JPH0226299B2 - - Google Patents

Info

Publication number
JPH0226299B2
JPH0226299B2 JP55151339A JP15133980A JPH0226299B2 JP H0226299 B2 JPH0226299 B2 JP H0226299B2 JP 55151339 A JP55151339 A JP 55151339A JP 15133980 A JP15133980 A JP 15133980A JP H0226299 B2 JPH0226299 B2 JP H0226299B2
Authority
JP
Japan
Prior art keywords
thin film
film
silicon
recording
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55151339A
Other languages
Japanese (ja)
Other versions
JPS5778649A (en
Inventor
Kyoshi Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP55151339A priority Critical patent/JPS5778649A/en
Publication of JPS5778649A publication Critical patent/JPS5778649A/en
Publication of JPH0226299B2 publication Critical patent/JPH0226299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)

Description

【発明の詳細な説明】 本発明は光メモリ用積層体に関する。さらに詳
しくは、光記録−光・熱消去型の可逆的屈折率変
化が可能なカルコゲナイド化合物薄膜をシリコン
薄膜で被覆した光メモリ用積層体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laminate for optical memory. More specifically, the present invention relates to a laminate for optical memory in which a chalcogenide compound thin film capable of reversible refractive index change of optical recording/light/thermal erasing type is coated with a silicon thin film.

従来より光記録−光・熱消去により可逆的に屈
折率変化の起るカルコゲナイド化合物薄膜は光メ
モリ媒体として多くの研究がなされてきた。例え
ば、As−S薄膜、及びAs−S−Se−Ge薄膜はAr
イオンレーザ等の光照射により屈折率が変化す
る。また、加熱あるいは強い光の照射により可逆
的にもとの状態に屈折率が戻ることが知られてい
る。この現象を用い、繰り返し使用可能なホログ
ラム記録材料、光メモリ材料、または、同時に生
ずる吸収端の変化を利用した超マイクロフイルム
材料として多くの研究がなされてきた。しかしな
がら、これらの材料の実用化をはばんできたの
は、カルコゲナイド化合物薄膜に不安定性が存在
することにある。
Conventionally, many studies have been conducted on chalcogenide compound thin films, whose refractive index changes reversibly upon optical recording and erasure with light or heat, as optical memory media. For example, A s -S thin film and A s -S-S e -G e thin film are A r
The refractive index changes due to light irradiation from an ion laser or the like. Furthermore, it is known that the refractive index reversibly returns to its original state by heating or irradiating with strong light. Many studies have been conducted using this phenomenon to develop repeatable hologram recording materials, optical memory materials, or ultra-microfilm materials that utilize the simultaneous change in absorption edge. However, what has hindered the practical application of these materials is the instability that exists in chalcogenide compound thin films.

カルコゲナイド化合物薄膜は基板上に薄膜を形
成した後、可逆的光メモリとして使用する為に
は、ガラス転移点以下の温度でアニール処理を行
う。ところが従来該処理の際、また、光記録−
光・熱消去によるくり返し使用を行つたとき、膜
に亀裂が生じたり、記録特性が低下したりする
為、この点実用上問題があつた。また、記録保存
性も良くなかつた。これらは材料的不安定性に起
因するものであり、実用化の為の材料の安定化が
切望されていた。
After a chalcogenide compound thin film is formed on a substrate, it is annealed at a temperature below the glass transition point in order to be used as a reversible optical memory. However, in the conventional processing, optical recording
When used repeatedly by light and heat erasing, cracks occur in the film and the recording characteristics deteriorate, which poses a practical problem. Furthermore, the recordability was not good. These problems are caused by material instability, and it has been desired to stabilize the materials for practical use.

本発明者は、前述した不安定性を改善する為、
鋭意検討した結果、前記の如きカルコゲナイド化
合物薄膜をシリコン薄膜で被覆することにより安
定性が改善されることを見い出した。
In order to improve the above-mentioned instability, the present inventor has
As a result of extensive studies, it has been found that stability can be improved by covering the chalcogenide compound thin film as described above with a silicon thin film.

また、当該カルコゲナイド膜の両面をシリコン
薄膜で被覆し、膜厚を適宜に選ぶことにより、安
定化の向上にあわせて鋭敏な読み出し信号出力変
化をも得られることを見い出し、本発明に到達し
た。
Furthermore, we have discovered that by coating both sides of the chalcogenide film with a silicon thin film and appropriately selecting the film thickness, it is possible to obtain not only improved stability but also a sharp change in readout signal output, and have thus arrived at the present invention.

本発明は光記録−光・熱消去型の可逆的屈折率
変化が可能な膜厚1000Å〜20000Åのカルコゲナ
イド化合物薄膜の両面を膜厚が200Å〜700Åシリ
コン薄膜で被覆した光メモリ用積層体である。
The present invention is a laminate for optical memory in which both sides of a chalcogenide compound thin film with a thickness of 1,000 Å to 20,000 Å are coated with silicon thin films of 200 Å to 700 Å, which are capable of reversibly changing the refractive index of the optical recording/light/thermal erasing type.

本発明における光記録−光・熱消去型の可逆的
屈折率変化が可能なカルコゲナイド化合物薄膜と
は、屈折率が異なる2つの状態、をもち、光
照射により、両状態間を可逆的に遷移するも
の、及び、光照射又は熱により可逆的に遷移する
カルコゲナイド化合物薄膜である。例えば、As
を含むカルコゲナイド薄膜、及び、AsとGeとを
含むカルコゲナイド薄膜、すなわちAs−Se、As
−S、As−Se−Ge、As−S−Ge、As−Se−S
−Ge系ガラス薄膜、または、P及びGeを含むカ
ルコゲナイド薄膜、すなわちP−Se−Ge及びP
−S−Ge系ガラス薄膜等である。これらの薄膜
は必要によりTe等の添加物を含んでいても良い。
The optical recording-optical/thermal erasable chalcogenide compound thin film capable of reversibly changing refractive index in the present invention has two states with different refractive indexes, and can reversibly transition between the two states by light irradiation. This is a chalcogenide compound thin film that undergoes reversible transition upon exposure to light or heat. For example, As
and chalcogenide thin films containing As and Ge, i.e., As-Se, As
-S, As-Se-Ge, As-S-Ge, As-Se-S
-Ge-based glass thin film or chalcogenide thin film containing P and Ge, i.e. P-Se-Ge and P
-S-Ge based glass thin film, etc. These thin films may contain additives such as Te, if necessary.

該薄膜はいかなる方法で形成してもよいが、一
般に成形物基板上に真空蒸着法またはスパツタ法
により形成する。成形物基板はガラス等のセラミ
ツクス、ポリメチルメタクリレートまたはポリエ
チレンテレフタレート等のプラスチツクス、Al
等の金属等の成形物であり、特に限定するもので
はない。
Although the thin film may be formed by any method, it is generally formed on the molded substrate by vacuum evaporation or sputtering. The substrate of the molded product may be ceramics such as glass, plastics such as polymethyl methacrylate or polyethylene terephthalate, or aluminum.
It is a molded product of metal such as, etc., and is not particularly limited.

該薄膜の膜厚は可逆的屈折率変化を位相変化と
して利用し、また大きな信号出力を取り出すため
には1000Å以上、また膜の安定性の上から2μm以
下とする必要がある。
The thickness of the thin film needs to be 1000 Å or more in order to utilize reversible refractive index change as a phase change and to extract a large signal output, and 2 μm or less in view of film stability.

本発明におけるシリコン薄膜とは、Siの結晶体
または非晶体よりなる薄膜である。Siの多結晶薄
膜または非晶質薄膜、あるいは粒径が約100Å以
下の微結晶シリコン薄膜が薄膜の作成上の容易さ
より好ましい。特に非晶質薄膜あるいは粒径が約
100Å以下の微結晶シリコン薄膜は、膜作成時の
基板温度が300℃程度以下で作成できることから、
カルコゲナイド化合物薄膜に影響を与えることな
く作成できるため特に好ましい。
The silicon thin film in the present invention is a thin film made of crystalline or amorphous Si. A polycrystalline thin film or an amorphous thin film of Si, or a microcrystalline silicon thin film with a grain size of about 100 Å or less is preferable because of ease of manufacturing the thin film. In particular, amorphous thin films or grains with a diameter of approx.
Microcrystalline silicon thin films with a thickness of 100 Å or less can be created at a substrate temperature of approximately 300°C or less during film formation.
This is particularly preferred because it can be created without affecting the chalcogenide compound thin film.

シリコン薄膜中には不純物は存在しない方がよ
いが、例えばH、F、P、As、B、Ga、Al、Ge
等の添加物を本発明の効果を損わない程度に含ん
でいてもよい。
It is better that no impurities exist in the silicon thin film, but for example, impurities such as H, F, P, As, B, Ga, Al, Ge, etc.
The additives such as the like may be included to the extent that the effects of the present invention are not impaired.

該薄膜はいかなる方法で形成してもよいが、真
空蒸着法、イオンプレーテイング法、スパツ法、
グロー放電法等により形成する。
The thin film may be formed by any method, including vacuum evaporation method, ion plating method, spat method,
It is formed by a glow discharge method or the like.

該薄膜の膜厚は光メモリの書き込み及び読み出
し光に対する透明性より5000Å以下が好ましい。
また、カルコゲナイド化合物薄膜の安定性を向上
する効果をもつためには約15Å以上が必要であ
る。また以上の効果を特に発揮するためには100
Å以上800Å以下が特に好ましい。
The thickness of the thin film is preferably 5000 Å or less in view of transparency to writing and reading light of the optical memory.
Further, in order to have the effect of improving the stability of the chalcogenide compound thin film, it is necessary to have a thickness of about 15 Å or more. In addition, in order to particularly demonstrate the above effects, 100
Particularly preferred is Å or more and 800 Å or less.

本発明における光メモリ用積層体は、基板Aの
上に、カルコゲナイド化合物薄膜B及びシリコン
薄膜Cを積層してなるものである。積層体の構成
順はA−C−B−Cである。本発明におけるカル
コゲナイド化合物薄膜の安定化は、A−C−B−
Cの組み合せにおいて効果が大きい。また以上の
構成の基本的効果を損なわないような付加的な
層、例えば、最上層に保護層を設けたり、基板と
該薄膜との間に下引き層を設けても良い。
The optical memory laminate according to the present invention is formed by laminating a chalcogenide compound thin film B and a silicon thin film C on a substrate A. The configuration order of the laminate is A-C-B-C. The stabilization of the chalcogenide compound thin film in the present invention is achieved by A-C-B-
The effect is great in combination with C. Furthermore, an additional layer that does not impair the basic effects of the above structure, such as a protective layer on the top layer or an undercoat layer between the substrate and the thin film, may be provided.

また、材料的安定性に加えて特にA−C−B−
Cの構成体においては、Cの膜厚を200Åより700
Å、Bの膜厚を1000Å以上2μm以下の範囲内で適
宜に選択することにより読み出し信号出力の大き
い光メモリが得られる。信号出力は透過形光メモ
リの場合、読み出し光に対する透過率変化とし
て、また反射形光メモリとして使用する場合は反
射率変化として検知される。特にCの膜厚をλ/4ns (但し450nm<λ<900nm、nsは波長λにおける
Cの屈折率)、Bの膜厚をmλ/2nc(ncは波長λにお けるBの屈折率、mは整数)とする本発明の光メ
モリ用積層体は、読み出し光の波長を適宜に選択
することにより極めて鋭敏な光メモリとなるため
好ましい。また読み出し光に対し信号出力変化を
大きくとるためにmは3以上、また膜作成の容易
さより10以下が特に好ましい。
In addition to material stability, especially A-C-B-
In the C structure, the C film thickness is 700 Å from 200 Å.
By appropriately selecting the film thicknesses of Å and B within the range of 1000 Å or more and 2 μm or less, an optical memory with a large readout signal output can be obtained. In the case of a transmissive optical memory, the signal output is detected as a change in transmittance with respect to read light, and in the case of a reflective optical memory, it is detected as a change in reflectance. In particular, the film thickness of C is λ/4ns (450nm<λ<900nm, ns is the refractive index of C at wavelength λ), and the film thickness of B is mλ/2nc (nc is the refractive index of B at wavelength λ, m is an integer). The laminated body for an optical memory of the present invention having the above structure is preferable because it becomes an extremely sensitive optical memory by appropriately selecting the wavelength of the readout light. Further, in order to obtain a large change in signal output with respect to the readout light, m is preferably 3 or more, and particularly preferably 10 or less for ease of film formation.

本発明の光メモリ用積層体は従来の光記録−
光・熱消去型の可逆的屈折率変化が可能なカルコ
ゲナイド化合物薄膜の不安定性を大巾に改善する
ものである。この効果の原因は明らかではない
が、シリコン薄膜とカルコゲナイド化合物薄膜と
の界面に、膜のアニーリング時及び光記録−光・
熱消去の可逆変化に供なう膜の亀裂発生等の不安
定性を防ぐ働きが存在すると考えられる。界面に
おいて1部化学結合が生じている可能性も考えら
れる。また、カルコゲナイド化合物非晶質薄膜の
上層をシリコン薄膜で被覆した構成においては、
シリコン薄膜はパシベーシヨン膜としての効果も
もつものとも考えられる。
The optical memory laminate of the present invention is similar to conventional optical recording.
This greatly improves the instability of chalcogenide compound thin films that are capable of reversible refractive index changes through light and heat erasure. Although the cause of this effect is not clear, the interface between the silicon thin film and the chalcogenide compound thin film is exposed during film annealing and optical recording.
It is thought that there is a function to prevent instability such as the occurrence of cracks in the film due to reversible changes due to thermal extinction. It is also possible that some chemical bonding occurs at the interface. In addition, in a structure in which the upper layer of an amorphous thin film of chalcogenide compound is covered with a thin silicon film,
The silicon thin film is also considered to have the effect of a passivation film.

本発明の光メモリ用積層体は信号出力変化が非
常に大きく鋭敏な光メモリが作成できる。これは
シリコン薄膜とカルコゲナイド化合物薄膜とが、
非常に秀れた光学的なマツチング特性をもつこと
によると考えられる。
With the optical memory laminate of the present invention, an optical memory with very large and sensitive signal output changes can be created. This is a silicon thin film and a chalcogenide compound thin film.
This is thought to be due to the extremely excellent optical matching characteristics.

すなわち、本発明の光メモリに関し、各層の代
表的屈折率について示すと、シリコン(3.0〜
3.5)/カルコゲナイド化合物(2.0〜2.7)/シリ
コン(3.0〜3.5)/基板(約1.5)となつており、
シリコン層を透過してカルコゲナイド化合物層に
入射した光は両シリコン層とカルコゲナイド化合
物層との界面で反射され多重干渉を起こす。
That is, regarding the optical memory of the present invention, the typical refractive index of each layer is silicon (3.0~
3.5)/chalcogenide compound (2.0-2.7)/silicon (3.0-3.5)/substrate (approximately 1.5).
Light transmitted through the silicon layer and incident on the chalcogenide compound layer is reflected at the interface between both silicon layers and the chalcogenide compound layer, causing multiple interference.

多重干渉においては、位相差δは下記式() δ=2π/λ0ΔL=4π/λ0n2h cosα2 …() (式中、λ0は波長、hは厚さ、n2は屈折率、α2
屈折光の角度を示す) で表わされる。
In multiple interference, the phase difference δ is calculated by the following formula () δ = 2π / λ 0 ΔL = 4π / λ 0 n 2 h cosα 2 ... () (In the formula, λ 0 is the wavelength, h is the thickness, and n 2 is The refractive index, α2 , indicates the angle of refracted light.

特定の薄膜においては、レーザー波長λ0、厚さ
h、および屈折光の角度α2が一定であるから δ=Kn2 となる。
In a particular thin film, since the laser wavelength λ 0 , the thickness h, and the angle α 2 of the refracted light are constant, δ=Kn 2 .

従つて、レーザー光による記録後は記録前とは
屈折率が異なるから位相差も異なることとなり、
δと透過率の関係を示す第1図〔小山次朗、西原
浩共著「光波電子光学」(昭53−5−15)コロナ
社p.41の図2・20〕より、記録前の位相差がイで
あり記録後の位相差がロである場合、記録の前後
で透過率が減少(逆にいえば反射率が増大)する
様な場合が起こる。また、記録前がハで記録後が
ニであるように膜厚hを設定することにより、反
射率を大きく減少させることができる。
Therefore, after recording with laser light, the refractive index is different from before recording, so the phase difference is also different.
From Figure 1 showing the relationship between δ and transmittance [Figures 2 and 20 in ``Lightwave Electron Optics'' co-authored by Jiro Koyama and Hiroshi Nishihara (May 15, 1980, Corona Publishing, p. 41), it is clear that the phase difference before recording is If (a) and the phase difference after recording is (b), a case may occur in which the transmittance decreases (or conversely, the reflectance increases) before and after recording. Furthermore, by setting the film thickness h so that it is C before recording and D after recording, the reflectance can be greatly reduced.

本発明の光メモリ用積層体は、光記録−光・熱
消去型のくり返し可能な光メモリ媒体として安定
性が非常に秀れている。また、鋭敏な光メモリと
して極めて有用なものである。
The laminate for optical memory of the present invention has excellent stability as a repeatable optical memory medium of the optical recording/light/thermal erasing type. Moreover, it is extremely useful as a sensitive optical memory.

以下に本発明の光メモリ用積層体の効果を実施
例をもつて具体的に説明する。
The effects of the optical memory laminate of the present invention will be specifically explained below using examples.

実施例 1 真空蒸着装置内に設置したスライドガラス板上
に、半導体級のシリコンを電子ビーム法により蒸
着し、膜厚500Åのシリコン膜を形成した。X線
回折法によると膜は非晶質であつた。
As40Se25S25Ge10カルコゲナイドガラス(但し、
組成比は原子パーセント)を電子ビーム法で蒸着
し、膜厚8000Åのカルコゲナイド化合物非晶質膜
を形成した。蒸着時の真空度は2×10-5torr、蒸
着速度は約20Å/Sであつた。
Example 1 Semiconductor-grade silicon was deposited on a slide glass plate placed in a vacuum deposition apparatus by an electron beam method to form a silicon film with a thickness of 500 Å. According to X-ray diffraction, the film was amorphous.
As 40 Se 25 S 25 Ge 10 Chalcogenide glass (However,
The composition ratio is atomic percent) was deposited by electron beam method to form an amorphous chalcogenide compound film with a thickness of 8000 Å. The degree of vacuum during the deposition was 2×10 -5 torr, and the deposition rate was about 20 Å/S.

さらに再び半導体級のシリコンを電子ビーム法
により蒸着し、膜厚500Åの非晶質シリコン膜を
形成し、ガラス板上に3層膜よりなる光メモリ用
積層体を得た。引き続き空気中で200℃で10分間
アニール処理したところ、均質で亀裂のみられな
いメモリ層が得られた。
Furthermore, semiconductor-grade silicon was deposited again by the electron beam method to form an amorphous silicon film with a thickness of 500 Å, thereby obtaining a laminate for an optical memory consisting of three layers on a glass plate. Subsequent annealing in air at 200°C for 10 minutes resulted in a homogeneous, crack-free memory layer.

Arイオンレーザの514.5nmの波長の光ビームを
該メモリ層に照射した。ビーム径は2mm、出力は
5mWで10秒間照射し、ビツト状に記録した。
The memory layer was irradiated with a light beam of Ar ion laser having a wavelength of 514.5 nm. Beam diameter is 2mm, output is
It was irradiated at 5 mW for 10 seconds and recorded in bits.

記録部に830nmで発振するGaAlAs半導体レー
ザの光を読み出し光として40倍の対物レンズで集
光し反射光の強度を測定した。記録前後の反射率
は65%より5%にと大きく変化し、光記録が行わ
れた。さらに空気中で200℃で1分間加熱したと
ころ記録は完全に消去された。くり返し20回、記
録、消去を行つたがメモリ層の劣化及び亀裂の発
生はみられなかつた。
The light from a GaAlAs semiconductor laser oscillating at 830 nm was focused on the recording section using a 40x objective lens as read light, and the intensity of the reflected light was measured. The reflectance before and after recording changed significantly from 65% to 5%, and optical recording was performed. Further, when heated in air at 200°C for 1 minute, the records were completely erased. Recording and erasing was repeated 20 times, but no deterioration or cracking of the memory layer was observed.

実施例 2 充分に清浄化したスライドガラス板を高周波2
極スパツタ装置内に設置し、5×10-3TorrのAr
ガス雰囲気中で半導体級シリコンターゲツトをス
パツタし、500Åの膜厚のシリコン膜を形成した。
X線回折法によると膜は非晶質であつた。引き続
きAs40Se50Ge10カルコゲナイドガラスに1重量パ
ーセントのTeを添加したターゲツトをスパツタ
し、膜厚4800Åのカルコゲナイド膜を形成した。
さらに、再びシリコンターゲツトをスパツタし、
500Åの膜厚のシリコン膜を形成した。引き続き、
空気中で180℃で10分間アニール処理し、均質で
亀裂のない光メモリ用積層体を得た。
Example 2 A thoroughly cleaned slide glass plate was exposed to high frequency 2
Installed in a pole sputtering device, and
A semiconductor-grade silicon target was sputtered in a gas atmosphere to form a silicon film with a thickness of 500 Å.
According to X-ray diffraction, the film was amorphous. Subsequently, a target made of As 40 Se 50 Ge 10 chalcogenide glass to which 1% by weight of Te was added was sputtered to form a chalcogenide film with a thickness of 4800 Å.
Furthermore, sputter the silicon target again,
A silicon film with a thickness of 500 Å was formed. continuation,
Annealing was performed in air at 180°C for 10 minutes to obtain a homogeneous, crack-free optical memory laminate.

500W高圧水銀ランプでメモリ層を均一に照射
した後、780nmの波長で発振するGaAlAs半導体
レーザ光をしぼり、ビツト状記録を行つた。但
し、光減衰器を用い、試料が融解しないように記
録ビーム強度を調節した。実施例1と同様に
830nmの波長で発振するGaAlAs半導体レーザで
記録部を反射光で読み出したところ、記録前後で
反射率は30%より65%に変化し記録が行われた。
また、記録部は、水銀ランプによる照射により消
去され、繰り返し記録が確認された。
After uniformly irradiating the memory layer with a 500W high-pressure mercury lamp, a GaAlAs semiconductor laser beam oscillating at a wavelength of 780nm was focused to perform bit-like recording. However, the recording beam intensity was adjusted using an optical attenuator to prevent the sample from melting. Similar to Example 1
When the recorded area was read out using reflected light using a GaAlAs semiconductor laser that oscillated at a wavelength of 830 nm, the reflectance changed from 30% to 65% before and after recording, and recording was performed.
Furthermore, the recorded portion was erased by irradiation with a mercury lamp, and repeated recording was confirmed.

参考例 1 スライドガラスを充分に清浄化した後、真空蒸
着装置内の基板ホルダーに取り付けた。半導体級
のシリコンを蒸発源とし、2×10-5Torrの真空
度で電子ビール蒸着法により非晶質シリコン薄膜
を形成した。膜厚は200Åであつた。
As40Se25S25Ge10カルコゲナイドガラスをアルミ
ナコートしたタングステンルツボに入れ抵抗加熱
法により蒸着し、シリコン薄膜上にカルコゲナイ
ド化合物非晶質薄膜を形成した。蒸着速度は約30
Å/S、膜厚は9800Åであつた。
Reference Example 1 After thoroughly cleaning a glass slide, it was attached to a substrate holder in a vacuum evaporation apparatus. Using semiconductor-grade silicon as an evaporation source, an amorphous silicon thin film was formed by electronic beer evaporation at a vacuum level of 2×10 -5 Torr. The film thickness was 200 Å.
As 40 Se 25 S 25 Ge 10 chalcogenide glass was placed in an alumina-coated tungsten crucible and deposited by resistance heating to form an amorphous thin film of a chalcogenide compound on a silicon thin film. The deposition rate is approximately 30
The film thickness was 9800 Å.

膜形成後、空気中で200℃で10分間アニール処
理した。得られた膜は均質で、膜表面に亀裂はみ
られなかつた。さらに3カ月、空気中に保存後
も、膜の安定性は失われなかつた。
After the film was formed, it was annealed in air at 200°C for 10 minutes. The obtained film was homogeneous and no cracks were observed on the film surface. The stability of the membrane was not lost even after being stored in air for an additional 3 months.

参考例 2 参考例1と同様に、真空蒸着装置内に設置した
スライドガラス板上に、As40Se25S25Ge10カルコ
ゲナイドガラスを抵抗加熱法により蒸着した。膜
厚は9800Åであつた。該膜上に実施例3と同様に
半導体級のシリコンを電子ビーム法により真空蒸
着し、非晶質シリコン膜を形成した。膜厚は120
Åであつた。引き続き空気中で200℃で10分間ア
ニール処理した。得られた膜は、実施例3と同
様、均質で膜内に亀裂はみられなかつた。
Reference Example 2 As in Reference Example 1, As 40 Se 25 S 25 Ge 10 chalcogenide glass was vapor-deposited by resistance heating on a slide glass plate placed in a vacuum evaporation apparatus. The film thickness was 9800 Å. Semiconductor-grade silicon was vacuum-deposited on the film by electron beam method in the same manner as in Example 3 to form an amorphous silicon film. Film thickness is 120
It was Å. Subsequently, it was annealed in air at 200°C for 10 minutes. As in Example 3, the obtained film was homogeneous and no cracks were observed within the film.

参考例 3 参考例1と同様に、真空蒸着装置内に設置した
スライドガラス板上に、As40Se25S25Ge10カルコ
ゲナイドガラスを抵抗加熱法により蒸着した。膜
厚は9800Åであつた。引き続き空気中で200℃で
10分間アニール処理したところ膜に亀裂が生じ
た。処理後1日放置したところ膜の亀裂が増加し
た。
Reference Example 3 As in Reference Example 1, As 40 Se 25 S 25 Ge 10 chalcogenide glass was vapor-deposited by resistance heating on a slide glass plate placed in a vacuum evaporation apparatus. The film thickness was 9800 Å. Continue in air at 200℃
After annealing for 10 minutes, cracks appeared in the film. When the film was left for one day after treatment, cracks in the film increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は平行板の透過光強度特性を示す。 図中、It/Iiは入射光強度(Ii)に対する透過光強 度(It)の割合を示す。Rは層界面での反射係数
を、Fは透過波長の選択性のシヤープネスを示す
指標フイネス(finess) を示す。
FIG. 1 shows the transmitted light intensity characteristics of a parallel plate. In the figure, I t /I i indicates the ratio of transmitted light intensity (I t ) to incident light intensity (I i ). R is the reflection coefficient at the layer interface, and F is the index finesse that indicates the sharpness of the selectivity of the transmitted wavelength. shows.

Claims (1)

【特許請求の範囲】[Claims] 1 光記録−光・熱消去型の可逆的屈折率変化が
可能な膜厚1000Å〜20000Åのカルコゲナイド化
合物薄膜の両面を、膜厚が200Å〜700Åのシリコ
ン薄膜で被覆した光メモリ用積層体。
1. Optical recording - A laminate for optical memory in which both sides of a chalcogenide compound thin film with a thickness of 1,000 Å to 20,000 Å which is capable of reversible refractive index change of the optical/thermal erasable type are coated with a silicon thin film with a thickness of 200 Å to 700 Å.
JP55151339A 1980-10-30 1980-10-30 Laminated material for optical memory Granted JPS5778649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55151339A JPS5778649A (en) 1980-10-30 1980-10-30 Laminated material for optical memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55151339A JPS5778649A (en) 1980-10-30 1980-10-30 Laminated material for optical memory

Publications (2)

Publication Number Publication Date
JPS5778649A JPS5778649A (en) 1982-05-17
JPH0226299B2 true JPH0226299B2 (en) 1990-06-08

Family

ID=15516406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55151339A Granted JPS5778649A (en) 1980-10-30 1980-10-30 Laminated material for optical memory

Country Status (1)

Country Link
JP (1) JPS5778649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175312A1 (en) * 2019-02-26 2020-09-03 株式会社AndGo Device and method for evacuating cryptocurrency and program therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209940A (en) * 1984-03-31 1985-10-22 Sony Corp Optical recording medium
JPS615450A (en) * 1984-06-19 1986-01-11 Matsushita Electric Ind Co Ltd Optical recording member
JPS6192448A (en) * 1984-10-11 1986-05-10 Nippon Columbia Co Ltd Optical information recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117423A (en) * 1974-07-05 1976-02-12 Ibm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117423A (en) * 1974-07-05 1976-02-12 Ibm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175312A1 (en) * 2019-02-26 2020-09-03 株式会社AndGo Device and method for evacuating cryptocurrency and program therefor

Also Published As

Publication number Publication date
JPS5778649A (en) 1982-05-17

Similar Documents

Publication Publication Date Title
US5580632A (en) Information recording medium
KR890004231B1 (en) Optical information recording member
JP3292890B2 (en) Phase change type optical recording medium using light reflection and heat dissipation material
EP1372148B1 (en) Optical recording medium, process for manufacturing the same and optical recording process using the same
JPH0473387B2 (en)
JPH0226299B2 (en)
US4879205A (en) Information storage medium and a method of manufacturing the same
JPH04102243A (en) Optical information recording medium
JPH05151619A (en) Optical information recording medium and recording method
JP2868849B2 (en) Information recording medium
JPH04267192A (en) Optical information recording medium
KR20050059098A (en) Rewritable optical data storage medium and use of such a medium
JPH04229431A (en) Phase exchange type reversible optical recording carrier
JPS63167440A (en) Method for recording or recording and erasing information
JP2963106B2 (en) Information recording medium
JP2804313B2 (en) Phase change optical information recording medium
JP3176582B2 (en) Recording and erasing information
JPS62222443A (en) Rewriting type optical recording medium
JPH0714206A (en) Information recording medium
JP2002542085A (en) Optical recording medium with enhanced erasing ability
JPH05159363A (en) Optical recording medium
JPH0679386B2 (en) Optical information recording medium
JPH08263871A (en) Optical recording medium
JPH0428555B2 (en)
JPH07246777A (en) Optical data recording medium