために同様
の作製条件で得られたCo単層膜の耐候性を鯛べると1
〜2週間の放置で酸化による劣化が認められた。
No change was observed in these optical properties even after being left in a high temperature and high humidity environment for more than one month. For comparison, the weather resistance of a Co monolayer film obtained under similar manufacturing conditions was 1.
Deterioration due to oxidation was observed after being left for ~2 weeks.

以上の結果よシ、このような周期性多層構造膜は、その
周期を変えることにより光学特性を任意に制御できるの
で、化学的に安定な光学素子、光ディスクなどとして使
用できる。
As a result of the above, such a periodic multilayer structure film can be used as a chemically stable optical element, optical disk, etc., since the optical properties can be controlled arbitrarily by changing the period.

(実施例3) ガラス基体の上に、実施例1と同様にして8i0x−C
r多層膜を成膜して電気抵抗器を作製した。周期性多層
構造膜とすることにより、サーメツト膜よりも電気抵抗
値の設定を厳密に行なえるようになったとともに、耐熱
性、化学的安定性が向上した。
(Example 3) 8i0x-C was applied on a glass substrate in the same manner as in Example 1.
An electric resistor was manufactured by forming a multilayer film. By using a periodic multilayer structure film, it became possible to set the electrical resistance value more precisely than with a cermet film, and the heat resistance and chemical stability were improved.

(実施例4) 実施例1と同様にして5iOx−Feの多層膜を成膜し
、磁気記録媒体を得た。
(Example 4) A multilayer film of 5iOx-Fe was formed in the same manner as in Example 1 to obtain a magnetic recording medium.

磁気記録特性が良好なこととともに耐候性に関しても単
層膜よりも大幅に向上した0 (発明の効果) 上記実施例から明らかなように、本発明によシ各種電子
機器に広く応用可能な化学的、物理的に安定な周期性多
層構造膜が得られる。
In addition to having good magnetic recording properties, the weather resistance is also significantly improved compared to a single layer film. (Effects of the Invention) As is clear from the above examples, the present invention has developed a chemical composition that can be widely applied to various electronic devices. A periodic multilayer structure film that is physically and physically stable can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するだめの真空蒸着装置の一例を
示す図、第2図(at〜(C)は本発明の周期性多層構
造膜の一例のX線回折ピークを示す図であるO 図において、lは基板、2はヒータ、5は膜厚計、31
.32は蒸発源、100は真空槽を示す。 2 回析鑵度
Figure 1 is a diagram showing an example of a vacuum evaporation apparatus for carrying out the present invention, and Figures 2 (at to (C) are diagrams showing X-ray diffraction peaks of an example of the periodic multilayer structure film of the present invention. O In the figure, l is the substrate, 2 is the heater, 5 is the film thickness gauge, 31
.. 32 is an evaporation source, and 100 is a vacuum chamber. 2 Diffraction hardness

Claims (1)

【特許請求の範囲】[Claims] シリコン酸化物膜と金属膜とが一定の膜厚比で交互に積
層されていることを特徴とする周期性多層構造膜。
A periodic multilayer structure film characterized in that a silicon oxide film and a metal film are alternately stacked at a constant film thickness ratio.
JP59042323A 1984-03-06 1984-03-06 Film having periodic multi-layered structure Granted JPS60186804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042323A JPS60186804A (en) 1984-03-06 1984-03-06 Film having periodic multi-layered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042323A JPS60186804A (en) 1984-03-06 1984-03-06 Film having periodic multi-layered structure

Publications (2)

Publication Number Publication Date
JPS60186804A true JPS60186804A (en) 1985-09-24
JPH0441670B2 JPH0441670B2 (en) 1992-07-09

Family

ID=12632797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042323A Granted JPS60186804A (en) 1984-03-06 1984-03-06 Film having periodic multi-layered structure

Country Status (1)

Country Link
JP (1) JPS60186804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051288A (en) * 1989-03-16 1991-09-24 International Business Machines Corporation Thin film magnetic recording disk comprising alternating layers of a CoNi or CoPt alloy and a non-magnetic spacer layer
KR100581852B1 (en) * 2002-06-12 2006-05-22 삼성에스디아이 주식회사 Apparatus of vacuum evaporat ion and method vacuum evaporation using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151151A (en) * 1974-05-25 1975-12-04
JPS5655910A (en) * 1979-10-13 1981-05-16 Fujitsu Ltd Production of optical multilayer film
JPS5727788A (en) * 1980-07-25 1982-02-15 Asahi Chem Ind Co Ltd Information recording member
JPS5741997A (en) * 1980-08-27 1982-03-09 Asahi Chem Ind Co Ltd Information recording member
JPS57135197A (en) * 1981-02-16 1982-08-20 Asahi Chem Ind Co Ltd Information recording medium
JPS57141034A (en) * 1981-02-23 1982-09-01 Asahi Chem Ind Co Ltd Member for information recording
JPS5885945A (en) * 1981-11-17 1983-05-23 Asahi Chem Ind Co Ltd Information recording member
JPS58111141A (en) * 1981-12-23 1983-07-02 Fujitsu Ltd Information recording medium
JPS58144804A (en) * 1981-12-04 1983-08-29 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Record supporting body with multicolor microscopic structure, particularly microscopic mapping type and manufacture thereof
JPS599094A (en) * 1982-07-09 1984-01-18 Asahi Chem Ind Co Ltd Information recording material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151151A (en) * 1974-05-25 1975-12-04
JPS5655910A (en) * 1979-10-13 1981-05-16 Fujitsu Ltd Production of optical multilayer film
JPS5727788A (en) * 1980-07-25 1982-02-15 Asahi Chem Ind Co Ltd Information recording member
JPS5741997A (en) * 1980-08-27 1982-03-09 Asahi Chem Ind Co Ltd Information recording member
JPS57135197A (en) * 1981-02-16 1982-08-20 Asahi Chem Ind Co Ltd Information recording medium
JPS57141034A (en) * 1981-02-23 1982-09-01 Asahi Chem Ind Co Ltd Member for information recording
JPS5885945A (en) * 1981-11-17 1983-05-23 Asahi Chem Ind Co Ltd Information recording member
JPS58144804A (en) * 1981-12-04 1983-08-29 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Record supporting body with multicolor microscopic structure, particularly microscopic mapping type and manufacture thereof
JPS58111141A (en) * 1981-12-23 1983-07-02 Fujitsu Ltd Information recording medium
JPS599094A (en) * 1982-07-09 1984-01-18 Asahi Chem Ind Co Ltd Information recording material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051288A (en) * 1989-03-16 1991-09-24 International Business Machines Corporation Thin film magnetic recording disk comprising alternating layers of a CoNi or CoPt alloy and a non-magnetic spacer layer
KR100581852B1 (en) * 2002-06-12 2006-05-22 삼성에스디아이 주식회사 Apparatus of vacuum evaporat ion and method vacuum evaporation using the same

Also Published As

Publication number Publication date
JPH0441670B2 (en) 1992-07-09

Similar Documents

Publication Publication Date Title
DE3802998A1 (en) METHOD FOR PRODUCING A THIN ROENGENAMORPHEN ALUMINUM NITRIDE OR ALUMINUM SILICON NITRIDE LAYER ON A SURFACE
US8530140B2 (en) Optical information recording medium and method for manufacturing the same
EP0188100B1 (en) Optical recording medium formed of chalcogen oxide and method for producing same
JPS60186804A (en) Film having periodic multi-layered structure
US7485355B2 (en) Optical information recording medium and method for manufacturing the same
JP2005135568A (en) Information recording medium, its manufacturing method, and sputtering target
JPH01196743A (en) Information recording medium
JPS60189704A (en) Multi-layered oxide film having periodicity
EP1465173B1 (en) Optical recording material, optical recording medium and manufacturing method thereof, optical recording method and reproduction method
JPH0226299B2 (en)
Muranova et al. Dependence of the index of refraction and microporosity of zirconium dioxide films on the deposition conditions
Arbaoui et al. Performance Of Sputter Deposited Multi Layer X-Ray Mirrors
JPS63121142A (en) Optical information recording medium
JPH0714206A (en) Information recording medium
JPS6211683A (en) Preparation of recording medium
JPS6177316A (en) Manufacture of thin film material for reproducing magneto-optical record
JPS6358634A (en) Information recording medium and its production
JPH01241040A (en) Information recording medium
JPS60112490A (en) Production of optical information recording member
JPH01241038A (en) Information recording medium
JPS61153829A (en) Optical information storage device
JPH0221441A (en) Magneto-optical recording medium and its production
JPH02171290A (en) Information recording medium
JPH01227236A (en) Information recording medium
JPH01241035A (en) Information recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees